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1 Introduction

Time additive separable (TAS) utility functions have been used in the anal-
ysis of intertemporal optimal behaviors and equilibria over time in various
fields. The first axiomatization of TAS utility with an infinite horizon was
provided by Koopmans (1972b) in a discrete time framework. Koopmans
employed a truncation method to embed preference orderings with an in-
finite horizon into finite dimensional preference orderings with an additive
separable representation by using the result of Debreu (1960), and then ex-
tended the preference orderings with a finite horizon to those with an infinite
horizon by a kind of limiting argument.

While the result of Koopmans was restricted to bounded programs, Dol-
mas (1995) generalized it to unbounded programs. Epstein (1986) obtained
the TAS representation under the hypothesis of constancy of marginal rates of
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intertemporal substitution. However, the above works require strong assump-
tions and it is difficult to apply these results to a continuous time framework.
In particular, Epstein (1986) requires that preference ordering is represented
by differentiable utility functions and the truncation method of Koopmans
(1972b) and Dolmas (1995) do not work because program spaces in con-
tinuous time are infinite dimensional even if time horizons are fixed to be
finite.

The purpose of this paper is to present an axiomatic approach in a con-
tinuous time framework for representing preference orderings on LP-spaces
in terms of integral functionals. We show that if preference orderings on L?-
spaces satisfy continuity, separability, sensitivity, substitutability, additiv-
ity and lower boundedness, then there exists a utility function representing
the preference orderings such that the utility function is an integral func-
tional with an upper semicontinuous integrand satisfying the growth condi-
tion. Moreover, if the preference orderings satisfy the continuity with respect
to the weak topology of LP-spaces, then the integrand is a concave integrand.
As a result, TAS utility functions with constant discount rates are obtained.

2 Finitely Additive Representation

Let (Q, &, 1) be a measure space with & a countably generated o-field of
a set Q, and u a o-finite, complete and nonatomic measure of #. For each
1 <p<oo,let LP(Q, &, u; R™) be the set of measurable function f from Q
to R™ with [, |f|Pdy < oo endowed with the LP-norm || f|l, = ([, | f[Pdu)'/?,

where | - | is the Euclidean norm of R". Since & is countably generated,
LP(Q, &, u; R™) is a separable Banach space (see Billingsley 1995, Theorem
19.2).

An element in LP(Q, &, u;R™) is called a trajectory. Let x4 be a char-
acteristic function of A € &, that is, xa(t) = 1 if t € A and xa(t) = 0
otherwise. If z is a trajectory, then zx 4 denotes a trajectory taking its val-
ues z(t) on A and zero on 2\ A. Thus, if z and y are trajectories and
AN B =0, then zx4 + yxz is a “patched” trajectory taking its values z(t)
a.e. t € A and y(t) a.e. t € B, and vanishing on O\ (AU B).

Definition 2.1. A subset 2 of L?(Q?, #, u; R") is admissible if the following
conditions are satisfied: (i) 0 € Z7; (ii) z,y € & and AN B = ( imply
XA +Yyxs € £

Let 2 be an admissible set of trajectories. Then zx4 € & for every
z€ Z and A€ £, and hence 4 := {zxa |z € £} is contained in Z'. A
preference relation - on £ is a complete transitive binary relation on 2.



61

We introduce the following axioms on the preference relation.

e Continuity: For every z € %, the upper contour set {y € & |
y = z} and the lower contour set {y € & | = X y} are closed in
LP(Q, F, 1 R™).

o Sensitivity: For every A € & with u(A) > 0, there exist z,y € &
such that x4 > yxa.

o Separability: For every A,B € & with AN B =0, zxa 2 yxa implies
TXA + 2XB = YXxa + 2xp for every z € Z'.

The continuity axiom is a standard condition of the continuity of pref-
erence relations on topological spaces. The sensitivity of 2 rules out the
situation in which the induced preference relation on 24 with p(A) > 0 is
“degenerate” in that every element in 2} is indifferent. The separability of
> implies that Tx4 = yxa if and only if zxa + 2XB Z YXx4 + 2xB for every
z € & with AN B = 0. Thus, = induces a preference relation on £4 by
restricting 2 to Z4.

Let I = {1,...,m} be a finite set of natural numbers and {Q,...,Qn}
be a partition of  such that each §2; has a positive measure. Define 2Z; =
Zq, for each i € I. Since every trajectory z € & is identified with the
element (zxq,,--.,ZXq.,) in the product space [],.; Z; and every element
(1, -, %m) € [Lic; Zi is identified with its algebraic sum 3, z: € &, it
follows that 2 = [[;c; Zi = Y ier Zi» Where Y, Z; is the algebraic sum
of Z1,..., Znm.

Lemma 2.1. Let Z be a admissible set of trajectories. Then &2 is a sep-
arable metric space. If & is connected, then Z; is connected and separable
foreach i € I.

Proof. Since & is a subset of the separable Banach space LP(§2, #, u; R™),
it is also separable. Suppose that £ is connected. Let pr; be the projection
from & into £;. Since pr; is continuous and Z; = pr;(Z’), it follows that
& is a connected set as the image of the connected set by the continuous
mapping. To show the separability of £;, choose z € Z; arbitrarily. Note
that Z; is a subset of &~ since £  is admissible. Then there exists a sequence
{z*} in & such that ¥ — z by the separability of Z . Therefore, z is the
cluster point of the sequence {pr;(z*)} in Z; in view of pr;(z*) — pry(z) =
x. ]

Suppose that m > 3. Let N be an arbitrary subset of I. Since - satisfies
separability, 2~ induces on the product space [],.y Z: a preference relation
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Zn~ by
def
(Zi)ien =N Wi)ien = [(Ti)ien (2)ienn] Z [(@i)ier, (z)ienn] Vz € X

(2.1)

We denote %} by 2. Thus for every subset N of I, the preference rela-

tion 2Znx on [,y & is independent of any (2i)ienn € [Lienw Zi- By the

sensitivity of X, there exist z;,y; € Z; such that z; >; y; for each i € I.

By Lemma 2.1, we can apply the theorem of Debreu—Gorman (Debreu 1960;

Gorman 1968) to obtain an additive separable utility function representing
-

Theorem 2.1. Let & be a connected admissible set of trajectories. If 2
satisfies continuity, separability and sensitivity, then for each ¢ € I, there
exists a continuous function U; on Z; such that

Toy <= Z Us(zi) 2 Z Ui(y:)-

iel i€l

This representation of 2 is unique up to increasing linear transformation of

Eiez Ui.

Remark 2.1. The general result of Debreu (1960) on the additive separa-
ble representation of preference relations on product topological spaces were
extended by Gorman (1968), who demonstrated that the separability axiom
(2.1) can be replaced with the weaker condition. The terminologies for the
above axioms are different from those of Debreu (1960) and Gorman (1968).
We follow the usage of the expositive article by Koopmans (1972a). Note
that the requirement m > 3 is crucial for the additive separable representa-
tion. Koopmans (1972a) gave a counter example such that for m = 2, every
preference relation on a connected separable topological space Z1 X Z3 that
satisfies continuity, separability and sensitivity cannot be represented by an
additive separable utility function!

3 Integral Representation

We introduce the following axioms on the preference relation.

o Substitutability: For every £ € & and A € & with u(A) > 0, there
exists some y € £ such that z ~ yxa4.

e Additivity: For every z,y € & and A, B,E, F € & satisfying ANB =
ENF =0, zxa ~ yxe and £xp ~ yxr imply Tx4+2zXxB ~ YXE+YXF-
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o Lower boundedness: There exists some zg € £ such that x = xg for
every T € Z .

When maximal elements with respect to 7 exist, substitutability becomes
a somewhat strong requirement because it necessarily implies the existence of
multiple maximal elements. In particular, if 2" is convex, then substitutabil-
ity excludes the strict convexity of 2-, which guarantees a unique maximal el-
ement. However, we do not assume the compactness of 2", and hence substi-
tutability is not a strong restriction when maximal elements are nonexistent.
The lower boundedness of 7~ excludes that a utility function representing >
is identically equal to —oo, which is an innocuous requirement.

In essence, additivity implies separability; More precisely, additivity im-
plies the following weaker form of the separability:

e Indifferent separability: For every A,B € & with ANB =0, zx4.~
YXx4 implies xx4 + 2xB ~ yxa + zxp for every z € 2.

To demonstrate this claim, let z,y,2 € £ and AN B = (. Suppose that
ZXxa ~ yxa. Define v = xx4 + 2xp and w = yxa + 2xB. Since vxa = Txa,
yxa = wxa and vxp = wxp by construction, we have vxs ~ wxa and
vxg ~ wxp. The additivity of 2 implies vx4 + vxB ~ wx4 + wxps, Which
is equivalent to x4 + 2xB ~ YXxa + zXB, from which indifferent separability
follows.

Theorem 3.1. Let 2 be an admissible set of trajectories that is connected
and closed in LP(Q2, F,u;R™). If = satisfies continuity, separability, sen-
sitivity, substitutability, additivity and lower boundedness, then there exists
a unique extended real-valued function f : Q@ x R* — R U {—oo} with the
following properties:

(i) f(t, -) is upper semicontinuous on R™ a.e. t € Q and f(-,v) is mea-
surable on Q for every v € R™.

(ii) There exist some o € LY(Q, #,pn) and B > 0 such that f(t,v) < a(t) +
Blv|? a.e. t € Q for every v € R™.

(iii) For every A € &, zxa X yxa if and only if [, f(t,z(t))du(t) >
Ja F(&y(®))du(t).

A function g : @ x R® — R U {400} is a normal integrand if —g sat-
isfies condition (i) of Theorem 3.1. Thus condition (i) states that —f is a
normal integrand, which we say that f is upper semicontinuous integrand
in the sequel. Condition (ii) is called growth condition in optimal control
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theory. The meaning of the uniqueness of f is as follows: If g is another up-
per semicontinuous integrand satisfying the conditions of Theorem 3.1, then
g(t,v) = f(t,v) a.e. t € Q for every v € R".

Proof of Theorem 8.1. By virtue of Theorem 2.1, there exists a continu-
ous utility function U on £ which represents 75 with the form U(z) =
> i Ui(zi). Without loss of generality one may assume that U;(0) = 0
for each i € I. We shall show that U is disjointly additive on &, that is,
ANB=0and z,y € & imply U(zxa + yxs) = U(zxa) + U(yxs).

To this end, take any z € % and A,B € & with ANB = 0. Let
E,F € & be such that E C ,¢;; and F' C Upyeg S4 for some partition
{J,K} of N, and let E and F have positive measure. Then E and F' are
disjoint. By the substitutability of -, there exist u,v € £ such that zx4 ~
uxg and Txg ~ vxp. Define y = uxg + vxp. Since Z is admissible,
we have y € £ . Note that yxg = uxe and yxr = vxr. We thus have
zxa ~ yxe and zxp ~ yxr. By the additivity of 27, we have x4 + zxB ~
yxe+yxr. Define E; = ENQ; and F; = FNQ,; for each i € N. Then FUF
is decomposed into an n-tuple of pairwise disjoints sets {(E;)ics, (Fk)kek}
with E, = 0 for k € K and F; = 0 for j € J. Since yxg € £ and
yxe, = (TXE)Xq;, we have yxg, € %, and similarly yxr, € Z;. Thus, we
have yxg = (YXE;» -+ YXE.) € [Lieny &i with yxg, = 0 for K € K and-
yxF = (YXFis - YXF) € [lien Zi and yxr; = 0 for j € J. Therefore,
U(zxa) = Ulyxe) = 2;es Uiluxs;), Ulzxs) = U(yxr) = 2 ke Us(yxs,)
and U(zxa + yxs) = Ulyxe + yxr) = 2 ;e Uilyxe;) + 2orer Us(yxm.),
and hence U(zxa + zx5) = U(zxa) + U(zxxp). From this condition, we
can derive the disjoint additivity of U. To demonstrate this, let z,y € &
and AN B = 0. Define z = zxa + yxs. We then have z € £ since
Z is admissible, and zxa + zxB = ZTxa + yxs by construction. Thus,
U(zxa +yxs) = Ulzxa + 2x8) = U(zxa) + U(2xs) = U(zxa) + U(yxsa)-

Define the functional ® : LP(Q, &, u; R") x F — RU {—oc0} by

U fre &,
d(z, A) = { (zxa) ifz ’
—00 otherwise.
By construction, ® satisfies the following properties:
o &(-,Q) is upper semicontinuous on L?(2, F, u; R™).

o & is finitely additive on #, that is, A,B € & and AN B = 0 imply
®(x, AU B) = ®&(z, A) + ®(z, B) for every z € LP(Q, &, u; R™).

e & is local on &, that is, z,y € LP(Q, F, u;R™) and zx4 = yxa imply
&(z, A) = &(y, A).
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o —00 < P(zg, A) for every A € Z.

Then by the representation theorem of Buttazzo and Dal Maso (1983), there
exists a unique upper semicontinuous integrand f : O x R® — R U {—o0}
with the following properties:

(a) There exist some o € L'(Q, #,u) and B > 0 such that f(¢,v) < aft) +
Blu|P a.e. t € Q for every v € R”.

(b) @(z,A) = [, f(t,z(t))du(t)+®(xo, A) for every z € LP(Q, &, u; R™) and
Ae Z.

Conditions (i) and (ii) of the theorem follows from this result. Since an ad-
ditive constant does not affect the representation of 2, it follows from condi-
tion (b) that zx4 X yxa if and only if [, f(t,z(t))du(t) = [, f(t,y(t))du(t),
which shows condition (iii) in the above theorem. O

Example 3.1. Suppose that the admissible set Z is a positive cone of
LP(Q, &, u;R™) given by

X ={zelPQF,wRY)|z(t) >0 ae te}

Let z* be a continuous linear functional on the Banach space L?(2, &, u; R™)
such that (z,z*) > 0 for each z € £ and kerz* = {0}, where the duality
relation is denoted by z*(z) = (z, z*) for each z € L?(Q, &, u; R™). Suppose
that > is represented by the restriction of z* to &, that is, z 2 y if and
only if (z,z*) > (y,z*). It is evident that = satisfies continuity, separability
and additivity. The lower bound of > is the origin of Z". Since z # 0
implies (z,z*) > 0, for every A € & with positive measure, it follows that
(zxa,z*) > 0 by choosing £ € & with z(t) > 0 on A. Thus, Z satisfies
sensitivity. To show the substitutability of -, take any x € Z and A with
positive measure. Let y € &£ be such that y(f) > 0 on A. We then have
(yxa,z*) > 0. Consider the continuous increasing function on [0, co) defined
by A — (Ayxa,z*). Then there exists some X\ > 0 such that (A\yxa,z*) =
{z,z*). Since & is a positive cone and yx4 € &, we have A\yx4 € & . This
demonstrates the substitutability of .

Therefore, by Theorem 3.1, there exists a unique upper semicontinuous
function f(t, -) on R™ such that (z,z*) = [, (¢, z(t))du(t) for every z €
Z . On the other hand, the Riesz representation theorem implies that there
exists a unique ¢ € LR, &, ;R?) with 1 + 2 = 1 such that (z,2%) =
Jo(z@), o(t))du(t) for every z € &, where (z(t), o(t)) is the inner product
of R™. By the uniqueness of f, we obtain f(¢,v) = (v, p(t)) for every v € R
a.e. t €.
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Convexity of Preferences

We introduce the convexity axiom of the preferences.

o Convezity: Let 2 be a convex admissible set. For every z € £, the
upper contour set {y € Z |y Z =} is convex.

Theorem 3.2. Suppose that == satisfies the azioms in Theorem 3.1 replac-
ing the strong continuity with the weak continuity of the weak topology of
LP(Q, &, u;R™). Then the integrand in Theorem 8.1 is a concave integrand,
and hence Z, is convex.

Proof. The weak continuity of - implies that the preference relation is rep-
resented by a weakly continuous utility function. Thus, the functional ®
defined in the proof of Theorem 3.1 is weakly upper semicontinuous on
LP(Q, Z,u;R™). The representation theorem of Buttazzo and Dal Maso
(1983) guarantees the concavity of the integrand f(¢, - ). O

Even if the convexity of 7~ is not assumed explicitly, the weak continuity
of 7 necessarily implies the convexity of 2!

Stationarity of Preferences

Let X be a subset of R” such that z(t) € X for every z € £ a.e. t € Q. For
each v € X and A € & with u(A) > 0, we say that vxa is a locally constant
trajectory in X.

e Stationarity: Let 2 be an admissible set that contains every locally
constant trajectory in X. For every A,B € & with ANB = 0,
u(A) = p(B) implies vx4 ~ vxp for every v € X. |

Theorem 3.3. Let F be the Borel o-field of ) = [0,00) and u be a regular
Borel measure. Suppose that - satisfies the azioms in Theorem 3.1. Fur-
thermore, if 2 satisfies stationarity, then the integrand f is independent of
t € Q on X, that is, there exists a unique upper semicontinuous function
g: X — RU{—o0} such that f(t,v) = g(v) a.e. t € Q for everyv € X.

Proof. Let s,t € Q with s < t be arbitrary, and let I.(s) = (s—¢, s+¢)N(0, c0)
and I./(t) = (t — €,t + €') be disjoint open intervals with ¢,¢’ > 0 and
u(I.(s)) = p(I«(t)). By the stationarity of 2, we have vxr.(s) ~ VX1,
for every v € X and hence || L (7,v)du(r) = |, 1,(5) f(r,v)du(r) for every
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v € X. Thus, by the Lebesgue-Besicovitch differentiation theorem (Evans
and Gariepy, 1992, Theorem 1.7.1), we have

. 1
f(t,v) = lim P e f(7,v)du(T)
1

= lim
g'—0 #(Is’(t)) I.(t)

f(r,v)du(r) = f(s,v).

Therefore, f(t,v) is constant a.e. t € Q for arbitrarily fixed v € X. a

4 TAS Representation with Myopia

Let 2 = [0,00) and & be the Borel o-field of 2. Let p be a Lebesgue
integrable continuous function on  with positive values and let u, be a
nonatomic finite measure of a measurable space (2, &) given by uy(A) =

[, p(t)dt for Ae £.

Recursive Utility

Suppose that the admissible set of trajectories is & = LP(Q, &F, u,; R} ) with
1 < p < 0o. A preference relation 2~ on £ is given by the following recursive
integral functional

Ve, ye Z 1z y <= /Q flt,z@t)F (t, /08 r(s,x(s))ds) dt

> [ seve)r (v [ " y(e))ds )

where f and r are measurable functions on  x R% and F is a measurable
function on 2 x R.

(4.1)

Assumption 4.1. (i) f(¢, -) is continuous on R? a.e. t € Q and f(-,v)
is measurable on (2 for every v € R%.

(i) There exist some a € L}(Q, &#, u,) and a > 0 such that

|f(t,v)| < aft) + alv|P for every (t,v) € 2 x R}.

(iii) F(t, -) is continuous on R a.e. t € Q and F(-, z) is measurable on (2
for every z € R.

(iv) (¢, -) is continuous on R? a.e. t € Q and r(-,v) is measurable on {2
for every v € R7.
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(v) There exists some 8 € LL.(Q, &, u,) such that
Ir(t,v)] < B(t) ae. teQforeveryve R}

IF (t, /0 tﬁ(s)ds)

(vi) f(t,0)F(t, fg r(s,0)ds) =0 a.e. t € Q.
Assumption 4.2. (i) f(t,z) > 0a.e. t € for every z € R].

and

< p(t) ae tel

(ii) F(t,z) > 0 ae. t € Q for every z € R and F(t, -) is decreasing on R
a.e. t €.

(iii) f(¢, -)F(t, ) is concave on R} xR a.e. t € (0.

(iv) r(¢, -) is concave on R%} a.e. t € Q.

It is easy to verify that by growth conditions (ii) and (v) of Assumption
4.1, we have

£t 2(H)F (t, | (s, 2(s))ds )| < (a9 + alz(OP)o(0)

for every z € 2 a.e. t € Q and the right-hand side of the above inequality is
Lebesgue integrable over  for every z € £ . Thus, the preference relation
given above is well defined. '

By the similar argument developed by Sagara (2007), under Assumption
4.1, one can show the continuity of the recursive integral functional

5 /Q f(t, 3(8))F (t, /0 tr(s,x(s))ds) dt

on %, and hence the continuity axiom of 2 is satisfied. It is easy to verify
that separability, additivity, indifferent separability are satisfied. If, in ad-
dition, Assumption 4.2 is satisfied, then the recursive integral functional is
concave on Z'.

Theorem 4.1 (Sagara). Let = be a preference relation on X defined by
(4.1). Suppose that Assumption 4.1 is satisfied. Then there erists a unique
upper semicontinuous integrand g on {2 X R™ such that

Vz,ye 1z Ty = /Q 9(t,z(8))p(t)dt > /Q g(t y(1))p(t)dt.

If, moreover, Assumption 4.2 is satisfied, then g is a concave integrand.

There is a degree of freedom for the choice of p. By choosing p(t) =
exp(—pt), one obtains a TAS utility function with exponential discounting.
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TAS Utility

We denote by L*(§2,.#;R") the set of essentially bounded functions on 2
to R™ with respect to the Lebesgue measure. In view of the inclusion

L=(Q, F;R") C L®(Q, F, pp; R™) € LP(Q, F, pp; R™) forp 2 1,

it is legitimate to endow L*(f2, #;R") with the relative LP-norm topology
from L*(Q, &, u,; R™), instead of the essential sup (ess. sup) norm topol-
ogy of L*®. By changing the ess. sup norm of L*(Q, #;R") to the LP-
norm, we can deal with L*(£2, #;R"™) as an admissible set of trajectories in
LP(Q2, &, pu,, R™).

The following main result of this paper strengthens Theorem 4.1 under
the alternative hypotheses on the preference relation.

Theorem 4.2. Let Z be an admissible set of trajectories closed and conver
in LP(Q, F, u,s RY). If = satisfies continuity, sensitivity, separability, sub-
stitutability, additivity, lower boundedness, stationarity, then there exists a
unique upper semicontinuous integrand g on R™ such that

Yo,y € X zry e /Q o(z(®)p(t)dt > /Q o(y(®)p(t)dt.

If, moreover, = satisfies convezity, then g is a concave integrand.
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