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On the local well-posedness of the Cauchy problem
for the Schrodinger map

FHEBRFERER &uBEREMZRR M ¥ (Jun Kato)
Graduate School of Mathematics, Nagoya University

1 Introduction

In this note, we consider the local well-posedness of the Cauchy problem for the
Schrodinger map for the low regularity initial data. In particular, we give the refined
version of the existence theorem compared with the one derived in [8]. We also give

the outline of the proof of the uniqueness result in [9)].

1.1 Schrodinger map

The Schrédinger map from R x R™ to S? is formulated as follows. To begin with,
we identify S? with the complex plane C with the specific metric by using the stere-
ographic projection as follows. The stereographic projection ¢ : 2\ {(0,0,1)} — C
maps w € C to

2Rew 2Imw 1-—|w|?
1+ w2’ 1+ |w|?’ 1+ |w]?

¢~ (w) = ( ) € S2.

Here, for a complex number w, Rew and Imw denotes the real part of w and the
imaginary part, respectively. Using this relation, we identify S? with (C, gdw dw)
where g is given by g(w,w) = 2/(1 + |w|?)2.

The energy of the map 2 : R" — (C, gdw dw)(~ S?) is given by

_ |Vz(x)[?
Elz) = /R Lo (1.1)

Then, the Euler-Lagrange equation of the energy functional E|[2] is determined by

n
D Vi8z=0, (1.2)
j=1
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where
2

The map satisfying the equation (1.2) is known as the harmonic map, and the map
satisfying its evolution of the form

Bz =1) V;0;z (1.4)
Jj=1
is called the Schrédinger map. We notice that by (1.3) the Schrodinger map is the

derivative nonlinear Schrédinger equation of the form

. 2 _3 2
101z + Az = PNPE z;(ajz) . (1.5)

We also notice that it is known that the solution of (1.4) preserves the energy E[z(t))
defined by (1.1) (see [7]).

'Remark 1.1. The equation (1.5) is also derived from the Heisenberg model of the
ferromagnetic spin system

u:RxR" > S2cR3? n=1,2,3,
Ou = u X Au, (1.6)
by using the stereographic projection (see [16]).

Remark 1.2. The Schrodinger map is also formulated in more general setting. Let
(N,g,J) be the Riemannian surface with the metric g, complex structure J. Then,
the Schrodinger map is described by the map s : R x R™ — N satisfying

Bys = J(s) Y V;0;s, (1.7)
i=1

where V; denotes the pull-back covariant derivative on s~!T'N.

1.2 Cauchy problem of the Schrodinger map

In this note, we consider the Cauchy problem of the Schrodinger map

n
Bz=1i»_ V;0z, (tz)€ (0,00) x R,
(S) =1

Z|lt=0 = 20, z € R™.
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In view of to construct the time-global solution to (S), it is natural to treat the class
of the initial data the conserved energy E[z] is finite. Roughly speaking, such class
is H'(R™). So, we first consider the time-local well-posedness of (S) for the data in
H*(R"™) for small s as long as possible.

The equation in (S) has the scaling invariance. Form the usual scaling argument,
it is considered that s > n/2 is necessary for the local well-posedness of (S). Thus, to
treat the local well-posedness of (S) in H!(R"™), we must restrict the space dimension
n to 1 or 2. The case n = 2 is critical in this sense, and in this case we have the
following interesting conjecture, which states the geometric structure of the target

manifold influences the global behavior of the solution.

o If the target manifold is S2, then there exists smooth z with E[zp] < oo which
develops the singularity in finite time. _
o If the target manifold is H? (the hyperbolic space), then for all smooth zy with

E[z] < o0, (S) has a unique smooth solution globally in time.

As for the Cauchy problem (S), the following results are known. Chang-Shatah-
Uhlenbeck [4] showed that when the space dimension n = 1, there exists a unique
global solution in H'(R). When the space dimension n = 2, they showed the ex-
istence of unique small global solution for the data in H'(R2?) under the radial or
equivariant symmetry assumption. Their method is based on the application of the
Hasimoto transformation to transform the Schrédinger map such as (1.5) to the non-

linear Schrédinger equation which have no derivative term in the nonlinearity.

1.3 Gauge transformation

In what follows, we focus to the Schrédinger map from R x R? to S?, (1.4) with-
out symmetry assumption. To consider the Schrédinger map for the low regularity
data, Nahmod-Stefanov-Uhlenbeck [13] introduced the gauge transformation as fol-
lows. For the Schrédinger map z and V,, defined by (1.3), we introduce the following
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transformation

2

IR

eiwaaza (1.8)

2 i 2\ —iY .
Do = 1yom ¢ Ve (L +1e)e™ = 8a +ida, (19)

for a = 0,1, 2, where ¢ is a real-valued function determined later, and 8y = §,. Here,

we notice that A, is the real valued function determined by

2
Ag = =00 + P |2Im(za Z).
Then, the equation (1.4) is written as
2
Ug = ’iZDkuk. (1.10)
k=1

Moreover, the conditions on d, and V4,
V02 =Vgbyaz, [Va,Vg]=—4i Im(bazg),

are written as »
Doug = Dgug, [Da,Dg) = —4ilm(uaTg), (1.11)

where b; = (1 + |2|2)718;2z. In particular, the equations (1.10), (1.11) are invariant
for arbitrary choice of the real-valued function ¢ in (1.8), (1.9).
Now we apply D; to the equation (1.10) and we use the conditions (1.11) to obtain

2 2
Douj =14 Z D,% u; + Z 4Tm(u Ty )uk. (1.12)
k=1 k=1

Then, we determine ¥ by the Coulomb gauge condition

i - (1.13)

which is equivalent to

Ay = 26 {1 Im(za z)}

Such 9 is uniquely determined up to constants for the map 2z which decays at space
infinity. From the condition (1.13) with (1.10), (1.11), A4, @ = 0,1,2 is determined
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only by u;’s (see (2.4), (2.6)). The derived system of the nonlinear Schrédinger
equations on u;’s is called the modified Schrédinger map (see [13, Theorems 2.1,
2.2)).

Remark 1.3. (1) Since the modified Schrédinger map is derived as the first order
derivatives of the original Schrodinger map (see (1.8)), the solution of the modified
Schrédinger map in H*® corresponds to the solution to the original Schrédinger map
in H*+1,

(2) As is pointed out in [13, §3], it is not possible to go back directly from the solution
of the modified Schrodinger map to the original Schrédinger map. However, a priori
estimate and the estimate on the time of existence on the smooth solution to (MS)

are made use of in order to construct the low regularity solution to the Schrédinger
map. See [11, §6] for details.

2 Main Results

The modified Schrédinger map (MS) in two space dimensions is the system of the
nonlinear Schrédinger equations of the following form,

iGpuy + Auy = —2i A - Vg + Aous + |A|%u; + 44 Im(uz; Jus, (2.1)
i Ogug + Augs = —2i A - Vug + Agug + |A|2'u,z + 4i Im(u1%2)u, (2.2)
u1(0,7) = ud(z), uz(0,z) =wud(x), ze€ R? (2.3)

where, u; : [0,T] x R? 3 (t,z) — u(t,z) € C, j = 1, 2 (we set u = (u1,uz) in the
following), and A = (A;[u], A2[u]), Ao = Ag[u] are defined by

Ajlu] = 2G; « Im(uy @), j=1,2, (2.4)
1 1l =z
Gi(z) = %l‘x%’ Ga(z) = —%@, (2.5)
2
Aolu) = — Y 2R;RiRe(u;ux) + 2|ul>. (2.6)
J.k=1 .

Here, R; = 8;(—A)~'/2 denotes the Riesz transforms.
From the definition above we have divA = 0. This fact and the fact that A;[u] is

real valued enable us to derive the conservation of the L2-norm.
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Lemma 2.1. Let u be the solution to (MS). Then, we have
[u(®)llzz = [luoll2, ¢ =0. (2.7)

Proof. Multiplying the first equation in (MS) by %; and integrating over R"™, and
then taking the imaginary part, we obtain

%&Ilul(t)lliz =4 / Im(uT)Re(uz@) dz,
since div A = 0, and Ag, A; is real valued for j = 1, 2. Similarly, we obtain
%&“uz(t)“ig = 4/Im(u1E2)Re(u1ﬁ2) dx
=—4 / Im(u2:)Re(uq@, ) dz.

Thus, we obtain 8;||u(t)|2: = 8llui(t)||22 + 8:llua(t)||2. = O which implies (2.7). O

Remark 2.2. (1) Due to the relation (1.8), the conservation of the L2-norm of (MS)
corresponds to the conservation of the energy E[z(t)] for the original Schrédinger

map.

(2) The modified Schrodinger map is invariant with respect to the scale transformation

u(t,z) = Au(M%t,A\z), A >0.

Then, the scaling argument suggests that the critical space for the local well-posedness
of the Cauchy problem (MS) is L2(R?2).

As for the modified Schrédinger map, Nahmod-Stefanov-Uhlenbeck [14] showed the
existence and uniqueness of the solution for the data ug € H*(R?2) with s > 1 by
using the energy method. In [8], we showed the existence of at least one solution for
the data up € H®(R?) with s > 1/2 by using the energy method combined with a
variant of the Strichartz estimates. However, uniqueness of solutions was proved only
for the data uo € H!(R?) due to the loss of the derivatives in the nonlinearity. In this
note, we describe the slightly improved version of the result in [8], especially on the

lower bound of the time of the existence (2.8) and the estimate of the solution (2.9).
Theorem 2.3. Let up € H*(R?) with s > 1/2. Then, there exists T > 0 satisfying

min{1,C/((1 + lluollfa)llvoll/ase) } ST < 1, (2.8)
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and at least one solution u € Cy([0,T); H®) N C([0,T); L?) to (MS) such that

Je~1/2=ey ¢ LP(0,T; LY), (2.9)
where J4 = (I - A)%%,5-1/2>¢>0, and 1/p=1/2 — 1/q with 2 < q < oo.

Remark 2.4. Similar result have been obtained in Kato [8], Kenig-Nahmod [11]. In
Theorem 2.3 we refine such results in the following sense. Firstly, the lower bound of T
(2.8) depends on ||ug|| 71/3+< instead of ||ug||grs. Secondly, the condition of the solution
(2.9) is estimated explicitly. This fact is used effectively to show the uniqueness of
the solution in class below H! (see [9]).

For the proof of Theorem 2.3 we use the compactness argument. Because the local
well-posedness for smooth data is already known (see [14]), our task is to show a priori
estimate for the solution to (MS). To recover the loss of the derivatives caused by the
nonlinearity, the following type of estimate

I wlieg Ly S lwll poo gravsraver + 1Fll g gra-1v2 (2.10)

for the solution to i6,w + Aw = F is crucial in our argument, where p, q are the
‘admissible exponent for Strichartz estimates (see Proposition 3.5 below for the precise
statement). Compared with the usual Strichartz estimate

1wl Ly < lw@)lias + I Fllyag

estimate (1.13) says that we have a gain of the regularity 1/2 on the inhomogeneous
term at the cost of a loss of the regularity 1/2 + ¢’ on the homogeneous term. This
type of estimate is first appeared in Koch-Tzvetkov [12], and refined by Kenig-Koenig
[10] in the context of the Benjamin-Ono equation.

In Theorem 2.3, the uniqueness of the solution is not obtained. As for the unique-
ness, the following results have been known. By using the Vladimirov’s argument [18]
(see also [15]) we obtained the uniqueness of the solution to (MS) in H?.

Theorem 2.5 ([8]). Let ug € H'(R?). Then, the solution to (MS) in the class of
Theorem 2.3 1is uniquely determined.

Recently, the condition on the regularity for the uniqueness is improved as follows.
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Theorem 2.6 ([9]). Let up € H*(R2) with s > 3/4. Then, there exists T > 0 and
unique solution u € C([0,T); H®) to (MS) such that

Je~Y 25y € LP(0, T; L9),
where s —1/2>€e>0, and 1/p=1/2 - 1/q with 2 < g < 0.

In the rest of this note, we describe the outline of the proof of Theorems 2.3 and

2.6. For simplicity, we consider the following problem

i0u + Au = iAlu] - Vu, (t,z) € (0,T) x R?,

u(0,7) = uo(z), z € R?, (2.11)
where Afu] = (A;1[u], Az[u]) with
Ajlul =Gj*[u?, j=1,2. (2.12)

This is the essential part of (MS), and it is not hard to handle the full system (MS)
to show the same result.

Throughout this note we use the following notation. We denote by for Ff the
Fourier transform of f. We denote J® = (I — A)*/2 and D*® = (—A)®/2. H* is the
Sobolev space whose norm is defined by || f|| = = ||.J*f|| 2, and H? is the homogeneous
Sobolev space whose semi-norm is defined by || f|| . = ||D°f||L2. The function space
L?(0,T; L9(R?)) is simply denoted by L%L2, and L>(0,T; H*(R?)) is also L H?.

3 OQutline of Proof of Theorem 2.3

In this section, we describe the outline of the proof of Theorem 2.3. In particular,
we give a proof of a priori estimate of the solution, which gives the condition (2.9).
Once we obtain such a priori estimate, the existence of the solution is similarly proved

as in [8].

3.1 Preliminary Estimates

In this subsection we collect the estimates which is used to construct a priori es-
timates for the solution to (2.11). We first state the usual Strichartz estimates. For

the proof, see [2] for example.
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Lemma 3.1. Letn =2. Weassume2<p<o0,2<¢g< o0, and1l/p=1/2-1/q.
Then, the following estimates hold.

U@ ey S Nfllz2 (3.1)

t
|[ ve-eyr@rae],, . <1l (32)
0 Lg T e

| Lr
where U(t) = e'*4.
Lemma 3.2. Fors> 0, 1 < p< oo, we have

1D*(F9)llLs SN FllLe: 1D°gllzoa + llglizes |D° fll L2,
19°(f9)lle S N llLes 1I°gllz2 + llgllLrs | T° fllra,

where 1/p=1/p1 + 1/p2 = 1/r1 + 1/ry with p < py,71 < 00.

Proof. See [3, Proposition 1.2], for example. Note that | f]| B, |D?fllL» and
IFllEg , = [IT*Flle for 1 < p < oo. O

Below we collect the estimates on the potential term A[u] defined by (2.12). Of
course, the same estimate also holds A[u] defined by (2.4).

Lemma 3.3. We assume s > 0,1 > 6 > 2/g >0, and2 <p < o0 if s > 0;

2<p<ooifs=0. Then, we have

IVA[ulll gs S llullze llull ga, (3.3)
IVA[u]{lze < [lullzeel|Tull L, (3.4)
| ARl Lo < llull L2l T2l La, (3.5)
ID*Alu]l|Lr < llullze llull g (3.6)

Proof. Since A[u] is given by
Alu] = (=A)'rot ul?,

it is not hard to show the above estimates by using Lemma 3.2 and the Sobolev
embedding. See [8] for the detail. u

The following is the energy estimate for the solution to (2.11).
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Proposition 3.4. Let s > 0 and let u be a solution to (2.11) on (0,T) x R2. Then,
for T > 0, we have

lull g rrg < lluollzre exp{C(1 + lluoll}2) T*4||J%ull}p 1a }, (3.7)
where d >2/¢>0,1/p=1/2-1/q.

Proof. For the proof of the energy estimate (3.7), we employ [14, Propositions 2]
which states '

Oellu@® . S (IVA® gollu@®) e + VAR Lo lu@)ll go) lu@)llge-  (38)

This estimate is proved by using the commutator estimate combined with the
Littlewood-Paley decomposition. In what follows, we estimate each term on the right
hand side of (3.8) to obtain (3.7) assuming s > 0.

From (3.3) we have

IVA@®) |z lu®)llzee S 1w lu@) ge S 1T°u@1allu)] g (3.9)
by the Sobolev embedding, where § > 2/q. Similarly, from (3.4) we have

IVA®) |z )l e S Tl oo 700l e luCt)

3.10
S N Pu@)|Zallu®)l - (3.10)

Thus, we obtain
Bsllu(®)lI%. < O+ lluol|Za) 17 u(@)lIZe lul)|F.-
Now we apply the Gronwall inequality to obtain
T
(Ol < ol exp(C(1 + uola) [ 175u(®) Bact).
Therefore, the conservation of the L?-norm (see Lemma 2.1) and the Hélder inequality

with respect to the time integral enables us to obtain (3.7). O

We finally state the crucial estimate for the proof of Theorem 2.3. This type of
estimate was first given by Koch-Tzvetkov [12] and refined by Kenig-Koenig [10] in
the context of the Benjamin-Ono equation. :
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Proposition 3.5. Let T < 1. We assume that w is a solution to the equation

iGw+ Aw=F, (tz)e(0,T)xR>2 (3.11)
Then, for s € R, € > 0, we have
”sz”Lg.Lg S ”w”LgsHe+1/2+=’ + “F“LzTH;—I/% (3.12)
where 1/p=1/2—-1/q, 2 < q < 0.

Proof. The proof is essentially due to [10, Proposition 2.8]. We first introduce the
Littlewood-Paley decomposition. Let ¢ € C$°(R?2) satisfy ¢(€) = 1 for |£] < 1/2,
©(§) =0 for |£| > 1. And we set n(€) = p(£/2) — p(£) and set nx(€) = n(€/2F) for
k > 0 so that suppn, C {251 < |¢] < 2641} and 1 = @(€) + 3 po Mk(€). Then, we
define Ay by ka = nif and So by §(rf = cpf, where g denotes the Fourier transform
of g. Using the notation above, it is known that

LT(R")

Iy = (150712 + 3 18ws1) 7
k=0

holds for 1 < r < oo.

Since 2 < ¢ < 00, using the Littlewood-Paley decomposition of J*w we have

et 1/2
17 wlegcs S [|(1S07°w + 3 1akT*wl?)
k=0

L2 LY
e 1/2
S (172 SowlZg g + D17 AkwlZs 15) -
k=0

For the last inequality above we used the Minkowski’s integral inequality, since p,q >
2.

Before applying Strichartz estimates to estimate [|J“’Akw|li,;w s We prepare the
disjoint decomposition of the time interval [0,T] = U7L11;, where I; = [aj, aj+1)
satisfy |I;| =2"%for 1 < j < m—1and 2% < |I,,] < 2-%*. Then, we have m < 2F,
since (m — 1)27% 4 |I,,,| = T implies 2=%*m < T — 2% + 2% = T' < 1. Now we apply
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the decomposition as follows.

7°Akwllzz rg < 2°% (| Akwl| 2 g

IO y
= 2% (3 I8ewly 5)

j=1
m 1/2
k
S (,z‘1 |Aewllty 25)
J=

since [2 < [P for p > 2. Since Aw satisfies the following integral equation
t
Arw(t) = U(t)drw(a;) — i / Ut — )AL F(¢) dt’ (3.13)
aj

for t € I, applying Lemma 3.1 we have
1Akwlizy £g S lAkw(as)lzs + 1ARFllzy £3-

Thus, we obtain

m 1/2
2%(3 vl 1q)

=1
m

1/2
S 2 {3 (Iakw(an)lEs + 18kFIZ, 13) }
j=1

m 1/2

< 2"“{m||Akw||%g9Lg +3° IIjIIIAkFHng.L:}
i=1 ’

S 2 DH | AwllLg g + 207V Akl 3.0

< 2_E'kl|w||L8~°H;+1/2+=' + ”AkJs_l/zF“L%-Lg'

For the last term in the second inequality above, we used the triangle inequality in 2
and then applied I — [2. Meanwhile, applying Lemma 3.1 it is easy to see that

|7 Sowlize.z < 1Sow(0)llza + 1SoF1llLyrz + IS0 F2llLs L2
S llwllsera + 1S0d° 2 Rl 3.2 + I|So T Fall 1 1.
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Therefore, we obtain

x 1/2
(172 SowlZy g + 3 I7° ArwlZg 1)
k=0

— ' 1/2 _ > _ 1/2
S (k‘;z*%"llwlli?mwﬂ,) +(I|SoJ’ Y2F|3s 1 +z;uAkJ8 1/2F||§,TL2)
=0 =

— -2k 1/2 . 8—1/2 12 = s—1/2 2 1/2
S (X 2*r) ol o pyasasarer + “(lSoJ FI?+ 3" Ao 2R ) |
k=0 k=0

< "'U)”L%H;-{—l/zﬂl + “J8—1/2F1“L§.Lg’

212

where we applied the Minkowski’s integral inequality again for the second inequality
above. This completes the proof of Proposition 3.5. O’

3.2 A Priori Estimate

Below we show a priori estimate to the solution to (2.11). Once we obtain such a

priori estimate, Theorem 2.3 is similarly proved as in [8] by using the compactness
argument.

Theorem 3.6. We assume s > 1/2 and choose € > 0 satisfying s —1/2 > €. Let u
be a smooth solution to (2.11). Then, for any € > 0, there exists T satisfying

min{1,C/((1 + |luol|%a)llwollfs/ave) } ST <1

and M > 0 such that
1%l .3 < Mlluollg1/2+e, - (3.19)

wheree > 6> 2/q9>0,1/p=1/2~-1/q. Moreover, we have
17572 %ul| g g < C(lluollae)- (3.15)
Proof. Applying Proposition 3.5 for F = iA[u] - Vu with s = §, we obtain
175ullg 18 S lull g gavase + AR - Tl g yovsavs (316)

where we substituted J + ¢’ = €. In what follows we estimate each term on the right
hand side of (3.16) to obtain (3.14).
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The first term is easily estimated by applying energy estimate (3.7) directly,
2\ 2 8,112
lull poo gara+e < Nluollzr/ase exp{C(1 + lluolZ2) T4 %] 35 1q }-
As for the second term we notice that Afu] - Vu = div (A[u]u), since div Afu] = 0.
Using this, we have
1AL - Vull 13 yo1/24s S IDV2H0(Alu]w) 2z
S llullza e | D24 Alul| Lo 22
+ ”‘A[u]“L}L? ||D1/2+6U||Lg°Lg-
Then, applying (3.5), (3.6), we have
IDY2*® Afu)ll ez S llullzgerz | DY oul| pge 1,
||A[u]||L=TLg° S “““Lgng||J5u||Lg.Lg-
Thus, from conservation of the L?-norm and the energy estimate (3.7), we obtain
| Al] - Vull g gy-1/248 S lwoll L2 1 7% L2 L 1ull Lgo £r2/a+
S (1 + lluollZall 7ullZa po ) l1ull Lse rarass
S lwollri/ass exp{C(1L + uo2a) T JullZ 15 ).
Therefore, we obtain
17%ullp g < Colluoll gra/a+« exp{C1 (1 + ||uol|Za) T%9)| oulZ5 1a }- (3.17)
Now we set K(T') = ||J 6“”ng, g+ Then, K(T) is a continuous function with respect
to T since 2 < p < o0, and (3.17) implies
K(T) < Clluoll%ys/ase exp{2Cs (1 + luoll%s) T/K(T)}.  (3.18)

If K(T) < Cgelluo||%:/2+ holds for 0 < T < 1, then the conclusion of Theorem
3.6 follows. On the other hand, in the case of there exists T} € (0,1) such that
K(T1) > CZeluoll%1/24, We set

Ty = inf{T > 0; K(T) > C3e |luo|[%1/24. }-

Then, Tp > 0 and we have K (Ty) = CZe ||uo||%1 /2. Thus, (3.18) with T = Tp implies
that )
e < exp{2C1 (1 + |luoll}s) T5/*Ce ol 3 ave }-
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Therefore, we obtain the lower bound of Tp,

1
T >
= 2C2C1e)7% (1 + [wollZ2) w0l %ajare

and for 0 <T < Ty, K(T) < K(Tp) = C3e |luo||%1/2+. holds.
Finally, we prove a priori estimate (3.15). We apply Proposition 3.5 again for
F = iA[u] - Vu to obtain

17572 ul| o rg S ullogons + || Alu] - Vaullz go-e- (3.19)
Since the first term is also estimated applying the energy estimate (3.7),
lullg g < lluollre exp{C (1 + |luoll32) T9||7ul|}s 12},

it suffices to estimate the second term on the right hand side of (3.19) to obtain (3.15).
The second term is also estimated similarly as before,

| AL - Vull L3 ge-e S I1D*7*(Alu] u)llz L2
< llwollza 17%ul| g L llull Lo pro-e
< lluoll o=+ exp{C(1 + lluollZa) T4 J%ul2y 1s }.
Thus, by using (3.14) we obtain

|78~ 2 =5 u)| 1 g < Colluol| e exp{C1 (1 + [|uol|22) Tz/q||J5u||i‘;Lg}
< CO”“'O”H‘ exp{C’1 (1 + ”'“‘0”%2) Tz/qM”UOHHl/Hz }

This completes the proof of (3.15). O

4 Outline of Proof of Theorem 2.6

In this section we describe the idea of the proof of Theorem 2.6. For the proof, it
suffices to show the following theorem.

Theorem 4.1 ([9]). Let u and v be smooth solutions to (MS) with the same smooth
data satisfying

u,v € L®(0,T; HY/2) N L?(0, T; B,; (4.1)
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for some ¢ > 4 with 1/p=1/2—1/q. Then, u = v holds. Moreover, the estimate
u(®) — vl g-172 < Cllu(t’) = v(E) | g-1/2 (4.2)
holds when t > t', where the constant C depends on ||ullpgepi/2, ||vllLgomisa,
HuHLg_B:'/:, and ||v||L;B;{22, and By , is the Besov space.
Let u, v be the solutions to (P), then w = u — v satisfy

10w + Aw = iAfu] - Vw + i(Alu] — A]v)) - Vu. (4.3)

The usual way to show the uniqueness is to estimate the L2-norm of w. In fact,
multiplying @ to both sides of the equation (4.3), taking the imaginary part, and
then integrating over R2, we obtain

S w3 = Re /R (Alu] - Ap)) - Vo da.

If we consider the solutions in the class

u,v € C([0,T); H®)

with s > 1, then the uniqueness of solutions is easily obtained as follows. Let 1 <
So < min(s,2), and set 1/p=1—-3¢/2,1/2=1/p+1/q, and 1/r = 1/q+ 1/2. Then,
applying the Holder inequality and the Sobolev embedding we obtain

1
3olw@lb < | [ (- AW) - Vowds)
<D™ H(lul? = [l |ze Vol Lo [lw]] 22
S Mul? = PPllzr l[oll o llwll 22
S (lullze + lvllze) o]l greo llwl|Za
S (lull ga-so + 0]l gra=eo ) 0]l greo 1wl 72
Since H? — H?—%  H*® < H*, by using the Gronwall inequality we obtain

lw()llz2 < Cllw(0)]| L2,

which implies the uniqueness of solutions.

To show the uniqueness of less regular solutions, we consider the estimate of w in
H~'/2 instead of L? to overcome the loss of the derivative the nonlinearity. We use
the following energy estimate.
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Lemma 4.2. Let w be a solution to
0w + Aw —ia-Vw = F, (4.4)

where a is R?-valued function. Then, for 0 < s<1,0<t < T, we have

w@lla-+ < exp{0 [ 1Va)zmde} (@l + [ IF@a—ct). 45)

Idea of Proof of Lemma 4.2. For 0 < 7 < T, we denote by S(¢,7)f the solution to

10w+ Av—ia-Vu=0, (tz)€(r,T)xR?
o(r,2) = f(z), ©€R2

Then, the solution to (4.4) is written as

w(t) = S(t, 0)w(0) — i /0 S(t, 7)F(r)dr.

Thus, to prove (4.5) it suffices to show

t
ISt ) fla-+ < exp{C [ IVa()z=dt HiSla-. (456)
v oJo
To prove (4.6) we consider the dual problem for fixed ¢ € (0, T},

10.7+ A9 —iV-(a?) =0, (r,z)€(0,t) xR?,
¥(t,z) = g(z), =z eR2

We denote by S (T,t)g the solution to the problem above. Then, S(r, ) is dual operator
to S(¢, 7). In fact, the simple calculation shows that

By (S(t',7)f, 5(t' t)g) =0
by using the equation, and integrating this from 7 to t we derive
(8t 7)f,9) = (f,8(r,1)g).
Meanwhile, from the equation we have
0.5l < [ a- VioPds < Va5

Similarly, we have
Or([Vo(r)[| L2 < C[|ValiLeol|VE(7)]| 2
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Thus, interpolating them we obtain

t
18 )gllz- < exp{C /0 IVa()llz=dt Yol @7)

for 0 < s < 1. Therefore, by using the duality we obtain

IS+ = sup_| [ S(t,m)s pdal

floll s =1

= sup ‘/fS’(T,t)cpdx’

lelsre=1
< s [Iflla--I5(n t)ella:

lellHe=
< exp{0 [ IVa(lzwdr -

Thus we obtain (4.6). O

Applying Lemma 4.2 to (4.3) with s = 1/2 we obtain

T

[w®lls-a < exp{C [

IV ARl eat' }

t (4‘8)
(1w @la-va + [ (AR = A - Vollg-adt).

Since VA[u] ~ R;Ri|u|?, for sufficiently small § > 0 and & > 2/§, we have
IVA[u]llz < I7°R;Relul*l|e S 17°ul?llLe S 17%ul3e S NUII";;/;-
So, the problem is to estimate the product of functions in the Sobolev spaces of

negative order which appears in the last term in (4.8).

Remark 4.3. One might think there would be another possibility to apply Lemma, 4.2
instead of H~1/2, However, from the general version of the lemma below, and from
the structure of the nonlinear term, the space H~1/2 provides the best result in our
method.

Lemma 4.4. Suppose n =2 and q > 4. Then the following estimates hold.

1Fgllz-1r2 S gl grrallFll =22, (4.9)
(G % (f9))Vhlu-12 S (lgllarrallbllzrss + gl g2 1Bl grra) [ £l ir-1a- - (4.10)
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If we apply (4.10) to estimate the last term of (4.8), then we obtain
t
lw®llg-1/2 < C(H’w(O)HH—w +f0 (lu(®)I% + |lv(T)||§)llw(T)IIH—lfsz),

where we denoted X = H/2n B2, Thus, by the Gronwall inequality we obtain
q,2
lw@llg-172 < Cllw@E)l g-1/2-

Thus, Theorem 4.1, the uniqueness of the solution, follows.
Finally we describe the idea of the proof of Lemma 4.4.

Idea of Proof of Lemma 4.4. To prove (4.10) we first show that
1 gllara S llgll garall fll e (4.11)
holds. In fact, by using fractional Leibniz rule we have

If9ll1r2 S 1 fllerir2llglime, , + 1 fllBe,, gl g1/2,
. (0 q.,2

where 1/2 = 1/q + 1/r. Then, the embeddings 31/2 — B, , and H/Z — H%9 —
B, give (4.11). Thus, by using the duality we obtain

folla-n= swp_|[ fopds

Pllg1/2=1
< sup  |[fllg-1/2llgellmasa
lell g1/2=1
$ WS ll-s7allgl g
Now we turn to the proof of (4.10). Since div G * (fg) = 0, we have
(G * (f9))Vhllg-1r2 = |div{(G * (f9)) R} zr-1/2 S (G * (f@)hllrsa-  (4.12)

To estimate the right hand side of (4.12) we divide G * (fg) into the high frequency
part and the low frequency part,

G * (fg) = So(G * (f9)) + (1 — So0)(G * (f9))- (4.13)

Here, Sp is defined as the Fourier multiplier by ¢, where ¢ € C§°(R2) with ¢ = 1
near the origin.
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As for the high frequency part, the second term on the right hand side of (4.13),

we easily obtain
{1 = S0) (G * (f9)) }rll /2 S 1Pl g2l (1 — So) (G * (f9)) | /2
S Il 5272 ol -7
S Il gzl gl s
by using (4.11), (4.9).

As for the low frequency part, the first term on the right hand side of (4.13), we

estimate
1{So(G * (£9)) }hllzr1/2 S 1S0(G * (£9)) llwr.0 [|1ll gr1/2. (4.14)

To complete the proof we have to estimate So(G * (fg)) and its gradient. By trans-
lation invariance it suffices to do this at the origin. The argument for So(G * (fg))

and for its gradient is the same. We observe that
So(G * (£9))(0) = {® * (f9)}(0)
= [, 261 wet)ds,

where we set ® = F![p] * G. Note that ® € L"(R2) for 2 < r < co. Thus,

1S0(G * (£9))(0)| = ‘ /R , 2@ W)e(y)dy

<@ gllga/2l|Fllz-2s2
S 1@l gaallglmara | £l 17

Finally, we notice that
1@1 5272 S 1l gyaee S 1115, ~ @llze < o0,

since ® is supported in the low frequency part in the Fourier space, and ® € L"(R?)
for 2 < r < 0o. This completes the proof of (4.10). O
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