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In this note, we study an approximation property
of regular fuzzy neural network(RFNN). It is shown
that any fuzzy-valued measurable function can be
approximated by the four-layer RFNN in the sense
of fuzzy integral norm for the finite sub-additive
fuzzy measure on R.
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1 Introduction

In neural network theory, the learning ability of
a neural network is closely related to its approxi-
mating capabilities, so it is important and interest-
ing to study the approximation properties of neural
networks. The studies on this matter were under-
taken by many authors and a great number of im-
portant results were obtained ([1, 4, 13] etc). The
similar approximation problems in fuzzy environ-
ment were investigated by Buckley [2, 3], P. Liu
[7, 8] and other authors. In [8] Liu proved that
continuous fuzzy-valued function can be closely ap-
proximated by a class of regular fuzzy neural net-
works (RFNNs) with real input and fuzzy-valued
output. In this note, by using Lusin’s theorem on



fuzzy measure space, we show that such RFNNs
is pan-approximator for fuzzy-valued measurable
function. That is, any fuzzy-valued measurable
function can be approximated by the four-layer
RFNNs in the sense of fuzzy integral norm for the
finite sub-additive measure on R.

2 Preliminaries

We suppose that (X, p) is a metric space, and
that O and C are the classes of all open and closed
sets in (X, p), respectively, and B is Borel o-algebra
on X, i.e., it is the smallest o-algebra containing (.

A set function x : B — [0, +00] is called a fuzzy
measure([11]), if it satisfies the following properties:
(FM1) u(®) = 0; (FM2) A C B implies u(A) <
u(B). A fuzzy measure u is called null-additive
([13]), if for any E,F € B and u(F) = 0 imply
WE U F) = u(E); sub-additive ([12]), if for any
E,F € B we have u(E U F) < u(E) + u(F).

In this paper, we always assume that y is a finite,
sub-additive and continuous fuzzy measure on B.

Consider a nonnegative real-valued measurable
function f on A and the fuzzy integral of f on A
with respect to u, which is denoted by

(S)/Afdu
2\ lerp(z: f(z) > a}nA)

0<a<+oo
Theorem 2.1 (Lusin’s theorem cf. [6, 14]) Let
(X, p) be metric space and i be null additive fuzzy
measure on B. If f is a real-valued measurable
Junction on E € B, then, for every € > 0, there
exists a closed subset F, € B such that f is contin-
uous on F, and u(E — F,) < e.
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3 Approximation in fuzzy

mean by regular fuzzy neu-
ral networks

In this section, we study an approximation prop-
erty of the four-layer RFNNs to fuzzy-valued mea-
surable function in the sense of fuzzy integral norm
for fuzzy measure on R.

Let Fo(R) be the set of all bounded fuzzy num-
bers, i.e., for A € Fo(R), the following conditions
hold:

(i) Va € (0,1],4, 2 {z € R| A(z) > a} is the
closed interval of R;

(ii) The support Supp(4) £ cl{z € R | A(z) >
0} C is a bounded set;

(iii) {zeR| A(z) =1} #0.

For simplicity, supp(A) is also written as Ag. Ob-
viously,'/{o is a bounded and closed interval of R.
For A € Fo(R), let A, = [ag,a})] for each a € [0, 1]
and we denote

1412\ (lez]Vlak)).

a€l0,1)

For A, B ¢ Fo(R), define metric d(A, B) between



/iandéby

d(‘;!ﬁ)é v dH(/imEa)
a€(0,1)

where dy means Hausdorff metric: for A, B C R,

du(A, B)
A i - i -
_max{:g%gg(lx yl),:g Inf (| yl)}-

It is known that (Fo(R),d) is a completely sepa-
rable metric space ([5]). Also we note that the next
assertion which is used in later.

Proposition 3.1 ([8]) Assume A, A,4; ¢
Fo(R), and W;,V; € Fo(R)(i = 1,2,--,n). Then

(1) d(A- 41,4 4p) <)A)-d(4y, 4,),

n n n
@ dQ_ Wi, Y W) <Y dW, ).
$=1 i=1 i=1
By the well known extension principle, each func-
tion f : R" — R may be extended to one Fp(R)™ —
F(R) and, for each fuzzy number, the addition, the
multiplication and the multiplication by a scalar
are defined by the extension princile ([8]).
Let T be a measurable set in R”, (T,BN T, u)
finite fuzzy measure space. Let L£(T) denote the
set of all fuzzy-valued measurable function

F:T- Fo(R).

For any Fy,F; € L(T), d(F,, F,) is measurable
function on (T, BNT'), we will write a fuzzy integral
norm as

Ag(Fy Fa) & (8) /T d(F, Fa)dp.

Proposition 3.2 Let Fy, F,, Fy € L(T), then

Dg(Fy, Fs) < 2(Ag(Fy, ) + Ag(Fy, F)).
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Proof. From subadditivity of 4, we have

Ag(Fy, F) = (S)‘/rd(F-l,ﬁs)dﬂ

V {aAuTn(dF,F))a}
«€l0,00)

V {aAu(Tn

a€l0,00)
(d(Fy, Fy)g Ud(Fy, Fy)g))}

V {aAW(Tnd#, F)y)
a€f0,00)

+u(T N d(F,, Fy)g)]}-

IA

IA

Because of the elementary inequality: a A (b+¢) <
(a A b) + (a Ac) where a,b,c > 0, we have ‘

AS(F~1’ F‘3)

V' {eAuTnd(F, F)y)
a€l0,00)

+a A p(T ﬁ,‘ d(Fy, F3)g)}

V la A (T Nd(F, Ry)g))
a€l0,00)

+ v [ A u(T Nd(F;, Fé)i)]
a€[0,00)

V [FAu@ndd, Fy)

a€l0,00)

IA

IA

IA

+ % Ap(TnN d(ﬁ1,ﬁ2)g)]

+V [% AWT Nd(Fy, Fy)g)
a€(0,00)

+ 3 AWT N d(F, Fyg)]

In

V [g- A (T Nd(F,, i’z),)]
#€[0,00)

+ V [% A (T Nd(F, f‘z)g)]
#€(0,00)



+ V [%Ap(Tnd(F‘z,Fa)g)]
$€[0,00)

+ v [%/\u(Tﬂd(i‘z,ﬁs)Q)]
#€[0,00)

= 2 (As(ﬁ‘hﬁz) + As(F.z; FS)) .

Definition 3.1 ([8]) A fuzzy-valued function & :
T — Fo(R) is called a fuzzy-valued simple function,
if there exist A;, Az,...,A, € Fo(R), such that
VzeT,

m

(i)(z) = Z A'k * XT (x)

k=1
where Ty € BNT (k= 1,2,...,m), ,NT; =0 (i #
7) and T = Jio,; Th.

Immediately, if S(T') denotes the set of all fuzzy-
valued simple functions, then S(T') C £(T).

Similar to the proof of Proposition 3.2 and by us-
ing subadditivity of x, we can obtain the following
proposition.

Proposition 3.3 Let u be a finite, sub-additive
and continuous fuzzy measure onR. If F € L(T),
then for every e > 0, there ezists &, € S(T) such
that

Dg(F,8,) <e.

Define

Hlo] & {H ‘ A(z) = }":W,.V,.[a]}

i=]

where

m
Vile] £ 3 Vis-o(z- U5 + 6;)

i=1
and o, by the same notation, is a given extended
function of & : R — R (bounded, continuous and
nonconstant), and z € R, W;, 17.~_,-, U’,—,éj € Fo(R).

For any H € Mo}, H is a four-layer feedforward

RFNN with activation function o, threshold vector
(81,...,8,,) in the first hidden layer(cf. [8]).
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Restricting fuzzy numbers V};,U;,8; € Fo(R),
respectively, to be real numbers v;;,u;,0; € R, we
obtain the subset Ho[o] of H[o]:

I?(:c) = zn:Ww‘[a]} .

j==1

Ho[d‘] = {f}

where m
‘Ui[dl & Z'Dﬂj -o(z - uj +65).
j=1
Let define two classes of pan-approximation
which is fundamental to our results.

Definition 8.2 (1) Holo] is call the pan-
approzimator of S(T) in the sense of Ag, if for
V& e S(T),V e> 0, there exists H, € Holo]
such that As(®, H,) < e.

(2) For F € L(T), Hlo] is call the pan-
approzimator for F in the sense of Ag, if
V € > 0, there erists H. € M[o] such that
As(F H,) <e.

By using Lusin’s theorem (Theorem 2.1), Proposi-
tion 3.2 and 3.3 we can obtain the main result in
this paper, which is stated in the following,

Theorem 3.1 Let (T,BNT,u) be fuzzy measure

space and p be finite, sub-additive and continuous.

Then,

(1) Holo] is the pan-approzimator of S(T) in the
sense of Ag. '

(2) Hlo] is the pan-approzimator for F in the
sense of Ag.

Proof. By using the conclusion of (1) and Propo-
sition 3.3 we can obtain (2). Now we only prove
(1). Suppose that &(z) is a fuzzy-valued simple
function, i.e.,

&(z) = ZXT,,(.Q:) ‘A (z€T).
k=1



For arbitrarily given ¢ > 0, applying Theorem 2.1
(Lusin’s theorem) to each real measurable function
X7, (), for every fixed k (1 < k < m), there exists
closed set Fy € BN T such that

€
FycLy and pu(Lg - Fy) < o

and xr, () is continuous on Fj. Therefore, for ev-

ery k there exist a Tauber-Wiener function ¢ and
’ ’ ’ / 7 ’

pr € N’vkpvkm' * "vkpka ekliokm' . ’okpk € R9

and Wy, Wig,« ,w;m € R™ such that

P :
’ ' / €
XTW (@) = D vj - (Wi @) + ) |[< ——

=1 2 |Axl
k=1

for z € Li. Note that we can assume Y v, |Ax| #
0, without any loss of generality. Denote L =
kw1 Lk, then T = LU (T — L). By the subad-
ditivity of u, we have

MWT - L) = p(Upes(T — Lg))
m €
S i (T —-Li) < 3
We take 81 = 0, Bk = X4 ! pi,k =2,---,m, and

b= 2:;1?1:- For k = 1,2,"-,m,j = 1$21"‘,P,
we denote

U' : ,
vgs = k(i —Br)
0

Orti—Be):
okj ={ (5—B%)

0

w‘ . N
Wij = k(5—Bn)

0

then, for any k € {1,2,---

if Bx <Jj < Brtr,

otherwise,

if Bk <J < Br+s
otherwise,

if Br <j < Br+1,
otherwise,
,m}, we have

351 v - o ((Wiej, ) + Bk;)

= ?;1 ”éj ‘”((w;j’“') +o;ej)'
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Now denote that
H@) =Y Ap- [ Y ves-o((wej,z) +64j) |,
k=1 j=1

then H € Holo].
In the reminder part of this section we will prove
Ag(H,®) < e. Denote

Byj = vk - o({Wkj, &) + Ox;)

and
By = vy; - o((Wij, T) + ;).
By using Proposition 3.1 and noting u(T — L) <

€/2, we have

AS(-FI, i’)

(8) /T d(, &)y

V  [eAu@n@@,$).).

0<a<+00
Since
w(T Nd(H,§),)
m P
= p|Tnd|dY A B,
k=1 j=1

z Xt () - jk) )
k=1 a
< B ((LU(T=L1) N (Cmp)a)

< u(Ln (Cmp)d) +u((T-L)N (Cmp)a)
where the notation of set Cy,,, is assigned as
m.o. P
Crmp =D |4k|-d (Z Bijy X7 (3)) :
k=1 k=1

Hence Ag(H,®) is dominated by

V  [eAs(ZN(Dmp),)]

0<a<+oo



+ V lanu(T- L))
0<a<+00
<V [ern(zn@n),)]+5

0<a<+o0o
Here, for simplicity, we use the notations of

m ) 4
Doy = Y |Akl - |3 Bij — xz, ()
k=1 j=1

and

m Pk

D=3 _lAl-d| 3 B —xn(@) |-
k=1 j=1

Now we estimate the first part in the above for-

mula. If z € L, then for every k = 1,2,---,m, we

have z € Ly, hence

€
m )

2 A

k=1
for every k = 1,2,---,m. That is, forz € L,

m Pk

~ ’ €

Dy =" |Ak|-d (Z By; — XT,,(x)) <3
k=1 j=1

Therefore,

Pk
X1 (Z) — kaj *o((Wyj, T) + 6);)
=1

<

V [a Aup (L n (D,’m,)a)]

0<a<+0o

=V [a/\y, (L n (D;,,,,)a)]

a€l0,§]

+ V [a Au (Ln (D,’,,p)a)]

a€[§,00)

= \{({ﬂ [a/\p,(Ln (D:np)a)]

< =
- 2

Thus, combining with the previous evaluation, we
obtain

As(ff, (i)
< V05a<+oo [a Ap (L n (D:"p)a)] + %
< €
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The proof of (1) is now completed. m|
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