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Abstract

In decision making, capacities (monotone set functions) and the Choquet integral have
been recently generalized to the framework of bicapacities, which are monotone two-places
set functions, where the first argument is the subset related to positive outcomes, and the
second argument the subset related to negative outcomes. Bicapacities can be thought as a
bipolarization of capacities. We show that this construction can be done in a very general
way. First we reconsider capacities and the Choquet integral through the notions of geomet-
ric realization of a distributive lattice and its natural triangulation. Second, we propose a
general mechanism of bipolarization of a given structure, and its geometric realization and
natural triangulation.
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1 Introduction

Our work is motivated by two facts, which have their roots mainly in decision theory.

The first concerns the Choquet integral with respect to a capacity, a well-known tool in
decision under uncertainty [16] and multicriteria decision making [11]. It has been remarked
by Grabisch [7] that the Choquet integral is the simplest linear interpolator between vertices of
the hypercube [0, 1]*. This interpolation was first introduced by Lovész [13], and Singer [17].

The second fact concerns bipolarity in decision making. Bipolarity is inherent to the affect
(see, e.g., Slovic et al. [18]), and roughly speaking it concerns the distinction between good
and bad outcomes, which are not treated symmetrically in decision behaviour. This has given
rise to the well-known Cumulative Prospect Theory of Tversky and Kahnemann [20], where the
underlying model (called hereafter CPT) is a difference of two Choquet integrals, one for good
outcomes and the other for bad outcomes. Recently, the authors have proposed the notion
of bicapacity and its associated Choquet integral [9, 10], which takes fully into account the
bipolarity, and includes as a particular case the CPT model.

Our aim is to study how bipolarity can be put into a given structure, and how to extend
functions, operations, transforms (like the Choquet integral, the M&bius transform, etc.) on
the bipolarized structure. To motivate this, we go more into mathematical details, and take the
example of capacities and bicapacities, the latter being a blpola.nzatlon of the former (necessary -
. definitions are all given in Section 2).

Let us consider as starting point capacities defined on some given finite set N := {1,...,n}.
i.e., mappings v : 2V — [0,1], such that »(@) = 0 and v(A) < v(B) whenever A C B A
natural structure for this definition is to take the Boolean lattice (2%, C), so that a capaaty
can be seen as an isotone mapping from (2N, ©) to ([0, 1], L), preserving the bottom element.

With this structure, the Mdbius transform m of a capacity v is the solution of the equation

v(A) = ‘Z m(B), VACN.
BCA

It is well known that the Choquet integral w.r.t v of some function f on N is given in terms of

the Mobius transform by

| [av=3" may A 16, | (1)

_ 4 ACN i€A A

an expression which is particularly simple.

Let us now turn to the case of bicapacities, which are mappings v : Q(N) — [—1, 1] defined
on Q(N) := {(A4,B) € 2¥ x 2V | AN B = @} such that v(@, &) = 0, and v(4, B) <.v(C, D)
whenever (4, B), (C,D) € Q(N) with A C C and B 2 D. A natural structure for Q(N) is to
consider the partial order C defined by

(A, AYC (B,BY)©® ACBand A DB

Then (Q(N), C) is the lattice 3", with top element (N, @), bottom element (&, N), and supre-
mum and infimum given by

(A, A)N(B,B") = (ANB,AUB'), (4 A)U(B,B)=(AUB,ANB).

Doing so, bicapacities are isotone functions from (Q(N), E) to ([—1, 1}, <) preserving the bottom
elements, so that the situation is very similar to classical capacities. Fig. 1 shows (Q(N ), E)
for n = 2 (12 is a shorthand for {1, 2}, etc.). The Mobius transform m of a bicapacity v is then
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(12, 2)

(1,2) 2,1

(2,12)

Figure 1: The lattice (Q(N),C) with n =2

determined by solving the following equation:

vw4,4)= Y m(BB).
(B,B)C(4,4')

Its solution is given by [9]:

m(A4, Af)‘= Z (_I)IA\B|+|BI\Al|v(B,B,) _ Z (—I)IA\BIHB’\A"u(B,B’).
' (B,B")E(A,A") BCA
B'NA=2 A'CB'CA®
In [10], it is shown that the Choquet integral w.r.t. a b1capa.c1ty v expressed in terms of the
Mobius transform writes:

/ fav=Y m@,B)( A @)+ S m@aB[( A 16+ A@)vo].

BCN 1€EBNN— (A,B)EQ(N) . i€(AUB)°NN— i€A
A#D v

This complicated expression, which contrasts with (1), questions the validity of the structure
(Q(N),E). In fact, the Choquet integral w.r.t. a bicapacity is constructed by a symmetry
around the (@, &) point, which is the “center” point in Q(N) (see Def. 4). On the other hand,
the lattice (Q(IN),C) has no center, but only a top and a bottom element, and in particular
_the Mdbius transform by its definition is rooted at the bottom point. :
This suggests to take a different order on Q(N), which is simply the product order:

(A,A)C (B,B)© ACBand A CB.

This order was chosen by Bilbao in his first works on bicooperative games [2]. The structure we
obtain is illustrated on Fig. 2. We see that (Q(N), C) is an inf-semilattice (in fact, the restriction
of 2V x 2N endowed with the product order to Q(N)). Indeed, (4, B)A(C,D) = (ANC,BND)
always exists in Q(V) since (ANC)N(BND)=(ANB)N(CND)=&. On the contrary
(A, B) V(C, D) does not exist in general. It is much clearer to redraw this figure exactly as Fig.
1, and indicating by arrows the order relation (see Fig. 3). This shows clearly the construction of -
the bipolar structure: the original unipolar structure (top, in white) is duplicated and reversed
(bottom, in grey), then combinations of positive and negative elements complete the structure
(left and right, crossed). Let us call it the bipolar extension of 2¥. Observe the symmetry of
arrows w.r.t. the horizontal line passing through the central point.

Let us define the Mébius transform with this structure, which we denote by b. For any
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(1,2) (2,12) (12, &) 2,1)

(2,2)

Figure 2: (Q(N),C) withn =2

 (12,2)

1,3 ¢ P (2,1)

(2 ;13)

Figure 3: The bipolar extension of 2V with n = 2

bicapacity v, b is the solution of:

v(AllAz)_:: Z _b(BliB2)
(B1,B3)G(A1,A3)
= > b(B1,By).
B1CA
BaCA2
This gives: ‘
b(A;, Ag) = Z (—1)|A1\BII+IA°\B’|U(31,Bz).
B1CA
ByC Az

This expression was suggested directly (without consideration of some order structure) by Fu-
jimoto [5]. The expression of the Choquet integral writes in a much more elegant way, close to
the case of capacities (compare with (1)):

[fav= s )| A\ FOA A£G, @

(Ax ,Aa)EQ(N ) icA; jEA2

with f* = fVv 0, f~ = (~f)*, showing that the structure is much mdre adequate.

The aim of our work is to provide a general construction for the bipolar extension of some
ordered structure, and then to define on it any functional obtained by interpolation (as the
Choquet integral) by a replication of some original functional. This work has been inspired
essentially by Koshevoy, who used the geometric realization of a lattice and its natural trian-
gulation [12], and by Fujimoto [6], who first remarked the inadequacy of our original definition
of the Mébius transform for bicapacities.
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2 Preliminaries

In this section, we consider a finite index set N := {1,...,n}.

2.1 - The Mébius transform

We recall from Rota [15] the following facts about the Mobius transform. Let us consider f, g
two real-valued functions on a locally finite poset (X, <) with bottom element, such that

g@) = fv) (3)

y<z

The solution of this equation in term of g is given through the Mébius function u by

f(2) =Y wy,2)g(v) @

y<z

where u is defined inductively by

1, _ ifx=
w@,y) = ¢ — Loty b(@t), iz <y
0, otherwise.

Note that u depends only on the structure of (X, <). Function f is called the Mébius transform
(or inverse) of g.

2.2 Capacities |
Definition 1 (i) A function v : ¥ wRisa game if it satisfies v(Q) =

(i) A game which satisfies v(A) < v(B) whenever A C B (monotonicity) is called a capacity
[4] or fuzzy measure [19). The capacity is normalized if in addition v(N) = 1.

Unanimity games are capacities of the type

1, fB2A

B) :=
ua(B) {O, else
for some AC N,A# 2.

Definition 2 Let us consider f : N — R,. The Choquet integral of f w.r.t. a capacity v is
given by '

/ fdv = S UFr(@)) — Flni+ DR, .. 7)),

t=1

where w is a permutation on N such that f (1r(1)) > ... 2 f(w(n)), and f(r(n+1)) :=
The above definition is valid if v is a game. For any {0, 1}-valued capacn:y v on 2V we have
(see, e.g., [14]):

[fav= A £6). )

Alu(A) 1i€A
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We can apply the general definition of the Mébius transform to capacities: when (X, <) =
(2V,Q), it is well known that the Mébius function becomes, for any A, B € 2V

(-1)!B\l ifACB

#(4,B) = { 0, otherwise. (6)

If g is some capacity v, then its MGbius transform m is, using (4):

m(d) = 3 (~1)4\Bly(B),

- BCA

It is well known that the set of unanimity games is a basis for all games, whose cbordinates in
this basis are exactly the Mobius transform: ‘

v= Z m(A)ug. | (7

ACN,A#2
Note that (7) is just a rewriting of (3) for 2N, 9). Equa.tion (1) gives the expression of the
Choquet integral w.r.t. the Mébius transform of v.
2.3 Bicapacities
We introduce Q(N) = {(4,B) € 2V x 2V | An B = 2}. |
Definition 8 (i) A mapping v: Q(N) — R such that v(2,) = 0 is a bicooperative game

[1].

(1) A bicooperative game v such that v(4, B) < v(C, D) whenever (4, B),(C, D) € Q(N) with
A C C and B D D (monotonicity) is called a bicapacity /8, 9. Moreover, a bzcapaczty is
normalized if in addition v(N,2) =1 and v(&,N) = —1.

Definition 4 Let v be a bicapacity and f be a real-valued function on N. The (general) Choquet

integral of fwrtvis gwen by
/fdv -/lfldVN+

where Vit i3 a game on N defined by
uN;,(C) =v(CN N"',Can‘), VCCN
and N} = {i € N| £(i) 20}, Nj = N\ N}.
When there is no fear of ambiguity, we drop subscript f i m N7 7 - Note that the definition
remains valid if v is a bicooperative game.
Considering on Q(N) the product order
(A, AYC(B,B)Y)«& ACBand A CH,

the Mébius transform b of a bicapacity v is the solution of:

v(A;, A2) = > bBu,By)
(BI’BZ)Q(AliAﬂ)

= Y By, B).
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This gives:
b(A, 42) = 3 (~1)M1\BiHA\By(B, By).

B1CAy
BaCA;

Unanimity games are then naturally defined by

1, if (By,B2) 2 (A1, A2)

U(4,,4,)(B1, B2) = {0 olse

and form a basis of bicooperative games.
The expression of the Choquet integral in terms of b is given by (2).

3 Lattices, geometric realizations, and triangulation

A lattice is a set L endowed with a partial order < such that for any z,y € L their least upper
bound z Vy and greatest lower bound z Ay always exist. For finite lattices, the greatest element
of L (denoted T) and least element L always exist. = covers y (denoted z > y) if x >y and
there is no z such that £ > 2z > y. A sequence of elements £ < y < --- < z of L is called a
chain from z to 2, while an antichain is a sequence of elements such that it contains no pair of
comparable elements. A chain from z to 2 is mazimal if no element can be added in the chain,
ie,it hastheformz <y <--- < z.

The lattice is distributive if V, A obey distributivity. An element j € L is join-irreducible if
it cannot be expressed as a supremum of other elements. Equivalently, j is join-irreducible if it
covers only one element. Join-irreducible elements covering L are called atoms, and the lattice
is atomistic if all join-irreducible elements are atoms. The set of all join-irreducible elements of
L is denoted J(L).

For any =z € L, we say that = has a complement in L if there exists ' € L such that
gAz’=LandzVa =T. The complement is unique if the lattice is distributive.

An important property is that in a distributive lattice, any element = can be written as an
irredundant supremum of join-irreducible elements in a unique way. We denote by n(x) the
(normal) decomposition of x, defined as the set of join-irreducible elements smaller or equal to
z, ie., n(x) :={j € J(L) | j £ z}. Hence

T = \/ J.
_ jen(z)
Note that this decomposition may be redundant. Let us rephrase differently the above result.
We say that Q@ C Lisa douwnset of Lifx € Q, y € L and y < z imply y € Q. For any subset P
of L, we denote by O(P) the set of all downsets of P. Then the mapping 7 is an isomorphism
of L onto O(J(L)) (Birkhoff’s theorem [3]). Also, ‘
nzVy) =n(z)Un(y), nlxAy)=nz)Nny) (8

if L is distributive. |

We introduce now the notion of geometric realization of a lattice, following Koshevoy [12].
A first fact to notice is that downsets of some partially ordered set P correspond bijectively
to nonincreasing mappings from P to {0,1}. Let us denote by D(P) the set. of all nonincreas- -
ing mappings from P to {0,1}. Then Birkhoff’s theorem can be rephrased as follows: any
distributive lattice L is isomorphic to D(J(L)). '

Consider next for any partially ordered set P the set C(P) of nonincreasing mappings from
P to [0,1]. It can be easily shown that C(P) is a convex polyhedron, whose set of vertlces is
D(P).



120

Definition 5 The geometric realization of a distributive lattice L is the set C(J(L)).

Example: If L is the Boolean lattice 2V, with N := {1,...,n}, then J(L) =
(atoms). We have D(J(L)) = {z : N — {0,1}, z nonincreasing}, but since N is an
antichain, there is no restriction on z and D(J (L)) = {0,1}", i.., it is the set of
vertices of [0, 1]™. Similarly, C(J(L)) = [0, 1]", which is the hypercube itself. []

REMARK 1:

(i) From this example, it is important to note that for a distributive lattice with
n join-irreducible elements, the elements of L (more precisely, of D(J(L))) can
be seen as a subset of the vertices of [0, 1], and the convex hull of this subset
of vertices is precisely the geometric reslization of L. For a given element z of
L, n(x) is the set of coordinates in [0, 1]* being equal to 1, the others being 0.
Hence, by (8), the subset of vertices is closed under coordinatewise minimum
and maximum (corresponding respectively to infimum and supremum of L),
and it always contains (0,...,0) and (1,...,1). ,

(ii) So far, we have seen three equivalent ways of representing a distributive lattice

 L: the set of downsets O(J (L)) of its join-irreducible elements, the nonincreas-
ing functions in D(J (L)), and a subset of vertices of [0, 1]7(D)l, Speciﬁcally:

‘zTE€ Le 77(-'3) € O(J(L)) « 17;(::) € D(J(L)) « (10(3)’ n(z)°) €0, I]IJ(L)é )

9

where the notation (1 A,OAc) denotes a vector whose coordinates are 1 if in 4,

and 0 otherwise. All arrows represent isomorphisms, the leftmost one being an
isomorphism if L is distributive.

Let us now introduce the natural triangulation of C(J (L)), following Koshevoy again. It
consists in partitioning C(J(L)) into simplices whose vertices are in D(J(L)). To each chain in
D(J (L)), say C := {1x, < 1x, < --- < 1x,} where the X;’s are downsets of J(L), corresponds
a p-dimensional simplex ¢(C) := co(1x,,1x;,...,1x,). It can be shown that these simplices
cover C(J (L)) such that any f in C(J(L)) belongs to the interior of a unique simplex. Any f

in o(C) writes
P

f=Za,-1x_., Za,-:l, o; > 0,Vi. | | (10)

i=0 =0

Then f has value 1 on X, value 1 —ap on X; \ Xo, value 1 — ap — a3 on X3 \ Xj, etc., and
value a, on X, \ Xp-1. Note that by definition of downsets f is nonlncreasmg

Example (ctd): Let us take L = 2V, and consider a maximal chain in D(J (L).),
denoted by C := {14, < 14, < -+ <1g,},and =4 CA C---C A, :=N.
For each such maximal chain (thus defining a n-dimensional simplex), there exists
a permutation w on N such that A; = {n(1),...,n(¢)}. Since 15 = 0, we have for
any f € o(C): _

n

FG@) =) aula()= Y o, Vi€N.

i=1 i)jEA;
Observe that f(7(1)) = 1—ayp, f(7(n)) = an, and in general f(n(i)) = 1— E';}, aj,
1 € N. Moreover, there are n! n-dimensional simplices. []
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REMARK 2: The above example shows that the case of a maximal chain from
bottom to top of L is particular and of special interest. Specifically, assume as in
Remark 1 that L is distributive, let J(L) :={1,...,n}, and take any maximal chain
C:={lg=0<1x, <--- < 1x,,, = 1}. Then the simplex ¢(C) is n-dimensional,
it contains vertices (0,...,0) and (1,...,1) in [0, 1]", and the sequence Xp,.. Xn
defines a permutation 7 on J(L) such that X; = {n(1),...,7(®)}, i = 1,.

Hence
f(.?) Za,lx 4 = Z Qi = z o, J= 1 (11)

=1 Xi3j v‘l“ﬂ'"'l(J)

Inverting this triangular system, one immediately obtains
= f(n(Q)) - f(r(i+1)), i=1,...,n—1, and o = f(n(n))  (12)

and ap = 1 -3, ,0a; = 1— f(r(1)). Note that f(m(1)) > f(1r(2))- > .-
F(w(n)). Lastly, remark that any f belongs to such a n-dimensional simplex (but
not necessarily in the interior), so that formulas (11) and (12) can always be used.

4 Natural interpolative functions

Let us consider a distributive lattice L, and any real-valued function F on L (or on D(J(L))).
An interesting question is how to extend this function to the geometric realization of L. Infinitely
many extensions exist, but the above material on triangulation brings us a very simple answer to
this question. Remark that (10) expresses any point of some simplex of the geometric realization
C(J(L)) as a convex combination with at most n + 1 points of D(J(L)). Hence, the extension
F of F over this simplex of C(J(L)) could be taken as the same convex combination of values
of F' at vertices of the simplex. This leads to the following definition.

Definition 6 For any functional F : 'D(._7 (L)) — R on a distributive lattice L, its natural
extension to the geometric realization of L. is defined by: .

p
F(f)=>_ aiF(lx,)
=0

for all f € int(o(C)), with C being a chain {1x, < 1x, <+ < 1x,} in D(J(L)), and o(C) its
convez hull in C(J (L)), with f = 3°F_g ailx,. , ’

Example (ctd): Consider again L = 2V, and take the notations introduced before
in this example. Using (12), we get :

F(f) = Za,F(lA.

= Z[ F(@ (@) — f(r(i + DF (L), ..n(0))s

i=1

with the convention f(m(n + 1)) := 0. Putting u(A) := F(lA), we recognize the
Choquet integral [ fdv (see Definition 2). O

This example shows that the Choquet integral is the natural extension of capacities.

. REMARK 3:
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(i) Using Remark 2, we can always write f under the form (11), so that using (12),
we have as in the example before

n

F(f) =Y _[f(x(@) = Fr(i + DNFLim(a),..imtir}) (13)

i=1

with n := |J(L)| and f(7(n + 1)) := 0. By analogy, this could be called the
Chogquet integral w.r.t. F. Moreover, using Remark 1, we could consider F as
a game or capacity defined over a sublattice of the Boolean lattice 27.

(i) It follows from the definition of F and (12) that F is linear in each simplex
o(C), ie., F(f+9) = F(f)+F(g) provided that f, g, f +g belongs to the same
o(C). Moreover, F is linesr in F, in the sense that F + G(f) = F(f) + G(f)
for any f.

(ili) This extension can be seen as a parsimonious linear interpolation since it lin-

‘ early interpolates on the vertices of the geometric realization, using the less
possible number of vertices. Of course, the natural triangulation is not the
only one decomposing a convex polyhedron into simplices, hence other parsi-
monious linear interpolation can be defined as well.

5 Bipolar structures

5.1 Bipolar extension of L

Definition 7 Let us consider (L,<) an inf-semilatticé with bottom element L. The bipolar
extension L of L is defined as follows: '

L:={(z,y) |zyeLzry=1},
which we endow with the product order < on L2.

Remark that L is a downset of L?. The following holds.
Proposition 1 Let (L, <) be an inf-semilattice.

(i) (L,<) is an inf-semilattice whose bottom element is (L, 1), where < is the proddct order

on L2, :
(ii) The set of join-irreducible elements of E i8

J(L) = {6, 1) 15 € JDIU{(L,4) [§ € L)}
(iti) The normal decomposition writes

@y= V GLV V &)

j<z,jeJ(L) isyjeJ(L)

We consider now the Mobius function over L. The aim is to solve

flzy) = > 9@,v), V=) el (14)

(wl ’V)S(ziy)’(z”y’)ez
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where | f, g are real-valued functions on L. The solution is given through the Mobius function

on L:
azy)= Y. flztup(zt), (=) @1y
(2.)<(z )
(z,t)eL

The following holds.

Proposition 2 The Mébius function on L is given by:

/"f((zi t)a (zy y)) = #L(z; :L‘)/.LL(t, y)'

Note that as usual, the set of functions v, ) defined by

1, if (2,t) 2 (z,y)
0, otherwise

U(zy) (2, t) = { (16)

forms a basis of the functions on L.

Theorem 1 Let L be a finite distributive lattzce, and c(L) be the set of its complemented el-
ements. Then, for any z € c(L), its complement being denoted by ', the interval L(z) of L
defined by
L(E) = [(-L’ -L), (17, )]
and endowed with the product order of L? is isomorphic to L, by the order isomorphism ¢, :
L(zx) — L, (y,2z) — y V z. The inverse function ¢z is given by ¢z (w) = (w Az, w A z’)
Moreover, the join-irreducible elements of L(x) are the image of those of L by ¢;%, i.e.:

J(L(@) = {(G Az ing) | § € TE)}

Remark that in any finite lattice, . and T are complemented elements, and L(T) = L
L(1) = L*, where L* is the dual of L. An interesting question is whether the union of all L(z),
z € ¢(L), is equal to L.

Theorem 2 Let L be a finite distributive lattice. Then the bipolar extension L can be written
as: ‘
L= | L=
zec(L)
if and only if J(L) has all its connected components with a single bottom element.
Example (ctd): Consider L = 2V. Then L = Q(N). Since 2V is Boolean,

any element A C N is complemented (A’ = A°), and 2V(4) = [(2,2), (4, A°)].
Obviously the conditions of Theorem 2 are satisfied, thus

Q(N) = U [(Z,G), (A,Ac)]

AgN

REMARK 4: This important result shows that Lis composed by “tiles”, all identical
to L, as in Fig. 3.  Hence, we call a regular mosaic any L satisfying conditions of
Theorem 2. There are two important particular cases of regular mosaics:
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(i) L is a product of m linear lattices (totally ordered). Then
L) ={(Ta,Lac)|AC{Y,...,m}}

where (T 4, L 4c) has coordinate number i equal to T; if i € A, and L; other-
wise. Also, (T4, Lac) = (L4, T ac). This case covers Boolean lattices (case of
capacities), and lattices of the form k™.

(i) J(L) has a single connected component with one bottom element. Then L
contains only elements of the form (y, L) or (1, 2), i.e., L = L(L) U L(T).

5.2 Bipolar geometric realization

Since L is not a distributive lattice, it is not possible to define its geometric realization in the
. sense of Def. 5. Assuming that L is a regular mosaic, we propose the following definition.

Definition 8 Let I be a regular mosaic, and x € c(L). We consider the mappings & : J(L). —
{-1,0,1} such that

(i) |€z| is nonincreasing
(#) &(5) 2 0 if j € n(z)
(i) &(j) <0 i j € n(@). |
Thé set of such functz'oﬂs is denoted by Dz(TJ (L)) Similarly, we introduce

Cz(T(L)) := {fz : T(L) — [-1,1] such that |f;| is nonincreasing, _
F2(4) 20 if j €nlz), () S0 if j e n(=)}. (17)

- Then the bipolar geometric realization of L is
Zi= U @)

z€e(L)
Proposition 3 For any = € c(L), Da(J(L)) is the set of vertices of Co(J(L)).

Proposition 4 Let z € ¢(L). There is a bijection v, : Dz(J (L)) — L(:b) defined by ¥,(£) :=
(ve, z¢) with .

M) =G eIMIEW =1}, ) =(ieTD) D=1} (@9
and the inverse function is defined by ¥;1(y,2) := €(y,2) with
1, ifjenw)
g(y,z) (.7) =4-1, ifje T[(Z) A (19)

0, otherwise,
for any j € J(L), or in more compact form

§w,2) = lnwy) — In(2)-
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‘Example (ctd): Consider L = 2%, and some N* C N, N~ := N\ N*. Then
Dy+(N) = {éx+ : N — {~1,0,1} such that (En+)nv+ 20,  (én+)n- <0}
Moreover, ¢n+(En+) = ({j € N | En+(5) = 1},{j € N | &n+ (i) = —1}).

REMARK 5: Observe that functions &, € D,(J(L)) corresponds to a subset of points
of [~1, 1] of the form (14, (~1)p,0¢aup)e), With A C n(z) and B C n(z’), and
that C,(J (L)) is the convex hull of these points.

We end this section by addressing the natural triangulation of the bipolar geometric realiza-
tion. Let us consider some f in C(J(L)), assuming f = >0 a;lx,, with 1x,,...,1x, forming
a chain in D(J(L)). Given z € ¢(L), let us define the corresponding f in C.(J (L)) as follows:

P
foi= Y aatr (87 (71 (X)))

1=0

P
=Y ai(lx,rme) — Lxinm())-
=0
Explicitely, this gives, for any j € J(L):
N Ziljex,- o, ifj€n(z)
fn:(]) - op . f’
—Yijex, oir if 5 € n(2).
Hencé | fz| takes value 1 on Xp, 1 — ag on X \ X, etc., and is nonincreasing.
Remark that |f,| = f if f € C(J(L)), and ||z = f if f € Co(T(L)).
5.3 Natural interpolation on bipolar structures

Assume F : |J,eoz) Pz(J(L)) — R is given. We want to define the extension _F_ of this
functional on the bipolar. geometric realization m

Let us take f € |7:| = Ugec(z) C=(T (L)). First, we must choose z € c(L) such that f belongs
to Cz(J (L)) (= is not unique in general). Defining
JI)"={jeTL)| f(H) 20}, TEL)" :=TL)\ITL)*,
it suffices to take z, 2’ defined by
n(@ = J o (@)= I(E)\n(@

keK

with K the smallest one such that J(L)* C ek Jr (using notations of proof of Theorem 2).
Now, consider |f}|, which belongs to C(J(L)), and its expression using the natural triangulation:

14
Lﬂ = Za‘ilXi

=0

with 1x,,...,1x, a chain in D(J(L)). Then we have |f|, = f, and we propose the following
definition. .
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Definition 9 Assume L is a regular mosaic. For any functional F : Uzeer) P=(T (L)) — R,
its natural extension to the bipolar geometric realization of L is defined by:

P
F(f) =) aiFy(lx,)

=0 .
for all f € Co(T(L)), letting |f| := 320 culx, for some chain {lx, < 1x, < - < 1x,} in
D(I(L)), and F, : D(T(L)) — R defined by:
F:(1x,) = F(1x,rm(z) — Lxirm(a")-
Example (end): Let us take once more L = 2V. For a given f, we define N* :=
{j e N|f(G) =20} and N~ := N\ N*, we have:

n

F(f) =3 aiFn+(1x:) = 3 [|[F@(@)]| = 1f(x (G + D) F(1x,av+ = Lxinn-)s

=1 =1
where we have used (12). Putting v(A, B) := F(14 —15), we recognize the Choquet
integral for bicapacities. [l

REMARK 6: Definition 9 can be written equivalently as F(f) = F;(|f]), making
clear the relation between the functional on L and on L.

‘ " Lastly, we address the problem of expressing F in terms of the Mébius transform of F, using
Prop. 2. For this purpose, it is better to turn a given functional F on Uzec( L) D (J (L)) into

its equivalent form F defined on L, thanks to the mappings Yz, T € ¢(L). Doing so, we can use
Prop. 2 and (15), and get the M&bius transform of F, which we denote by m:

Ao = Y Fetuzauty, Y@y ek

(2.8)<(=,p)
(z,t)EL

We need the following result, which is a generalization of (5). _
Lemma 1 Let f € C(J (L)) and F : D(J(L)) — {0,1} bemg nondecrea.smg and 0-1 valued.
Then

Fn= V A5G

TCI(L) j€T
F(lr)=1

The followmg is a generalization of (2).

Proposition 5 With the above notations, for any f € IL] and any F on U,eqr) Po(T (L)),
the followmg holds:

F(= Y @] \ FFOA A 6],

(s,t)eL jen(s) jen(t)

with f+ = FV0, f~ = (-H*.
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