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1 Introduction
Let $E$ be a $Ban\mathfrak{X}h$ space and let $C$ be anonempty $cl\propto ed$ convex suket of B. Then, a

mappin$gT:Carrow C$ is said to be $none\varphi ansive$ if $\Vert Tx-Ty\Vert\leq||x-y\Vert$ for all $x,y\in C$. The
$fir8tfixd$ point

$\backslash$

thmrem for anonexpansive mapping whose domain $C$ is not compact $v\mathfrak{s}ae$

$establi_{8}hed$ in 1965 by Browder [11]. He proved that if $C_{\dot{\mathfrak{B}}}$ aboundd closd convex subset of
aHilbert space $E$ and $T$ is anonexpansive mapping of $C$ into itself, $th\dot{e}nTha\epsilon$ afixed point
in C. Almost immdiately, both Browder [12] and G\"ohde [21] provd that the same is true if
$E$ is aunifomly convex Banach $spa\iota e$ . Kirk [27] $ako$ proved the $f_{0}nowing$ theorem; Let $E$ be
$a$.reflexive Banach $sp\epsilon ce\bm{t}d$ let $C$ be anonempty bounded cloeed convex subset of $E$ whii
$hu$ normal structure. Let $T$ be anonexpansive mapping of $C$ into itself. Then the set $F(T)$

of fixd point8 of $Ti_{8}$ nonempty.
$A\hslash er$ Kirk’s theorem, mry fixed point thmrems concerning nonexpansive $mapp_{\dot{i}}gs$ have

been proved in aHilbert space or aBanach space. $\bm{t}$ particular, Baillon and Sch\"oneberg
[9] introduced the concept of $a\epsilon ymptotic$ nomal structure and generahzed Kirk’s fixed point
theorem $\epsilon s$ foUows: Let $E$ be areflexive Banach spac6and let $C$ be anonempty boundd $cl\propto ed$

convex subset of $E$ which has asymptotic normal structure. Let $T$ be anonexpansive mapping
of $C$ into itself. Then $F(T)$ is nonempty. Aflxed point thmrem for afanily of nonexptsive
mappings $wa\epsilon$ first proved by DeMarr [18] by $\mathfrak{B}8Uming$ that the famPy is commutative and
$C$ is compact. Later, $\ovalbox{\tt\small REJECT} hi[56]$ extendd thi8 thmrem to anoncommutative $\epsilon emigoup$

of nonexpansive mappings whii is called amenable. Since then, many Axed point thmrems
for a $non\alpha pansive$ mapping or affimily of nonexptsive mappin$gs$ have been $\infty tablished$ by
many authors.

On the other hand, in 1975, BaiUon [6] originaUy proved the first nonhnear ergodic thmrem
in the&amework of Hilbert $spac\infty$:Let $C$ be aclosed and convex subset of aEilbert space
and let $T$ be a $nonexpan\epsilon ive$ mapping of $C$ into itself. $\bm{i}F(T)i\epsilon$ nonempty, then for eai
$x\in C$ , the Coe\‘aro means

$S_{n}(x)= \frac{1}{n}\sum_{k=0}^{n-1}T^{k}x$

converge weakly to some $y\in F(T)$ . In this case, putting $y=Px$ for each $x\in C,$ $P$ is a
noneypansive retraction of $C$ onto $F(T)$ such that $PT=TP=P$ and $Px$ is contained in
the closure of convex hull of $\{T^{n}x : n=\cdot 1,2, \ldots\}$ for each $x\in C$ . We $c\epsilon 11$ such a retraction
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${}^{t}an$ ergodic $retraction’$ . In 1981, Taihashi [58] proved the existence of ergodic $retr\epsilon ctions$

for amenable semigroups of nonexpaoive mappings on Hilbert $spac\infty.$ Rod\’e [49] ako found
asequence of means on asemigroup, generalizing the Cae\‘aro means, and extended $BaiUon’ s$

thmrem. These results were extended to auniforiy convex Banach space whose norm i8
R\’echet differentiable in the case of commutative $8emigroups$ of nonexpaoive mappings by
Hirano, Kido and Taihashi [23]. In 1999, Lau, Shioji and $Ta\bm{L}hashi[33]$ extended Ibhhaehi $s$

result and Rod\’e’s $re\epsilon ult$ to amenable semigroup8 of nonexpaoive mapping8 in the Banaaeh
space.

In thi8 article, we first discuss fixed point theorems for nonexptsive mappings or familiae
of nonexptsive mappings in Banach spaces. In particular, we state afixed point thmrem
for amenable semigroups of nonexpansive mappings in Banach spaces whii generahzae Kirk’s
theorem and Taihaehi’s theorem, simultanmusly. Thi8 theorem answers affirmatively aProk
$lem$ posed during the Conference on Fixed Point Thmry and Applications held at $cmM$,
$Marseille- Lum\dot{i}y$, 1989 (see [29]). Then we $8how$ generahzd nonlinear ergodic thmrems for
nonexpaoive semigroup8 $\bm{i}$ Banach sPacae. In particular, we $d\dot oeCU8S$ generahzed nonlinear
ergodic theorems for $nonexpan\epsilon ive$ semigroups in unifomly convex Banach Ipac\’e or general
Banach spaces. $U_{S\dot{i}}g$ these results, we obtain some $non1_{\dot{i}}$ear ergodic thmrems in casae of
$d\dot oe$crete and one-parameter semigroups of nonexpmsive mapping8. Finally, we discuss two
iterative method8 for approximation of fixed point8 of nonexpansive mappings which are dif-
ferent $kom$ the mean ergodic method.

2 Preliminaries
Let $E$ be a real Banach space with norm $\Vert\cdot\Vert$ and let $E^{*}$ denote the topological dual of $E$:

We denote the value of $y^{*}\in E$“ at $x\in E$ by $\langle x,y^{*}\rangle$ . When $\{x_{n}\}$ is a sequence in $E$, we denote
the 8trong convergence of $\{x_{n}\}$ to $x\in E$ by $x_{n}arrow x$ and the weak convergence by $x_{n}arrow x$.
The mdulus of convexity $\delta$ of $E$ is defined by

$\delta(\epsilon)=\inf\{1-\frac{||x+y\Vert}{2}$ : $||x||\leq 1,$ $\Vert y||\leq 1,$ $||x-y||\geq\epsilon\}$

for every $\epsilon$ with $0\leq\epsilon\leq 2$ . A Banach space $E$ is said to be uniformly convex if $\delta(\epsilon)>0$ for
every $\epsilon>0$ . Let $\epsilon$ and $r$ be real numbers with $r>0$ and $0\leq\epsilon\leq 2r$ . If $E$ is uniformly convex,
then $\delta$ satisfies that $\delta(\epsilon/r)>0$ and

$\Vert\frac{x+y}{2}\Vert\leq r(1-\delta(\frac{\epsilon}{r}))$

for every $x,y\in E$ with $||x\Vert\leq r,$ $\Vert y||\leq r$ and $||x-y||\geq\epsilon$ . Let $C$ be a nonempty closed convex
subset of a uniformly convex Banach space $E$ . Then we know that for any $x\in E$ , there eXists
a unique element $z\in C$ such that $\Vert x-z\Vert\leq\Vert x-y||$ for all $y\in C$ . Putting $z=P_{C}(x)$ , we call
$P_{C}$ the metric prvjection of $E$ onto $C$ . The dudity mapping $J$ from $E$ into $2^{B^{*}}$ is defined by

$Jx=\{x^{r}\in E^{*} : (x,x^{*}\rangle=||x\Vert^{2}=||x^{*}||^{2}\}$

for every $x\in E$ . Let $U=\{x\in E : \Vert x\Vert=1\}$ . The nom of $E$ is said to be G\^atenur

differentiable if for each $x,y\in U$ , the limit

$t arrow 01\dot{m}\frac{\Vert x+ty\Vert-\Vert x||}{t}$ (2.1)
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exists. In the case, $E$ is called smooth. The norm of $E$ is said to be unifomly G\^ateaux

differentiable if for each $y\in U$ , the limit (2.1) is attained uniformly for $x\in U$ . It is also said
to be FV\’echet differentiable if for each $x\in U$ , the limit (2.1) is attained uniformly for $y\in U$ . A
Banach space $E$ is called uniforrnly smooth if the limit (2.1) is attained uniformly for $x,y\in U$ .
We know that if $E$ is smooth, then the duality mapping $J$ is single valued. Further, if the
nom of $E$ is uniformly G\^ateaux differentiable, then $J$ is uniformly norm to weak’ continuous
on each bounded subset of $E$ . We know the folowing result: Let $E$ be a uniformly convex
Banach space with a G\^ateaux differentiable nom. Let $C$ be a nonempty closed convex subset
of $E$ and $x\in E$ . Then, $x_{0}=P_{C}(x)$ if and only if

$\langle x_{0}-y,$ $J(x-x_{0}))\geq 0$

for all $y\in C$, where $J$ is the duality mapping of $E$; see $[64, 65]$ for more details.
A Banach space $E$ is said to satisfy Opial’8 condition [46] if for any sequence $\{x_{\mathfrak{n}}\}\subset E$ ,

$x_{n}\cdot\wedge yimpli\infty$

$\lim_{narrow}\inf_{\infty}\Vert x_{n}-y\Vert<\lim_{narrow}\inf_{\infty}||x_{n}-z\Vert$

for all $z\in E$ with $z\neq y$ . A Hilbert space satisfies Opial’s condition.
Let $C$ be a closed convex subset of $E$ . A mapping $T:Carrow C$ is said to be $none\varphi ansive$ if

11 $Tx-Ty\Vert\leq\Vert x-y\Vert$ for all $x,$ $y\in C$ . We denote the set of all fixed point8 of $T$ by $F(T)$ .
A closed convex subset $C$ of a Banach space $E$ is said to have normal structure if for each
$bo$unded closed convex subset of $K$ of $C$ which contains at least two points, there exists an
element $x$ of $K$ which is not a diametral point of $K$ , i.e.,

$\sup\{\Vert x-y\Vert : y\in K\}<\delta(K)$ ,

where $\delta(K)$ is the diameter of $K$. It is well known that a closed convex subset of a unifomly
convex Banach space has normal structure and a compact convex subset of a Banach space
has nomal structure; see [64] for more details. Let $D$ be a subset of $C$ and let $P$ be a mapping
of $C$ into $D$ . Then $P$ is said to be sunny if

$P(Px+t(x-Px))=Px$

whenever $Px+t(x-Px)\in C$ for $x\in\cdot C$ and $t\geq 0.$ $A$ mapping $P$ of $C$ into $C$ is said to be
a retraction if $P^{2}=P$. We denote by $\overline{D}$ and $\varpi D$ the closure of $D$ and the convex $hul$ of $D$ ,
respectively.

Let $I$ denote the identity operator on $E$ . An operator A C $ExE$ with domain $D(A)=$
$\{z\in E:\cdot Az\neq 1\}$ and range $R(A)=\cup\{Az : z\in D(A)\}$ is said to be accfetive if for each
$x_{i}\in D(A)$ and $y_{i}\in Ax_{i)}i=1,2$ , there exists $j\in J(x_{1}-x_{2})$ such that ($y_{1}-y_{2},j\rangle$ $\geq 0$ . If $A$

is accretive, then we have

$||x_{1}-x_{2}\Vert\leq\Vert x_{1}-x_{2}+r(y_{1}-y_{2})\Vert$

for all $r>0$ . An accretive operator $A$ is said to satisfy the range condition if $\overline{D(A)}\subset$

$\bigcap_{r>0}R(I+rA)$ . If $A$ is accretive, then we can define, for each $r>0$ , a nonexpansive single
valued mapping $J_{r}$ : $R(I+rA)arrow D(A)$ by $J_{r}=(I+rA)^{-1}$ . It is called the resolvent of $A$ .
We aiso define the Yosida appro vimation $A_{r}$ by $A,$ $=(I-J_{r})/r$ . We know that $A_{r}x\in AJ_{r}x$

for all $x\in R(I+rA)$ and $\Vert A_{r}x\Vert\leq\inf\{\Vert y\Vert : y\in Ax\}$ for au $x\in D(A)\cap R(I+rA)$ . We also
know that for an accretive oper.atorA satisfying the range condition, $A^{-1}0=F(J_{r})$ for all
$r>0$ . An accretive operator $A$ is said to be m-accretive if $R(I+rA)=E$ for all $r>0$. Reich
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[48] proved the following result: Let $E$ be a uniformly convex and uniformly smooth Banach
space and let $A\subset ExE$ be an m-accretive operator such that $A^{-1}0$ is nonempty. Then,
for any $x\in E$ , the strong limit $\lim_{tarrow\infty}J_{t}x$ exists and belongs to $A^{-1}0$ . In this case, putting
$Px= \lim_{tarrow\infty}J_{t}x$ , we have that $P$ is a sunny nonexpansive retraction of $E$ onto $A^{-1}0$ . We
aJso know that $x_{0}=Px$ if and only if

$\langle x-x_{0},J(x_{0}-z)\rangle\geq 0$

for all $z\in A^{-1}0$ .
Let $S$ be a semitopological semigroup, i.e., a semigroup with Hausdorff topology such that

for each $s\in S$ , the $mapp\dot{g}$gs $t\mapsto ts$ and $t-\rangle$ $st$ of $S$ into itself are continuous. Let $B(S)$ be
the Banach space of all bounded real valued functions on $S$ with supremum norm and let $X$

be a subspace of $B(S)$ containing constants. Then, an element $\mu$ of $X^{*}$ (the dual space of $X$)
is called a mean on $X$ if $||\mu\Vert=\mu(1)=1$ . We know that $\mu\in X^{*}$ is a mean on $X$ if and only if

$\inf\{f(s) : s\in S\}\leq\mu(f)\leq\sup\{f(s) : \epsilon\in S\}$

for every $f\in X$ . A real valued function $\mu$ on $X$ is called a submean on $X$ if the following
properties are satisfied:

(1) $\mu(f+g)\leq\mu(f)+\mu(g)$ for every $f,g\in X$ ;
(2) $\mu(\alpha f)=\alpha\mu(f)$ for every $f\in X$ and $\alpha\geq 0$ ;
(3) for $f,g\in X,$ $f\leq g$ implies $\mu(f)\leq\mu(g)$ ;
(4) $\mu(c)=c$ for every constant function $c$ .

Clearly every mean on $X$ is a submean. The notion of submeans vas first introduced by
Mizoguchi and Takahashi [45]. For a submean $\mu$ on $X$ and $f\in X$ , sometimes we use $\mu(f(t))$

instead of $\mu(f)$ . For each $s\in S$ and $f\in B(S)$ , we define elements $l_{\epsilon}f$ and $r_{\epsilon}f$ of $B(S)$

given by $(\ell_{o}f)(t)=f(st)$ and $(r_{\epsilon}f)(t)=f(t_{8})$ for all $t\in S$ . Let $X$ be a subspace of $B(S)$
$conta\dot{i}\dot{i}g$ constants which is invariant under $\ell_{l},$ $s\in S$ (resp. $r_{l},$ $r\in S$). Then a mean $\mu$ on
$X$ is said to be left invanant (resp. right invariant) if $\mu(f)=\mu(\ell_{\epsilon}f)$ (resp. $\mu(f)=\mu(r.f)$)
for all $f\in X$ and $s\in S$ . An invariant mean is a left and right invariant mean. A submean
$\mu$ on $X$ is said to be left subinvariant if $\mu(f)\leq\mu(\ell_{\iota}f)$ for all $f\in X$ and $s\in S$ . Let $S$ be a
semitopological semigroup. Then $S$ is called left (resp. right) reversible if any two closed right
(resp. left) ideals of $S$ have non-void intersection. If $S$ is left reversible, $(S, \leq)$ is a directed
system when the binary relation $\leq$ on $S$ is defined by $a\leq b$ if and only if $\{a\}\cup\overline{Sa}\supset\{b\}\cup\overline{Sb}$,
$a,b\in S$ . Similarly, we can deflne the binary relation $u\leq$ ’ on a right reversible semitopological
semigroup $S$.

3 Fixed Point Theorems
In this section, we discuss fixed point theorems for a nonexpansive mapping or afa血血 y

of nonexpansive maPPings. The first fixed point theorem for nonexpansive $mapp\dot{u}$lffi was
established in 1965 by Browder [11]. He proved that if $C$ is a bounded closed convex subset of
a Hilbert space $H$ and $T$ is a nonexpansive mapping of $C$ into itseff, then $T$ has a 丘組 ed Po血地
in $C$. Almost immediately, both Browder [12] and G\"ohde [21] proved that the same is true if
$E$ is a uniformly convex Banch space. Kirk [27] aJso Proved the following theorem:
$Th\infty rem3.1$ ([27]). Let $E$ be a reflestve Banach space and let $C$ be a nonempty beunded
closed convex subset of $E$ which has nonnal structure. Let $T$ be a none zpansive mapping of $C$

into itself. Then $F(T)$ is nonempty.
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After Kirk’s theorem, many fixed point theorems concerning nonexpansive mappings have
been proved in a Hilbert space or a Banach space. In particular, Baillon and Sch\"oneberg
[9] introduced the concept of asymptotic normal structure and generalized Kirk’s fixed point
theorem as follows:
Theorem 3.2 ([9]). Let $E$ be a reflenive Banach space and let $C$ be a non-empty bounded
closed convex subset of $E$ which has asymptotic normal structure. Let $T$ be a none2pansive
mapping of $C$ into itself. Then $F(T)$ . is nonempty.

On the other hand, DeMarr [18] proved the following fixed point theorem for a commutative
family of nonexpansive mappings.

Theorem 3.3 ([18]). Let $C$ be a compact convex subset of a Banach space $E$ and let $S$ be a
commutative famay of $none\varphi ansive$ maPpings of $C$ into itsdf. Then $S$ has a common fixed
point in $C,$ $i.e.$ , there exists $z\in C$ such that $Tz=z$ for every $T\in S$ .

Browder [12] proved the following fixed point theorem without compactness:

Theorem 3.4 ([12]). Let $C_{1}$ be a bounded closed convex subset of a unifomly convex Banach
space $E$ and let $S$ be a commutative family of noneapansive maPpings.of $C$ into itsdf. $n_{en}$

$S$ has a common fixed point in $C$ .
Further, let us consider to extend these theorems to a noncommutative semigroup of non-

expansive mappings. Let $S$ be a semitopological semigroup and let $C$ be a nonempty closed
convex subset of a Banach space $E$. Then a family $S=\{T_{f} : s\in S\}$ of $mapp_{\dot{i}}$g8 of $C$ into
itself is called a $none\varphi ansive$ semigroup on $C$ if it satisfies the following:

(1) $T_{\epsilon t}x=T_{e}T_{t}x$ for all $s,t\in S$ and $x\in C$ ;
(2) for each $x\in C$ , the mapping $s\mapsto T_{\epsilon}x$ is continuous;
(3) for each $s\in S,$ $T_{l}$ is a nonexpansive mapping of $C$ into itself.

For a nonexpansive semigroup $S=\{T_{l} : s\in S\}$ on $C$, we denote by $F(S)$ the set of common
fixed points of $T_{\epsilon},$ $s\in S$. Let $S$ be a semitopological semigroup, let $C(S)$ be the Banach spwe
of all bounded continuous functions on $S$ and let $RUC(S)$ be the space of all bounded right
uniformly continuous functions on $S$, i.e., all $f\in C(S)$ such that the mapping $s\mapsto r_{\epsilon}f$ is
continuous. Then $RUC(S)$ is a closed subalgebra of $C(S)$ containin constants and invariant
under $\ell_{\epsilon}$ and $r_{\epsilon},$ $s\in S$ ; see [40] for more details.

In 1969, Ibhhashi [56] proved the first fixed point theorem for a noncommutative semigroup
of nonexptsive mappings which generalizes DeMarr’s fixed point theorem, that is, he proved
that any discrete left amenable semigroup has a common fixed point. Mitchel [41] generalized
Takahashi’s result by showin$g$ that any discrete left reversible semigroup has a common fixed
point. Lau proved the following theorem in [28]:

Theorem 3.5 ([28]). Let $S$ be a semitopological semigroup and let $A(S)$ be the $mac6$ of all
$f\in C(S)$ such that $\{\ell_{\epsilon}f : s\in S\}$ is relatively compact in the norm topology of $C(S)$ . Let
$S=\{T : s\in S\}$ be a $none\varphi ansive$ semigroup on a compact convex subset $C$ of a Banach
space E. Then $A(S)$ has a left invariant mean if and only if $S$ has a common fixed point in
$C$ .

Lim [38] generahized Kirk’s result [27], Browder’s result [12] and Mitchen $s$ result [41]‘by
showing the $foUowing$ thmrem;

Theorem 3.6 ([38]). Let $S$ be a left $r\epsilon$versible semitopological semigroup. Let $C$ be a weakly
compact convex subset of a Banach $\epsilon paceE$ which has nomal structure and let $S=\{T_{l}$ : $s\in$

$S\}$ be a $none\varphi ansive$ semigroup on C. Then $S$ has a common fixed point in $C$ .
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Takahashi and Jeong [66] als$0$ generalized Browder’s result [12] by using the concept of
submeans.

Theorem 3.7 ([66]). Let $S$ be a semitopological semigroup. Let $S=\{T_{\epsilon} : s\in S\}$ be a
none cpansive semigroup on a bounded closed convex subset $C$ of a unifomly convex Banach
space E. Suppose that $RUC(S)$ has a left subinvariant submean. Then $S$ has a common fixed
point in $C$ .

To prove Theorm 3.7, we need the folowing lemma [72]:

Lemma 3.8 ([72]). Let $p>1$ and $b>0$ be two $\mu_{ed}$ numbers. Then a Banach space $E$

is unifomly convex if and only if there exists a continuous, $str\dot{r}ctly$ increasing, and convex
flnction (depending on $p$ and b) $g:[0, \infty$) $arrow[0, \infty$) such that $g(O)=0$ and

$\Vert\lambda x+(1-\lambda)y\Vert^{p}\leq\lambda\Vert x\Vert^{p}+(1-\lambda)\Vert y\Vert^{p}-W_{p}(\lambda)g(\Vert x-y\Vert)$

for all $x,y\in B_{b}$ and $0\leq\lambda\leq 1$ , where $W_{p}(\lambda)=\lambda(1-\lambda)^{p}+\lambda^{p}(1-\lambda)$ and $B_{b}$ is the closed
ball with radius $b$ and centered at the oriptn.

We may comment on the relationship between $RUC(S)$. has $an$ invariant mean” and $S$

is left reversible”. As well known, they do not imply each other in general. But if $RUC(S)$
has sufficiently many functions to separate closed sets, then $RUC(S)$ has an invariant mean”
would imply $S$ is left and right reversible”. Lau and Takahashi [36] generalized Lim’s result
[38] and Takahashi and Jeong’s result [66].

Theorem 3.9 ([36]). Let $S$ be a semitopological semigrvup, let $C$ be a nonempty weaely
compact convex subset of a Banach space $E$ which has nomal structure and let $S=\{T_{\epsilon}$ : $s\in$

$S\}$ be a none zpansive semigroup on C. Suppose $RUC(S)$ has a left subinvariant submean.
Then $S$ has a common fixed point in $C$ .

To prove Theorem 3.9, we need two lemmas.

Lemma 3.10 ([37]). A dosed convex subset $C$ of a Banach space has nomal structure if
and only if it does not contain a sequence $\{x_{n}\}$ such that for some $c>0$,

$\Vert x_{n}-x_{m}\Vert\leq c$ and $\Vert x_{n+1}-\overline{x_{n}}\Vert\geq c-\frac{1}{n^{2}}$

for aZl $n\geq 1$ and $m\geq 1,$ where $\overline{x_{n}}=\frac{1}{\mathfrak{n}}\sum_{1=1}^{n}x_{i}$ .
Lemma 3.11 ([20]). Let $X$ be a compact convex subset of a separated topologicd vector spaoe
$E$, let $f_{1},$ $f_{2},$

$\ldots,$
$f_{n}$ be a finite family of lower semicontinuous convex hnctions ffom $X$ into

$R$ and let $c\in R$ , where $R$ denotes the set of real numbers. Then the follouying conditions (1)
and (2) are equivalent:

(1) There exists $x_{0}\in X$ such that $f_{1}(x_{0})\leq c$ for all $i=1,2,$ $.$ .:’ $n$;
(2) for any finite non-negative real numbers $\{\alpha_{1}, \alpha_{2}, \ldots , \alpha_{n}\}$ with

$\sum_{1=1}^{n}\alpha_{i}=1$ , there nists $y\in X$ such that $\sum_{1=1}^{n}\alpha:f_{i}(y)\leq c$ .
Theorm 3.9 answers affirmatively a problem posed during the Conference on Fixed Point

Theory and Applications held at CIRM, Marseille-Luminy, 1989 (see [29]), whether Lim’s
result and Takahashi and Jeong’s result can be fuly extended to such Banach spaces for
amenable semigroups.

Problem. Would “normal structure “in Theorem 3.9 be replaced by “asymptotic normal
structure”?
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4 Nonlinear Ergodic Theorems
In this section, we discuss nonlinear ergodic theorems. The first nonlinear ergodic theorem

for nonexpansive mappings was established in 1975 by BaiUon [6] in the framework of a Hilbert
space.

Theorem 4.1 ([6]). Let $C$ be a closed convex subset of a Hilbert space $H$ and let $T$ be a
$none\varphi ansive$ maPping of $C$ into itself. If the set $F(T)$ of fxed points of $T$ is nonempty, then

for each $x\in C$ , the Ces\‘aro means

$S_{n}(x)= \frac{1}{n}\sum_{k=0}^{n-1}T^{k}x$

converye weakly to some $y\in F(T)$ .
This theorem was extended to a uniformly convex Banach space whose nom is R&het

differentiable by Bruck [15].

Theorem 4.2 ([15]). Let $C$ be a closed convex subset of a unifomly convex Banach $s\mu oe$

$E$ Utth a Pr\’echet differentiable nom. If $T:Carrow C$ is a nonespansive mapping with a ffld
point, then the Ces\‘arv means of $\{T^{\iota}x\}$ converge weakly to a fixed point of $T$ .

In their theorems, putting $y=Px$ for each $x\in C$ , we have that $P$ is a $none_{W^{ansi_{V}e}}$

retraction of $C$ onto $F(T)$ such that $PT^{n}=T^{\mathfrak{n}}P=P$ for all $n=1,2,$ $\ldots$ and $Px\in\varpi\{T^{n}x$ :
$n=0,1,2,$ $\ldots$ } for each $x\in C$ , where $\overline{co}A$ is the closure of the convex hul of $A$ . Takahashi [58]
called such a retraction”ergodic retraction”. In general, let $S$ be a semitopologcal semiyoup,
let $C$ be a closed convex subset of $E$, and let $S=\{T_{t} : t\in S\}$ be a nonexpansive semigroup
on $C$. Then, a mapping $P$ of $C$ onto $F(S)$ is caled a $none\varphi ansive$ ergodic retraction if it
satisfies the following conditions:

(1) $\Vert Px-Py\Vert\leq\Vert x-y\Vert$ for all $x,y\in C$ ;
(2) $P^{2}=P$ ;
(3) $PT_{t}=T_{t}P=P$ for all $t\in S$ ;
(4) $Px\in\overline{co}\{T_{t}x:t\in S\}$ for all $x\in C$.
Let $\{\mu_{\alpha} : \alpha\in A\}$ be a net of means on $RUC(S)$ . Then $\{\mu_{\alpha}\in A\}$ is said to be asymptotically

invariant if for each $f\in RUC(S)$ and $s\in S$ ,
$\mu_{\alpha}(f)-\mu_{\alpha}(\ell_{\epsilon}f)arrow 0$ and $\mu_{\alpha}(f)-\mu_{\alpha}(r_{\epsilon}f)arrow 0$ .

Let us give an example of asymptotically invariant nets. Let $S=\{0,1,2, \ldots\}$ and let $N$ be

the set of positive integers. Then for $f=(x_{0},x_{1}, \ldots)\in B(S)$ and $n\in N$ , the real valued
function $\mu_{\mathfrak{n}}$ defined by

$\mu_{n}(f)=\frac{1}{n}\sum_{k=0}^{n-1}x_{k}$

is a mean. Further since for $f=(x_{0},x_{1}, \ldots)\in B(S)$ and $m\in N$

$| \mu_{n}(f)-\mu_{n}(r_{m}f)|=|\frac{1}{n}\sum_{k=0}^{n-1}x_{k}-\frac{1}{n}\sum_{k=0}^{n-1}x_{k+m1}$

$\leq\frac{1}{n}\cdot 2m||f\Vertarrow 0$,
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as $narrow\infty,$ $\{\mu_{n}\}$ is an asymptotically invariant net of means.
If $C$ is a nonempty closed convex subset of a Hilbert space $H$ and $S=\{T_{s} : s\in S\}$ is a

nonexpansive semigroup on $C$ such that $\{T_{\epsilon}x : s\in S\}$ is bounded for some $x\in C$ , then we
know that for each $u\in C$ and $v\in H$ , the functions $f(t)=\Vert T_{t}u-v\Vert^{2}$ and $g(t)=(T_{t}u,v)$

are in $RUC(S)$ . Let $\mu$ be a mean on $RUC(S)$ . Then since for each $x\in C$ and $y\in H$ , the
real valued function $t\mapsto(T_{t}x,y)$ is in $RUC(S)$ , we can define the value $\mu_{t}(T_{t}x,y)$ of $\mu$ at this
function. By linearity of $\mu$ and of the inner product, this is linear in $y$ ; moreover, since

$| \mu_{t}(T_{t}x, y)|\leq\Vert\mu\Vert\cdot\sup_{t}|(T_{t}x,y)|\leq(\sup_{t}\Vert T_{t}x\Vert)\cdot\Vert y\Vert$ ,

it is continuous in $y$ . So, by the Riesz theorem, there exists an $x_{0}\in H$ such that

$\mu_{t}(T_{t}x,y)=(x_{0},y)$

for every $y\cdot\in H$ . We write such an $x_{0}$ by $T_{\mu}x$ ; see $[58,64]$ for more details.
In 1981, Takahashi [58] proved the first nonlinear ergodic theorem for noncommutative.

semigroups of nonexpansive mapping8 in a Hilbert space.

Theorem 4.3 ([58]). Let $C$ be a nonempty dosed convex subset of a Hilbert space and let $S$ be
a semitopological semigroup such that $RUC(S)$ has an invariant mean. Let $S=\{T_{t} : t\in S\}$

be $a$ one-parameter nonerpansive semigroup on $C$ such that $\{T_{t}x:t\in S\}\dot{u}$ bounded for some
$x\in C$ . Then, there nists a uniqu$e$ nonlinear ergodic retraction $P$ from $C$ onto $F(S)$ such
that $PT_{t}=T_{t}P=P$ for each $t\in S$ and $Px\in\overline{co}\{T_{t}x:t\in S\}$ for each $x\in C$ .

Further, Rod\’e [49] prove the folowing theorem.

Theorem 4.4 ([49]). Let $C$ be a nonempty closed convex subset of a Hilbert space $H$ and let $S$

be a semitopological $\epsilon emigroup$ such that $RUC(S)$ has an invariant mean. Let $S=\{T_{t} : t\in S\}$

be a nonespansive semigroup on $C$ such that $\{T_{t}x:t\in S\}$ is bounded for some $x\in C$ . Then,
for an $as_{\Psi^{nptotioelly}}$ invariant net $\{\mu_{\alpha} : \alpha\in A\}$ of means on $RUC(S)$ , the net $\{T_{\mu_{\alpha}}x:\alpha\in A\}$

converges weakly to an element $x_{0}\in F(S)$ .

Using Theorem 4.4, we have Theorem 4.1. By the same method, we can prove the following
nonhnear ergodic theorems:

Theorem 4.5. Let $C$ be a closed convex subset of a Hilbert space $H$ and let $T$ be a $non\varpi$

pansive $mapp|ng$ of $C$ into itself. If $F(T)$ is nonempty, then for each $x\in C$ ,

$S_{r}(x)=(1-r) \sum_{k=0}^{\infty}r^{k}T^{k}x$,

as $r\uparrow 1$ , converges weakly to an element $y\in F(T)$ .
Theorem 4.6. Let $C$ be a dosed convex subset of a Hilbert spaoe $H$ and let $S=\{S(t)$ : $t\in$

$[0, \infty)\}$ be $a$ one-parameter nonempansive semigroup on C. If $F(S)$ is nonempty, then for each
$x\in C$,

$S_{\lambda}(x)= \frac{1}{\lambda}\int_{0}^{\lambda}S(t)xdt$,

as $\lambdaarrow\infty,$ $conve\eta es$ weakly to an element $y\in F(S)$ .
Next, let us state a nonlinear ergodic theorem for nonexpansive semigroups in a Banach

space. Before stating it, we give a definition. A net $\{\mu_{\alpha}\}$ of continuous linear functionals on
$RUC(S)$ is $can_{ed}$ strongly regular if it satisfies the folowing conditions:
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(1) $sup\Vert\mu_{\alpha}\Vert<$ 十科科;
$\alpha$

(2) $\lim_{\alpha}\mu_{\alpha}(1)=1$ ;
(3) hm $\Vert\mu_{\alpha}-r_{\epsilon}^{*}\mu_{\alpha}\Vert=0$ for every $s\in S$ .

Theorem 4.7 ([23]). Let $S$ be a commutative $smitopolo\dot{\wp}cal$ semigrouP and let $E$ be a
uni omly convex Banach space with a $P\dagger\cdot\acute{e}chet$ differentiable nom. Let $C$ be a nonempty
closed convex subset of $E$ and let $S=\{T_{t} : t\in S\}$ be a nonespansive semigroup on $C$ such
that $F(S)$ is nonempty. Then there extsts a unique nonempansive retmction $P$ of $C$ onto $F(S)$

such that $PT_{t}=T_{t}P=P$ for every $t\in S$ and $Px\in\overline{\infty}\{T_{t}x:t\in S\}$ for every $x\in C$ . Purther,

if $\{\mu_{\alpha}\}$ is a strongly regular net of continuous linear functionals on $RUC(S)$ , then for each
$x\in C,$ $T_{\mu_{\alpha}}T_{t}x$ converges weakly to $Px$ unifomly in $t\in S$ .

We have not known whether Theorem 4.7 vould hold in the case when $S$ is noncommutative
(cf. [62]). Lau, Shioji and Takahashi [33] solved the problm as follows:

Theorem 4.8 ([33]). Let $C$ be a dosed convex subset of a uniformly convex Banach $\epsilon paoeE$,
let $S$ be a semitopological semigroup which $RUC(S)$ has an invariant mean, and let $S=\{T_{t}$ :
$t\in S\}$ be a $none\varphi ansive$ semigrouP on C Utth $F(S)\neq\phi$ . Then there extSts $a$ $none\varpi amive$

ergodic febuction $P$ ffom $C$ onto $F(S)$ such that $PT_{t}=T_{t}P=P$ for each $t\in S$ and
$Px\in\varpi\{T_{t}x:t\in S\}$ for each $x\in C$ .

This is a generalization of $Ta\bm{L}hflshi’ s$ result [58] for an amenable semigroup of nonexpansive
mapping8 on a Hilbert space. Further they extended Rod\’e’s result [49] to an amenable semi-
group of $nonexpan8ive$ mapp血$gs$ on aun迂 omly convex $B$anach 叩 ace whose nom 色 R&het
differentiable.
$Th\infty rem4.\theta$ ([33]). Let $E$ be a unifomdy convex Banach space with a R\’echet diffmntiable
nom and let $S$ be a semitopological $\epsilon emi\varphi oup$. Let $C$ be a closed convex subset of $\dot{E}$ and let
$S=\{T_{t} : t\in S\}$ be a nonespansive semigroup on $C$ with $F(S)\neq\phi$ . Suppose that $RUC(S)$

has an invariant mean. Then there enist\epsilon a unique nonempansive retraction $PnmC$ onto
$F(S)$ such that $PT_{t}=T_{t}P=P$ for each $t\in S$ and $Px\in\overline{co}\{T_{t}x:t\in S\}$ for each $x\in C$ .
FUrther, if $\{\mu_{\alpha}\}$ is an aswnptoticdly invariant net of means on $X$ , then for each $x\in C$ ,
$\{T_{\mu_{\alpha}}x\}$ converges weakly to $Px$ .

To prove Theorem 4.9, they used Thmrem 4.8 and the following lemma which has been
proved in Lau, Nishiura and Takahashi [31].

Lemma 4.10 ([31]). Let $E$ be a $un|fomdy$ convex Banach spaoe with $a$ I\succ \’echet differentiable
nom and let $S$ be a semitopological semigroup. Let $C$ be a dosed convex subset of $E$ and let
$S=\{T_{t} : t\in S\}$ be a $none\varphi an\theta ive$ semigroup on C Utth $F(S)\neq\phi$ . Then, for each $x\in C$,
$F(S) \cap\bigcap_{\in}s\overline{co}\{T_{t\epsilon}x : t\in S\}$ consists of at most one point.

The following $th\infty rem$ has been proved in $\ovalbox{\tt\small REJECT} hi[60]$ and Lau, Nishiura and $\ovalbox{\tt\small REJECT}$

[31] when $E$ is a Hilbert space.

Theorem 4.11 ([33]). Let $E$ be a unifomly convex Banach wace with a FVichet differentiable
nom and let $S$ be a semitopological semigroup. Let $C$ be a closed convex subset of $E$ and let
$S=\{T_{t} : t\in S\}$ be a $none\varphi ansive$ semigrvup on $C$ with $F(S)\neq\phi$ . Suppose that $fa$. each
$x\in C,$ $F(S) \cap\bigcap_{\partial\in S}\overline{co}\{T_{\ell\epsilon}x:t\in S\}\dot{u}$ nonempty. Then there exists a $none\varphi ansiv\epsilon$ retraction
$P$ from $C$ onto $F(S)such$ that $PT_{t}=T_{t}P=P$ for each $t\in S$ and $Px\in\varpi\{T_{t}x:t\in S\}$ for
each $x\in C$ .
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Recently, Miyake and Takahashi [44] proved nonlinear ergodic theorems for nonexpansive
mappings with compact domains in general Banach spaces.

Theorem 4.12 ([44]). Let $C$ be a compact and convex subset of a Banach spaoe $E$, let $S$

be a semigroup, let $S=\{T_{s} : s\in S\}$ be a $none\varphi ansive$ semigroup on $C$ into itself, let $X$

be a subspace of $B(S)$ containing 1 such that $\ell_{\theta}XCX$ for each $s\in S$ and the jfmctions
$s-\rangle(T_{\epsilon}x,x^{*}$ } and $s\vdash\star\Vert T_{\epsilon}x-y\Vert$ are contained in $X$ for each $x,y\in C$ and $x^{*}\in E^{*}$ and
let $\{\mu_{\alpha}\}$ be an asymptotically invariant net of means on X. Then, for each $x\in C,$ $T_{r_{\dot{h}}\mu_{\alpha}}x$

convefges unifomly in $h\in S$ .
Next, applying Theorem 4.12, we obtain a nonlinear ergodic theorem for nonexpansive

semigroups on a compact and convex subset of a strictly convex Banach space.

Theorem 4.13 ([44]). Let $C$ be a compact and convex subset of a strictly convex Banach
space $E$, let $S$ be a semigrvup, let $S=\{T_{\epsilon} : s\in S\}$ be a $none\eta ansive$ semigmuP on $C$

, into
itself, let $X$ be a subspace of $B(S)$ containing 1 such that $\ell_{\delta}X\subset X$ for each $s\in S$ and the
functions $srightarrow\langle T_{l}x,x^{*}\rangle$ and $s\mapsto\Vert T_{\epsilon}x-y\Vert$ are contained in $X$ for each $x,y\in C$ and $x^{*}\in E^{*}$

and let $\{\mu_{\alpha}\}$ be an asymptohcally invariant net of means on X. Then, for each $x\in C,$ $T_{r_{\dot{h}}\mu_{\alpha}}x$

converges strongly to a common jfixed point of $S$ unifomly in $h\in S$ .
Using Theorem 4.12 and Theorem 4.13, we obtain some nonhnear ergodic theorems in cases

of discrete and oneparameter semigroups of nonexpansive $mapp_{\dot{i}}$gs.

Theorem 4.14. Let $C$ be a compact and convex subset of a Banach space $E$ and let $T$ be $a$

nonescpansive mapping of $C$ into itself. Then, for each $x\in C$ ,

$\frac{1}{n}\sum_{i=0}^{n-1}\dot{\Gamma}^{+h_{X}}$

converges uniformly in $h\in N$ .
Theorem 4.15. Let $C$ be a compact and convex subset of a strictly convex Banach opace $E$

and let $T$ be a nonespansive mapping of $C$ into itself. Then, for each $x\in C$,

$\frac{1}{n}\sum_{i=0}^{n-1}\dot{\Gamma}^{+\hslash_{X}}$

converges to a fixed point of $T$ unifomly in $h\in N$ .
Theorem 4.16. Let $C$ be a compact and convex subset of a Banach opace $E$ and let $S=$

$\{T(t) : t\in R\}$ be $a$ one-parameter none zpansive semigmup on C. Then, for each $x\in C$ ,

$\frac{1}{t}\int_{0}^{t}T(\epsilon+h)xd\epsilon$

converges unifomly in $h\in R$ .
Theorem 4.17. Let $C$ be a compact and convex subset of a strictly convec Banach qace $E$

and let $S=\{T(t) : t\in R\}$ be $a$ one-parameter nonespansive seml’gmup on C. Then, for each
$x\in C$ ,

$\frac{1}{t}\int_{0}^{t}T(s+h)xds$

conveiyes to a common fixed point of $S$ unifomly in $h\in R$ .
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5 Approximation of fixed points
There are two iterative methods for approximation of fixed point8 of nonexpansive mappings

in a Hilbert space which are different from the Ces\‘axo means.
Mann [39] introduced the following iterative scheme for finding a fixed point of a nonexpan-

sive mapping. For the proof, see Takahashi [65].

Theorem 5.1 ([39]). Let $C$ be a closed convex subset of a Hilbert spaoe and let $T$ be $a$

$none\varphi ansive$ mapping of $C$ into itself such that $F(T)$ is nonempty. Let $P$ be the metric
projection of $H$ onto $F(T)$ . Let $x\in C$ and let $\{x_{n}\}$ be a sequenoe defined by $x_{1}=x$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})Tx_{n}$ , $n=1,2,$ $\ldots$ ,

where $\{x_{n}\}\subset[0,1]$ saMfies

$0\leq\alpha_{\mathfrak{n}}<1$ and $\sum_{n=1}^{\infty}\alpha_{n}(1-\alpha_{n})=\infty$ .

Then, $\{x_{n}\}$ converges weakly to $z\in F(T)$ , where $z=\dot{n}$)
$m_{narrow\infty}Px_{\mathfrak{n}}$ .

Wittmann [71] dealt with the folowing iterative scheme to approximate a flxed point of
a nonexpansive mapping in a Hilbert space; 8ee originally Halpem [22]. For the proof, see
Tahhashi [65].

Theorem 5.2 ([71]). Let $C$ be a dosed convex subset of $\cdot$ a Hilbert spaoe $H$ and let $T$ be
a $none\varphi an\epsilon ive$ mapping of $C$ into itsdf $such$ that $F(T)$ is nonempty. Let $P$ be the metric
$p\dot{\eta}eetion$ of $H$ onto $F(T)$ . Let $x\in C$ and let $\{x_{n}\}$ be a sequenoe defined by $x_{1}=x$ and

$x_{n+1}=\alpha_{n}x+(1-\alpha_{n})Tx_{n}$ , $n=1,2,$ $\ldots$ ,

where $\{\alpha_{\mathfrak{n}}\}\subset[0,1]$ satisfies

$\mathfrak{n}n\ovalbox{\tt\small REJECT} n\alpha_{n}=0,\sum_{\mathfrak{n}=1}^{\infty}\alpha_{n}=\infty$ and $\sum_{n=1}^{\infty}|\alpha_{n+1}-\alpha_{n}|<\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$ .

Then, $\{x_{n}\}$ converges strongly to $Px\in F(T)$ .
Shimizu and Takahashi [50] introduced the first iterative schemes for finding common fixed

points of families of nonexpansive mappinga and proved strong convergence theorems for
discrete and one-parameter nonexpansive semigroups in Hilbert spaces. Atsushiba, Shioji
and Tahhashi [2] established a weak convergence theorem of Mann’s type for a nonexpansive
semigroup in a Banach space.

Theorem 5.3 ([2]). Let $E$ be a unifomly convex Banach spaoe Utth a Pr\’echet differentiable
nom. Let $C$ be a nonempty dosed convex subset of $E$ and let $S=\{T_{t} : t\in S\}$ be $a$

nonexpansiv$esem|group$ on $C$ such that $F(S)\neq\phi$ . Let $\{\mu_{n}\}$ be a sequenoe of means on $C(S)$

such that $\Vert\mu_{n}-\ell_{\epsilon}^{*}\mu_{n}||=0$ for every $s\in S$ . Suppose that $x_{1}=x\in C$ and $\{x_{n}\}$ is given by

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})T_{\mu_{n}}x_{n}$ , $n=1,2,$ $\ldots$ ,

where $\{\alpha_{n}\}$ is a sequenoe in $[0,1]$ . If $\{\alpha_{n}\}$ is chosen so that $\alpha_{n}\in[0, a]$ for some $a$ with
$0<a<1$ , then $\{x_{n}\}$ converges weakly to an dement $x_{0}\in F(S)$ .
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Using Theorem 5.3, we pan prove a weak convergence theorem of Mann’s type for a one
parameter nonexpansive semigroup.

Theorem 5.4. Let $E$ be a unifomly convex Banach spaoe with a $P\vdash\acute{e}chet$ differentiable nom
and let $C$ be a dosed convex subset of E. Let $S=\{S(t) : t\in[0, \infty)\}$ be $a$ one-parameter
$none\eta ansive$ semigroup on $C$ such that $F(S)\neq\phi$ . Suppose that $x_{1}=x\in C$ and $\{x_{n}\}\dot{u}$

$\dot{\mu}ven$ by
$x_{\mathfrak{n}+1}= \alpha_{n}x_{n}+(1-\alpha_{\mathfrak{n}})\frac{1}{s_{n}}\int_{0}^{\epsilon_{n}}S(t)x_{n}dt$ , $n=1,2,$ $\ldots$ ,

where $s_{\mathfrak{n}}arrow\infty$ as $narrow\infty$ and $\{\alpha_{\mathfrak{n}}\}$ is a sequenoe in $[0,1]$ . If $\{\alpha_{\mathfrak{n}}\}$ is chosen so that $\alpha_{n}\in[0,a]$

for some $a$ with $0<a<1$ , then $\{x_{n}\}$ converges weauy to a common ffid point $z\in F(S)$ .
Shioji and $\ovalbox{\tt\small REJECT} hi[53]$ also established the following strong convergence theorem for a

nonexpansive $semi_{\Psi}oup$ of Halpern’s type in a Banach space.

Theorem 5.5 ([53]). Let $E$ be a unifomly convex Banach spaoe with a uniformly G\^ateaux
$diffeoen\hslash able$ nom. Let $C$ be a nonempty closed convex subset of $E$ and let $S=\{T_{t} : t\in S\}$

be a nonezpansive semigroup on $C$ such that $F(S)\neq\phi$ . Let $\{\mu_{\mathfrak{n}}\}$ be a sequenoe of means on
$C(S)$ such that $\Vert\mu_{n}-\ell_{\epsilon}^{*}\mu_{n}||=0$ for every $s\in S$ . Suppose that $x,y_{1}\in C$ and $\{y_{n}\}$ is given by

$y_{\mathfrak{n}+1}=\beta_{n}x+(1-\beta_{n})T_{\mu},y_{\dot{n}}$ , $n=1,2,$ $\ldots$ ,

where $\{\beta_{n}\}$ is in $[0,1]$ . If $\{\beta_{n}\}$ is chosen so that $hm_{narrow\infty}\beta_{n}=0$ and $\Sigma_{n=1}^{\infty}\beta_{n}=\infty$ , then $\{y_{n}\}$

converges strongly to an element of $F(S)$ .
Suzuki and $\ovalbox{\tt\small REJECT} hi[55]$ established a strong convergence theorem of Mann’s type for a

one-parameter nonexpansive semigroup in a Banach space without strict convexity. $\cdot$

Theorem 5.6 ([55]). Let $C$ be a compact convex subset of a Banach opace $E$ and let $S=$
$\{S(t) : t\in \mathbb{R}_{+}\}$ be $a$ one-parameter $none\eta ansive$ semigrvup on C. Let $x_{1}\in C$ and define a
sequenoe in $C$ by

$x_{\mathfrak{n}+1}= \frac{\alpha_{n}}{t_{n}}\int_{0}^{t}S(s)x_{\mathfrak{n}}ds+(1-\alpha_{n})x_{n}$

for every $n\in N$ , where $\{\alpha_{n}\}\subset[0,1]$ and $\{t_{n}\}\subset(0,\infty)sati\epsilon\hslash$ the following $conditio|w$:

$0< Minf\alpha_{\mathfrak{n}}narrow\infty\leq\lim_{narrow}\sup_{\infty}\alpha_{n}<1$
, $\lim_{narrow\infty}t_{n}=\infty$ and $\lim_{narrow\infty}\frac{t_{n+1}}{t_{n}}=1$ .

Then $\{x_{n}\}$ converges strongly to a common fixed point of $S$ .
Recently, Miyake and TaJdhashi [42] extended Suzuki and Takabashi’s result to a general

commutative nonexpansive semigroup in a Banach space.

Theorem 5.7 ([42]). Let $C$ be a compact convex subset of a Banach space $E$ and let $S$ be $a$

commutative semigroup with identity $0$ . Let $S=\{T_{t} : t\in S\}$ be a $none\varphi ansive$ semig up
on C. Let $X$ be a subspace of $B(S)$ containing 1 such that $\ell_{l}X\subset X$ for each $s\in S$ and
the hnctions $srightarrow(T_{l}x,x^{u})$ and $s\mapsto\Vert T_{\epsilon}x-y||$ are contained in $X$ for each $x,y\in C$ and
$x^{*}\in E^{*}$ and let $\{\mu_{\mathfrak{n}}\}$ be an uymptotically invariant sequenoe of means on $X$ such that
$hm_{narrow\infty}\Vert\mu_{n}-\mu_{n+1}||=0$ . Let $\{\alpha_{n}\}$ be a sequenoe in $[0,1]$ such that

$0< \lim_{\mathfrak{n}arrow}\inf_{\infty}\alpha_{n}\leq\lim_{narrow}\sup_{\infty}\alpha_{n}<1$.
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Let $x_{1}\in C$ and let $\{x_{n}\}$ be the sequence defined by

$x_{n+1}=\alpha_{n}T_{\mu_{n}}x_{n}+(1-\alpha_{n})x_{n}$

for every $n=1,2,$ $\ldots$ . Then $\{x_{n}\}$ convefges strongly to a common fixed $po|nt$ of $S$ .
Miyake and Takahashi [43] also obtained a strong convergence theorem of Halpern’s type

for a general commutative nonexpansive semigroup in a Banach space. See also Lau, Miyake
and Takahashi [30] for amenable semigroups.

Theorem 5.8 ([43]). Let $C$ be a compact convex subset of a smooth and strictly convex
Banach spaoe $E$, let $S$ be a commutative semigroup with identity $0$ . Let $S=\{T_{t} : t\in S\}$ be a
$none\varphi amive$ semigrouP on $C$, let $X$ be a subsPaoe of $B(S)$ containing 1 such that $\ell_{\iota}X\subset X$

for each $s\in S$ and the functions $srightarrow(T_{\iota}x,x^{*})$ and $\epsilon\vdasharrow||T_{l}x-y\Vert$ are contained in $X$ for
each $x,y\in C$ and $x^{*}\in E^{*}$ and let $\{\mu_{n}\}$ be a strongly mular sequenoe of means on X. Let
$\{\alpha_{n}\}$ be a sequenoe in $[0,1]$ such that $\sum_{\mathfrak{n}=1}^{\infty}\alpha_{\mathfrak{n}}=\infty$ and $\lim_{\mathfrak{n}arrow\infty}\alpha_{n}=0$ . Let $x\in C$ and let
$\{x_{n}\}$ be the sequenoe defined by

$x_{n+1}=\alpha_{\mathfrak{n}}x+(1-\alpha_{n})T_{\mu_{\hslash}}x_{n}$

for every $n=1,2,3,$ $\ldots$ . Then $\{x_{n}\}$ converges strongly to $Px$, where $P$ is a unique sunny
$none\varphi ansive$ retmction of $C$ onto $F(S)$ .

Using Theorem 5.8, we can obtain the fobowin$g$ strong convergence theorem for a one
parameter nonexpansive semigroup.

Theorem 5.9. Let $C$ be a compact convex subset of a smooth and \epsilon trictly convex Banach
spaoe $E$ and let $S=\{S(t) : t\in \mathbb{R}_{+}\}$ be $a$ one-parameter nonezpansive semigroup on C. Let
$x_{1}=x\in C$ and let $\{x_{n}\}$ be a sequenoe defined by

$x_{n+1}= \alpha_{n}x+(1-\alpha_{n})\frac{1}{t_{n}}\int_{0}^{t_{n}}S(s)x_{\mathfrak{n}}d\epsilon$

for every $n=1,2,3,$ $\ldots,$ whert $\{\alpha_{\mathfrak{n}}\}$ is a sequneoe in $[0,1]$ such that $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ and
%\rightarrow \infty $\alpha_{n}=0$ and $\{t_{n}\}$ is an increasing sequence in $(0, \infty)$ such that 血噺=\infty tn $=\infty$

and $11m_{\mathfrak{n}arrow\infty_{t_{n+1}}^{t}}=1$ . Then $\{x_{n}\}$ converges strongly to $Px$, where $P$ is a unique sunny
$none\varphi ansive$ retracton of $C$ onto $F(S)$ .
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