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Abstract Our aim is to give a charaterization of many mathematical
and physical fields by means of concept of triple systems (here, triple systems
mean a vector space equipped with a triple product < zyz >).

§1. Preliminaries and Examples

In this section, we will give the definition and some results for a certain
triple system in order to make this paper as self-containd as possible.

Throughout this paper, we shall be concerned with algebras and triple
systems over a field ® that is characteristic not 2 and do not assume that our
algebras and triple systems are finite dimensional, unless otherwise specified.

For ¢ = +1 and § = 1, a vector space U(g,d) over ® with the triple

product < —,—, — > is called a (g, §)—Freudenthal Kantor triple system if
[L(a,b), L(c,d)] = L(< abc >,d) + eL(c, < bad >) (L1)
K(< abc >,d) + K(c, < abd >) + 6K (a, K(c,d)b) = 0, (K1)

where L(a,b)c =< abc >, K(a,b)c =< acb > 6§ < bea >, [A, B] = AB—-BA.
The triple products are generally denoted by
<zyz >, {zyz}, (zy2), and [zyz]

also, the bilinear forms are denoted by < z|y > and B(z,y), as is our con-
vention.

Remark We note that S(a,b) := L(a,b) + €L(b,a) and A(a,bd) :=
L(a,b)—eL(b, a) are a derivation and an anti-derivation of U(e, §),respectively.

1This is an announcement and the details will be published elsewhere.



Example 1.1 Let V be a vector space equipped with a bilinear form
< zly >=¢€ < y|lz >. Then V is a (¢, €)-Freudenthal-Kantor triple systyem
with respect to the product

< zyz >:=<zlz >y+ <ylz > z.

Example 1.2 Let V be a Jordan triple system. Then this triple system
is a special case of the (-1,1)-Freudenthal-Kantor triple system, because the
identity K(a,b)c = 0 (identically zero ) implies that < ach >=< bea >, and
the identity (L1) implies that < ab < cde >>=<< abc > de > — < ¢ <
bad > e > + < cd < abe >> .

If its product satisfies the following; < abc >= — < cba > and < ab <
cde >>=<< abc > de > + < c < bad > e > + < cd < abe >>, then
this triple system is called an anti-Jordan triple system, that is, we have
the case of e = 1,6 = —1 in (L1) and K(a,c)b =< abc > + < cba >= 0
(identically zero). That is, this is a special case of (-1,-1)-Freudenthal-Kantor
triple system.

Definition A (e, §)-Freudenthal-Kantor triple system over ® is said to
be balanced if there exists a bilinear form < | > such that K(z,y) =< z|y >
Id, where < z|y >e &

Definition. For § = =+1, a triple system over ® is said to be § -Lie
triple system if the following are satisfied

[abc] = —é[bac], (LT1)
[abc] + [bea] + [cab] = 0, (LT2)
[ablcde]] = [[abc]de] + [c[bad]e] + [cd[abe]] (LT3).

For the é-Lie triple systems associated with (e,d) -Freudenthal-Kantor
triple systems, we have the following.

Proposition 1.1. ([K-O.1],[K-0.5],[(K.4]) Let U(e, 6) be a (g, 6)-Freudenthal-
Kantor triple system. If P is a linear transformation of U(e,d) such that
P < zyz >=< PzPyPz > and P? = —¢bId, then (U(g,0),[—,—,—]) is a
Lie triple system for the case of § = 1 and an anti-Lie triple system for the
case of & = —1 with respect to the product

[zyz] ;=< rPyz > -0 < yPrz > +4 < xPzy > — < yPzx > .

Corollary. Let U(e, 8) be a (g, 6)-Freudenthal- Kantor triple system. Then
the vector space T'(g,0) := Ul(e, 6) @ U(e,d) becomes a Lie triple system for



the case of 6 = 1 and an anti-Lie triple system for the case of 6 = —1 with
respect to the triple product defined by

() (D (1= ("0 cwiaiay—st.) (7):

Proposition 1.2. Let V be an anti-Jordan triple system (that is, it
satisfies the condition (L1) with € = 1 and L(z,y)z = —L(2,y)z). Then,
V @V becomes an anti-Lie triple system with respect to the product defined

by
1(3) (2) (= (M550 b 16,0) (5):

From these results, it follows that the vector space
LV):=InmnDerT®T (= LT, T)® T),

where T is a 0- Lie triple system and Inn Der T := {L(X,Y)|X,Y € T}span,
makes a Lie algebra (§ = 1) or Lie superalgebra (6§ = —1) by

[D+X,D'+ X' =[D,D')+ L(X,X')+ DX'— D'X..

We denote by L(e, é) the Lie algebras or Lie superalgebras obtained from
these constructions associated with U(e, §)) and call these algebras a canon-
ical standard embedding. A (e, 6)-Freudenthal-Kantor triple system U(e, d))
is said to be unitary if the linear span k of the set {K(a,b)|a,b € U(e, )}
contains the identity endomorphism Id. We note that the balanced property
is unitary.

Proposition 1.3 ([K.3],[K.5]) For a unitary (e, ) - Freudenthal-Kantor
triple system U(e, ) over ®, let T(e,d) be the Lie or anti-Lie triple system
and L(e,d) be the standard embedding Lie algebra or superalgebra associated
with U(e,8). The following are equivalent:

a) U(e,¥é) is simple,

b) T(e,d) is simple,

c) L(g,6) is simple.

For these standard embedding Lie algebras or superalgebras L(e, d), we
have the following 5 grading subspaces:

L(&', 5) =L o®L_® LoD L, ® Ly
where U(e,6) = L_,,T(g,8) = L_, ® Ly, k = {K(a, b) }span = L-a2.
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Example 1.3 Let V be a 2n-dimensional vector space with an anti-
symmetric nondegenerate bilinear form < z|ly > . Then (V, [zyz]) is an anti-
Lie triple system with respect to the triple product defined by

[zyz] i=<ylz > z+ < z|z > y.
Thus the canonical standard embedding Lie superalgebra is type osp(1, 2n).

In the end of this section, we give the following.

Proposition 1.4 Let (V,< zyz >) be an anti-Jordan triple system.
Then (V, [zyz]) is an anti-Lie triple system with respect to the new product
defined by

[zyz] =< zyz > + < yzz >.

In particular, we can obtain the simple Lie superalgebras spl(n,m), P(n)
and Q(n) from anti-Jordan triple systems by means of the canonical standard
embedding Lie superalgebra associated with V. ([K.O-4])

§ 2 Examples of (-1,-1) Freudenthal-Kantor triple systems

In this section, we will consider the standard embedding Lie superalgebras
of the B(m,n)and D(m,n) types associated with an anti-Lie triple system
and a (-1,-1) Freudenthal-Kantor triple system.

From now on, assume that, the field® is an algebraically closed field of
characteristic 0.

We will describe more precisely the 51tuat1on in the subsequent theorems.

Theorem 2.1 Let U be a vector space of Mat(k,n;®). Then the space
U is a unitary (-1,-1) Freudenthal-Kantor triple system with respect to the
triple product
< zyz >=zyz +ytrz -z tyz.

where 'z denotes the transpose matriz.

For this triple system, by straightforward calculations, from the results
in section 1, we have the following;
(Dk = 2m,(m > 2)

L(U) = D(m,n) type's Lie superalgebra

and
dimL(U) = 2(n+m)®* —m +n,

(i6)k = 2m + 1, (m > 0)



L(U) = B(m,n) type's Lie superalgebra
and
dimL(U) = 2(n + m)* + 3n + m,

That is, sumarizimg these, we have the following.

Theorem 2.2 Let U be the triple system of same as described in The-.
orem 2.1 and L(U) be the standard embedding Lie superalgebras associated
with U = Mat(k,n; ®). Then L(U) are Lie superalgebras of type D(m,n) or
B(m,n) if k=2m or k= 2m+1,respectively.

§3. Lie superalgebras — D(2,1;a),G(3) and F(4) —

These constructions are considered in Proc. Edinburgh Math Soc ([K-
0.2](2003)) or Glasgow Math.J.([E-K-0.1](2003)) of our papers.

But breifly describing, we have the following.

(i) LetV be a quartenion algebra over the complex number. Then V
be a balanced (-1,-1) Freudenthal-Kantor triple system with respect to cer-
tain triple product. And the standard embedding Lie superalgebra L(U) is
D(2,1;a) type’s with dimL(V) = 17.

(ii) Let V be a octonion algebra over the complex number Then V' be
a balanced (-1,-1) Freudenthal-Kantor triple system with respect to certain
triple product. And the standard embedding Lie superalgebra L(U) is F(4)
type’s with dimL(V') = 40.

(iii)) Let V be a Im O (= the imagenary part of octonion algebra ) .
Then V be a balanced (-1,-1) Freudenthal-Kantor triple system with respect
to certain triple product. And the standard embedding Lie superalgebra L(U)
is G(3) type’s with dimL(V') = 31.

84. Extended Dynkin diagrams and triple systems

We will consider the Dynkin diagrams of simple Lie superalgebras as
well as that Lie algebras. In this section, we will only describe about dis-
tinguished Extended Dynkin diagram of their canonical Lie superalgebras
associated with (-1,-1) Freudenthal-Kantor triple systems B(m,n) and F(4)
types, because for the other cases we may deal with the explain by means of
same methods.

(i) For B(m,n) type’s distinguished Extended Dynkin diagram and usu-
aly Dynkin diagram, we have the following([F-S-S]);

0=0-0—Q®—0---0=0



Qo Q) Op-1 Op Qnt1 Opim—1 Opim

0-0—®—0--0=0

831 Qp—-1 O

Cni1 Onim—1 Opym

We recall the following product (cf. Section 2),

< zyz >= Zlyr + ytzz — zlyz
where z,y,z € U = Mat(2m + 1,n; ®).

Let U: =L_, be (-1,-1) F-K.t.s. defined by above triple product.
L(U) := the standard embedding Lie superalgebra associated with U.
Then we can easily see to have the structure as follows;

LU)/(L-2® Lo® L) = L_y ® L_, :=T ( as anti — Lie triple system),
InmDerT=2 L & Lo® Ly =C,® B,,
_{( L(a'7b) _K(cid)>}
- \K(e, f) —L(ba) ) P

= distinguished Extended Dynkin diagram with omitted ®
And L(U) = Inn Der T & T, equipped with

Lo = {L(z,y)}span = M & Dynkin diagram with omitted ®
=AN® A, d B,

In particular, for the case of n = 1, we get

<zyz >=<zly > 2+ < x|z > y— < y|z > =z,
where < z|ly >=t ry € &, dim U.=2m + 1.

Thus this implies the case of balanced, and so that L_, @ Lo & Lo
A, ® B,,, and A, = sl(2), with dim L_3 = dim L, = 1.

On the other hand, we have another decomposition,,

L(U)/Lo = (L-z &L L & Lz) = A

(as generalized structurable superalgebra)

_ _ ¢( L(a,b) 0
Lo=A& A, GB B,, = {( 0 --L(b, a))}apan-
DerA = Ly 2 A\ & Dynkin diagram with omitted ®.

From this fact, it seems that there exists a version of Lie superalgebras
as well as the reductive space L/Lg of Lie algebras.

(i) For F(4) type’s distinguished Extended Dynkin diagram and usual
Dynkin diagram ([F-K-K]), we have the following;
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U = L_; = (-1,-1)-balanced Freudenthal-Kantor triple system with dim
U =8 (cf. Section 4).
L(U) = the standard embedding Lie superalgebra associated with U and
dim L(U) = 40, dimL_; =dim L, = 1.
Then we can easily see to have the structure as follows;
LU)/(L.o® Lo® Ly) 2 L_, & L, :=T (as anti-Lie triple system ),

Inn DerT =2 L_o® Lo® Ly = A, @ Bs
= distinguished Extended Dynkin diagram with omitted ®

_ ¢f L(a,b) —K(c,d)
(ke Zribray e
Lo=M® B; = {( L(cs, b) —L?b, a))} span = {L(@, ) }apans

of cause, L(a,b) = S(a,b) + _A(a, b),where S(a,b) is a inner derivation of U,
K(a,b) = A(a,b) =< .|. > Id, is an anti-derivation of U.
Furthermore, these imply

~ (0 Id Id 0 0 0
A1={(0 0)}81)0"@{(0 —Id)}smn®{(1d 0)}8P¢m
= L_2 ) {A(a, b)}span ) Lz.
InnDerU = {S(a,b)}span = B3 = Dynkin diagram with omitted ®

In the end of this section, we note the following (c.f. [K3],[K.5]). For a
subspace A = L_o@®L_1® L& L, of the standard embedding Lie superalgebra
LU)=L_2®L_1® Lo® L; ® L, associated with U,we set L(U) := g5 ® g1
where gg = Lo ® Lo ® Ly and g1 = L_; ® L,. Then A is a generalized
structurable superalgebra with respect to

XoVY :=[z o+z1+21+23,Y2+y-1+ 21+ 4]

= (T2, 1] + [T-1,¥-1] + (21, ¥0] + [22, y—1] + [21, ¥—2] + [21, 1]



D(X,Y) = ad([z-1, 1] + [z-2, 0] + [z1, 0] + [z2, y-2])

forall X, Y € A
That is, these satisfy the following relations;
a) XoY = (__l)dengngY o X
b) D(X,Y’) is a superderivation of A.
C) (_l)dengegZD(X o Y, Z) + (_l)dngdegXD(Y o Z, X) + (_l)degZdngD(Z o
X,Y)=0, forall X,Y,Z € A

Remark Let (A, (do,d;,dz)) be a normal generalized symmetric algebra
([0.3]). Then (A, D(z,y)) is a generalized structurable algebra([K.5]) with
respect to the new derivation |

D(z,y) :=do+ dy +ds, for all z,y € A.
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