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Abstract
We provide a call-by-name CPS-translation from polymorphic A-calculus A2 into
existential A-calculus A3. Then we prove that the CPS-translation is a residuated
mapping from the preordered set of A\2-terms to that of A3-terms. From the induc-
tive proof, its residual (inverse translation) can be extracted, which constitutes the
so-called Galois connection. It is also obtained that given the CPS-translation the
existence of its inverse is unique.

1 Preliminaries

By a preordered set (A,C), we mean a set A on which there is defined a preorder, i.e., a
reflexive and transitive relation C. If (A;,C,) and (A2, C,) are preordered sets, then we
say that a mapping f : A, — A, is monotone, if z T, y implies f(z) T, f(y) for any
z,y € A;. A direct image under f is denoted by f[X] for every X C A, and an inverse
image is denoted by f*[Y] for every Y C A,. A subset B C A is a down-set of a preodered
set (A,C), if y C z together with y € A and z € B implies y € B. By a principal down-set,
we mean a down-set of the form {y € A | y C z}, which is denoted by | z.

Definition 1 (Residuated mapping) A mapping f : A — B that satisfies the following
condition is said to be residuated: The inverse image under f of every principal down-set
of B is a principal down-set of A. '

2 Source calculus: )2

We introduce our source calculus of 2nd order A-calculus (Girard-Reynolds), denoted by
A2. For simplicity, we adopt its domain-free style.

Definition 2 (Types)
A=X|A=A|VXA

Definition 3 ((Pseudo)\2-terms)
A25M:i=z| e M| MM|IXM|MA
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Definition 4 (Reduction rules) (8) (Az.M;)M, — M,z := M,]
(n) Me.Mz — M, ifz & FV(M)

(B:) AX.M)A - M[X = A]

(me) A XMX - M, if X ¢ FV(M)

FV (M) denotes a set of free variables in M.

We write —»,, for the compatible relation obtained from the reflexivie and transitive
closure of the one step reduction relation, and —}, for that from the transitive closure.
In particular, —»z denotes the subrelation of —» restricted to the reduction rules R C

{B,n, B, m}. We may write simply (8) for either (8) or (8;), and () for either () or (n),
if clear from the context. We employ the notation = to indicate the syntactic identity under
renaming of bound variables.

3 Target calculus: )\

We next define our target calculus denoted by A3, which is logically a subsystem of minimal
logic consisting of constant L, negation, conjunction and 2nd order existential quantifica-
tion!.

Definition 5 (Types)
Au=1|X|-~A|ANA|3X.A

Definition 6 ((Pseudo))\*-terms)

AP5M = z|da.M|MM|(M,M)|1let (z,z)=M in M

| (A, M) |let (X,z) =M in M

Definition 7 (Reduction rules) (8) (Az.M)M,; — Mz := M,)]

(m) Az.Mz - M, ifz & FV(M)
(Letp) let (zy,2) = (My, My) in M — Mz, := My, z, := M)

(letn,) let (z1,22) = My in M|z := (z1,22)] = M|z := M),
ile,.'tz ¢ FV(M)

(let3) let (X,z) = (A, M) in M — M[X := A,z = M,]
(lets,) let (X,z) = M in Mz := (X, z)] - M,[z := M), if X,z & FV(M,)

We also write simply (1et) for elther (1etn) or (letg) and (let,,) for (Leta,) or (lets,).
Similarly we write —»3 and —}; as done for A2.

1For further introduction of the CPS target calculus A with let-expressions, see also [5].
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4 CPS-translation * from A2 into A3

We define a translation, so-called modified CPS-translation * from pseudo A2-terms into
pseudo A3-terms. In each case, a fresh and free variable a is introduced, which is called a
continuation variable.

Definition 8 1. z* =za
2. (Az.M)* =1let (z,a) =a in M*

._ - M;[a = (z,a)] for My =z
8 bt = { e RS o

4. AX.M)* =1let (X,a) =a in M*
5. (MA)* = M*[a = (A*,a)]
6. X*=X; (A= A)*=-4A1ANAS (VX.A)=3X. A"

Remarked that M* contains exactly one free occurrence of a continuation variable a, and M*
has neither B-redex nor n-redex. Let AX.M have type VX.A. Then, under the translation,
the parametric polymorphic function AX.M with respect to X becomes an abstract data
type (AX.M)* for X, which is waiting for an implementation a with type 3X.A* together
with an interface (a signature) with type A*, i.e., (AX.M)* is

abstype X with a:A* is a in M*

in a familiar notation.

Lemma 1 (Monotone *) If we have My —x; M,, then M{ —}3 M; holds.
In particular, if My —5 My, then My =4, M3. And if My =, My, then M} —10., M3.

Proof. By induction on the derivation. ' a

In order to give an inverse translation, first we provide the mutual inductive definitions,
respectively for denotations Univ and continuations C, as follows. Both Univ and C are
down-sets in the above sense.

cecC
a€eC (z,C)eC
C e€C P& Univ ceC
MaPC)eC @,.C)ecC
_cec ' CeC P e Univ
zC € Univ (Aa.P)C € Univ
C e€C P& Univ CelC Pe Univ

let (z,a) = C in P € Univ let (X,a) = C in P € Univ
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We write (R;, Ry, ..., Ry) for (Ry, (Ry,. .., R,)) withn > 1, and (R;) for Ry withn = 1.
C € C is in the form of (R;, ..., R,,a) where R; (1 <i < n)is z, Aa.P, or A* with n > 0.
We explicitly mention that C € C has exactly one occurence of free variable a such that
C=(Ry,...,R,,a) with n > 0. P € Univ also has exactly one occurence of free variable
a in such C as a proper subterm of P.

The inductively defined sets Univ, C C A? are down-sets with respect to —» A3

Lemma 2 1. If P, € Univ and P, —»,3 P,, then P, € Univ.

2. If C, € C and Cy —»y3 Cy, then C, € C.

Proof. Let P, P, € Univ and C,C; € C. Then Pla := Cy], Plz := Aa.P,], P[X := A*] €
Univ, and Cla := Cy],C[z := Aa.P,],C[X := A*] € C. O
Proposition 1 1. Univ is strongly normalizing with respect to —g,, i.e., for any P €

Univ, there is no infinite reduction sequence of —p, starting with P.

2. Univ is Church-Rosser with respect to —» gy, i.e., for any P, P;, P, € Univ, if we have
P —»gy P, and P —»p, P,, then there exists some Ps € Univ such that P, —»g, P; and
Pg —~» Bn P3.

Proof. v

1. Since every A-abstraction Aa.P € Univ is linear, for any P, —4, P,, the contractum
P, has less length than that of P;.

2. Univ is weak Church-Rosser with respect to —4,, and hence the property of Church-
Rosser holds from Newman’s Lemma. ]

Any (pseudo) term P € Univ is Church-Rosser and strongly normalizing with respect to
Pn-reductions, and the unique Bn-normal form is denoted by {g, P. The same property
naturally holds for C as well. A nomalization function |/g, can be inductively defined as
follows:

Definition 9 ({,) 1. For P € Univ:
(a) Yy (2C) = 2(Y5, C)
(b) ¥pn((Aa.P)C) = Yy (Pla := C)
(¢) Upn(let (x,a) =C in P) =1let (x,a) ={4,C in {4, P
2. For C = (R;,...,Ry,a) € C withn > 0, where R; = z, \a.P, or A*:
Yoo {Ri, .., Rnya) = (Upn Ra,- . ., gy Rn, a)

(a) R=z:
gz ==z
(b)) R = Xa.P:

i. {p,(Na.za) =z, if P = za;
#. gy (Aa.P) = Aa.({q P), otherwise;
(c) R= A*:
%ﬂ" A* —_ A*
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5 Residuated CPS-translation

Proposition 2 The following conditions are equivalent.
1. f: A— B is a residuated mapping.

2. f : A — B is monotone and there ezxists a monotone mapping g : B — A such that
A>3 a L g(f(a)) and f(g(b)) Cbe B.

Proof. A residuated mapping is monotone in general. On the other hand, from the
condition 1, for any b € B there exists a € A such that f<[Lb] = ]a which cannot be empty,
whence one has a choice function g : B —+ A by g(b) = a. Hence g(b) € { g(b) = f+[{ ]
holds true, so that we have f(g(b)) C b. We also have a € f<[{ f(a)] ={ g(f(a)) by the
definition, and hence we have a C g(f(a)).

From the condition 2, we have that f(a) C b if and only if a C g(b). Hence, we have
FEb] = 4 g(b) for every b € B. a

We write M T N for N -» M , i.e., the contextual and reflexive-transitive closure of
one-step reduction —.

Lemma 3 For any P € Univ, there uniquely ezists M € A2 such that {3, P = M*.

Proof. By induction on P € Univ.
1. Case of P = zC = z(R,,...,Ry,a) withn >0

(a) If R; = z;, then we take N; = z;, whence |, R; = z; = N}.
(b) Case of R; = Aa.P;
If P, = z;a, then we take N; = z;, and whence {4, R; = z; = N}.

Otherwise, from the induction hypothesis for P;, there uniquely exists N; such
that |, P; = N;. Now we have {3, R; = Aa.({, ;) = Aa.N;.

(c) If R; = A}, then we take N; = A;.

Hence, we take M = zN; ... N, and then there uniquely exists M € A2 such that

uﬂnP

= x(U'ﬁan, ce 1'U‘ﬁana)

=z(N}',...,N,a)

= M*,

where N} = \a.N} if R; = Aa.P; with no outmost 7-redex; otherwise N}’ = N;.
2. Case of P = (Aa.P')C

Since a is a linear variable, by the induction hypothesis for P'[a := C], there uniquely
exists M € A2 such that |, (P'[a := C]) = M*. Therefore, we have a unique M € A2
such that g, P = M*.

3. Case of P =1et (z,a) = C in P, with C = (R;,...,Rp,a) and n >0
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(a) From the induction hypothesis for P, there uniquely exists M; € A2 such that
Yon P = M7,

(b) If R; = z;, then we take N; = z;, whence {s, R; = z; = N}.

(c) Case of R; = Aa.P, '
If P, = z;a, then we take N; = z;, and whence {4, R; = z; = N}.

Otherwise, from the induction hypothesis for P;, there uniquely exists N; such
that y, i = N;. Now we have {3, R; = Aa.({, P,) = Aa.N}.

(d) If R; = A?, then we take N; = A;.

Hence, we take M = zN; ... N,, and then there uniquely exists M € A2 such that

Ypn P
= let (x, a) = <*U'ﬂ17R1) oo )'U’ﬁﬂ}?ﬂ’a) in ('uﬁﬂpl)
= let (z,a) = (NY,...,N},a) in M;

= M*,
where N}’ = Aa.N} if R; = Aa.P; with no outmost n-redex; otherwise N’ = N7,

4. Case of P = let (X,a) = C in P’ is handled simiarly. a

From the inductive proof of Lemma 3 above, an extracted function giving a witness is
written down here.

1. o =z; (Aa.P) =P} (A = A

2. (z(Ry,...,Ry, ) =zR ... R

3. (A\a.P)C)* = (P[a := O}

4. (let (x,a) = (Ry,...,Ry,a) in P} = \z.PY)R! ... RE
5. (let (X,a) = (Ry,...,Rn,a) in P = OX.PYR! .. . R!

where the clause 1 is for R; appeared in (R;, ..., Rn,a) € C, and the clause 2 through 5 are
for P € Univ.

Corollary 1 (Composition of * and f}) 1. For any P € Univ, we have P —»g, (P*)*.
2. For any M € A2, we have (M*)' = M |

Proof.

1. From Lemma 3, we have |, P = (P*)* and P —»g, {, P. Therefore, P —»g, (P*)*
holds for any P € Univ.

2. From the definition of *, M* has neither 8- nor n-redex. Hence, {5, (M*) = M*
holds, and then (M*)! = "M for any M € A2. O

Lemma 4 (Monotone f) The above mapping §§ : Univ — A2 is monotone.
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Proof. By the definition of §. In particular, let Py, P, € Univ, then the following holds.
1. If P, —p, P,, then P} = P}.

2. If Pi =14 P;, then P! —; P}.
3. If P, —1as, Py, then P! —, P}. | o

6 Residuated CPS-translation

As expected from the previous results, the CPS-translation forms a residuated mapping
from A2 to Univ.

Theorem 1 (Residuated CPS-trans.) The CPS-translation * is a residuated mapping
from A2 to Univ.

Proof. From Proposition 2, Lemmata 1 and 4, and Corollary 1, the translation * is a
residuated mapping. In other words, for any P € Univ, we have

{(MeA2|M*CP}= P

In fact, from Lemma 1 and Corollary 1, we have | P! C {M € A2 | M* C P}. On the other

hand, from Lemma 4 and Corollary 1, the inverse direction {M € A2 | M* C P} C | P*
holds true. m]

We summarize results induced from the discussion above.
Corollary 2 1. A2 is strongly normalizing if and only if Univ is stmhgly normalizing.
2. A2 is weakly normalizing if and only if Univ is weakly normalizing.
3. A2 is Church-Rosser if and only if Univ is Church-Rosser.
We remark that A3 itself is not Church-Rosser.

4. Let LP be {Q | P —»5a Q} for P € Univ. Then the inverse image under * of {Pisa
principal down-set generated by P! € A2.

5. Given the CPS-translation *. Then an existence of its residual (inverse translation)
18 unique. '

6. Define P, ~p, Py by 43, P, = |p, P2 for P\, P, € Univ. There ezists a bijection x
between A2 and Univ/ ~g,. In particular, there exists a one-to-one correspondence
between A2-normal forms and Univ-normal forms.

7. Let 53 [A2]* be the down-set generated by [A2]*, i.e., {P | M* —»,3 P for some M € A2}.
Let 1, [A2]* be the up-set generated by [A2]*, i.e.,
{P € Univ| P —»g, M* for some M € A2}.

Then we have |53 [A2]* C Univ = 14, [A2]*. We remark that C is strict. For instance,
za € |33 [A2]* and (Aa.za)a € Univ, but (Aa.za)a & 3 [A2)*.
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Proof.

1.

If My =53 M, then we have M} —}; Mj by induction on the derivation. Therefore,
strong normalization of Univ implies that of \2.

On the other hand, — g, in Univ is strongly normalizing. If Univ has an infinite reduc-
tion path of — s, then the path should contain an infinite reduction path consisting
Of —14¢,10t,- Now, from Lemma 4, A2 has an infinite reduction path of —g,. Hence,
strong normalization of A2 implies that of Univ.

From the monotone translations between A2 and Unvi, and the one-to-one correspon-
dence between A2-normal forms and Univ-normal forms.

. A2 and Univ form the so-called Galois connection under * and §.
. The CPS-translation * forms a residuated mapping.

. Suppose we had two inverse translations §; and }l3, then P = P% for any P € Univ.

Because we have P —»g, P"* for any P € Univ from Corollary 1 (1). Hence, we have
Pl = (Ph*)l2 = Ph from Lemma 4 (1).

. Since ~g, is an equivalence relation over Univ, we take
Bn ]

[Pl~s, = {P’ € Univ| P ~g, P’} for P € Univ.

Then we define (M) = [M*].,,. In other words,

+(M) = 150 (M*) = {P € Univ| P —»p, M"}. |

Then » : A2 — Univ/ ~py, is a bijection. In fact, for any [P] € Univ/ ~g,, there exists
M € A2 such that *(M) = [P]. Because we take M = P! whence P -»5, (P*)* and
*(P') = [P]. On the other hand, suppose M; # M,. Then x(M;) # (M), since M?
and M7 are distinct Sn-normal forms.

For any M € A2, we have M* € Unvi, and Univ is a down-set with respect to —,a.
Then we have |3 [A2]* C Univ.

For any P € Univ, we have P¥ € A2 and P —»g, P" from Lemma 1. Hence,
P € 15, [A2]* holds true. The inverse direction is clear, and therefore we have Univ =

Tﬂn [1\2]"l . a

It is remarked that instead of pseudo-terms, when we take account of well-typed terms,
the binary relations —»,, and -»,3a form partial orders on \-terms.
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