Residuated mapping and CPS-translation

- Extended abstract -

Ken-etsu Fujita (藤田 憲悦)
Gunma University (群馬大学)
fujita@cs.gunma-u.ac.jp

Abstract

We provide a call-by-name CPS-translation from polymorphic λ -calculus $\lambda 2$ into existential λ -calculus λ^3 . Then we prove that the CPS-translation is a residuated mapping from the preordered set of $\lambda 2$ -terms to that of λ^3 -terms. From the inductive proof, its residual (inverse translation) can be extracted, which constitutes the so-called Galois connection. It is also obtained that given the CPS-translation the existence of its inverse is unique.

1 Preliminaries

By a preordered set $\langle A, \sqsubseteq \rangle$, we mean a set A on which there is defined a preorder, i.e., a reflexive and transitive relation \sqsubseteq . If $\langle A_1, \sqsubseteq_1 \rangle$ and $\langle A_2, \sqsubseteq_2 \rangle$ are preordered sets, then we say that a mapping $f: A_1 \to A_2$ is monotone, if $x \sqsubseteq_1 y$ implies $f(x) \sqsubseteq_2 f(y)$ for any $x, y \in A_1$. A direct image under f is denoted by f[X] for every $X \subseteq A_1$, and an inverse image is denoted by $f^{\leftarrow}[Y]$ for every $Y \subseteq A_2$. A subset $B \subseteq A$ is a down-set of a preodered set $\langle A, \sqsubseteq \rangle$, if $y \sqsubseteq x$ together with $y \in A$ and $x \in B$ implies $y \in B$. By a principal down-set, we mean a down-set of the form $\{y \in A \mid y \sqsubseteq x\}$, which is denoted by $\downarrow x$.

Definition 1 (Residuated mapping) A mapping $f: A \to B$ that satisfies the following condition is said to be residuated: The inverse image under f of every principal down-set of B is a principal down-set of A.

2 Source calculus: $\lambda 2$

We introduce our source calculus of 2nd order λ -calculus (Girard-Reynolds), denoted by $\lambda 2$. For simplicity, we adopt its domain-free style.

Definition 2 (Types)

$$A ::= X \mid A \Rightarrow A \mid \forall X.A$$

Definition 3 ((Pseudo) λ 2-terms)

$$\Lambda 2 \ni M ::= x \mid \lambda x.M \mid MM \mid \lambda X.M \mid MA$$

Definition 4 (Reduction rules) (β) $(\lambda x.M_1)M_2 \rightarrow M_1[x:=M_2]$

$$(\eta) \lambda x.Mx \to M, \text{ if } x \notin FV(M)$$

$$(\beta_t)$$
 $(\lambda X.M)A \to M[X := A]$

$$(\eta_t)$$
 $\lambda X.MX \to M$, if $X \notin FV(M)$

FV(M) denotes a set of free variables in M.

We write $\twoheadrightarrow_{\lambda^2}$ for the compatible relation obtained from the reflexivie and transitive closure of the one step reduction relation, and $\rightarrow_{\lambda^2}^+$ for that from the transitive closure. In particular, \twoheadrightarrow_R denotes the subrelation of \twoheadrightarrow restricted to the reduction rules $R \subseteq \{\beta, \eta, \beta_t, \eta_t\}$. We may write simply (β) for either (β) or (β_t) , and (η) for either (η) or (η_t) , if clear from the context. We employ the notation \equiv to indicate the syntactic identity under renaming of bound variables.

3 Target calculus: λ^{\exists}

We next define our target calculus denoted by λ^{\exists} , which is logically a subsystem of minimal logic consisting of constant \bot , negation, conjunction and 2nd order existential quantification¹.

Definition 5 (Types)

$$A ::= \bot \mid X \mid \neg A \mid A \land A \mid \exists X.A$$

Definition 6 ((Pseudo) λ^{\exists} -terms)

$$\Lambda^{\exists} \ni M ::= x \mid \lambda x.M \mid MM \mid \langle M, M \rangle \mid \text{let } \langle x, x \rangle = M \text{ in } M \mid \langle A, M \rangle \mid \text{let } \langle X, x \rangle = M \text{ in } M$$

Definition 7 (Reduction rules) (β) $(\lambda x.M_1)M_2 \rightarrow M_1[x:=M_2]$

$$(\eta) \ \lambda x.Mx \to M, \ if \ x \not\in FV(M)$$

$$(\texttt{let}_{\wedge}) \ \texttt{let} \ \langle x_1, x_2 \rangle = \langle M_1, M_2 \rangle \ \texttt{in} \ M \to M[x_1 := M_1, x_2 := M_2]$$

$$(\mathtt{let}_{\wedge_{\boldsymbol{\eta}}})\ \mathtt{let}\ \langle x_1,x_2\rangle = M_1\ \mathtt{in}\ M[z:=\langle x_1,x_2\rangle] \to M[z:=M_1],$$

if $x_1, x_2 \notin FV(M)$

$$(\texttt{let}_\exists) \ \texttt{let} \ \langle X, x \rangle = \langle A, M_1 \rangle \ \texttt{in} \ M \to M[X := A, x := M_1]$$

$$(\mathtt{let}_{\exists_{\eta}}) \ \mathtt{let} \ \langle X, x \rangle = M_1 \ \mathtt{in} \ M[z := \langle X, x \rangle] \to M_2[z := M_1], \qquad \qquad \mathit{if} \ X, x \not \in FV(M_2)$$

We also write simply (let) for either (let_{\(\Lambda\)}) or (let_{\(\Delta\)}), and (let_{\(\eta\)}) for (let_{\(\Delta\)}) or (let_{\(\Delta\)}). Similarly we write $\rightarrow_{\lambda^{\exists}}$ and $\rightarrow_{\lambda^{\exists}}^{+}$ as done for λ^{2} .

¹For further introduction of the CPS target calculus λ^{\exists} with let-expressions, see also [5].

4 CPS-translation * from Λ^2 into Λ^3

We define a translation, so-called modified CPS-translation * from pseudo λ^2 -terms into pseudo λ^3 -terms. In each case, a fresh and free variable a is introduced, which is called a continuation variable.

Definition 8 1. $x^* = xa$

2.
$$(\lambda x.M)^* = \text{let } \langle x,a \rangle = a \text{ in } M^*$$

3.
$$(M_1M_2)^* = \begin{cases} M_1^*[a := \langle x, a \rangle] & \text{for } M_2 \equiv x \\ M_1^*[a := \langle \lambda a. M_2^*, a \rangle] & \text{otherwise} \end{cases}$$

4.
$$(\lambda X.M)^* = \text{let } \langle X, a \rangle = a \text{ in } M^*$$

5.
$$(MA)^* = M^*[a := \langle A^*, a \rangle]$$

6.
$$X^* = X$$
; $(A_1 \Rightarrow A_2)^* = \neg A_1^* \land A_2^*$; $(\forall X.A)^* = \exists X.A^*$

Remarked that M^* contains exactly one free occurrence of a continuation variable a, and M^* has neither β -redex nor η -redex. Let $\lambda X.M$ have type $\forall X.A$. Then, under the translation, the parametric polymorphic function $\lambda X.M$ with respect to X becomes an abstract data type $(\lambda X.M)^*$ for X, which is waiting for an implementation a with type $\exists X.A^*$ together with an interface (a signature) with type A^* , i.e., $(\lambda X.M)^*$ is

abstype
$$X$$
 with $a:A^*$ is a in M^*

in a familiar notation.

Lemma 1 (Monotone *) If we have $M_1 \to_{\lambda 2} M_2$, then $M_1^* \to_{\lambda^{\pm}}^+ M_2^*$ holds. In particular, if $M_1 \to_{\beta} M_2$, then $M_1^* \to_{\beta 1 \bullet t}^+ M_2^*$. And if $M_1 \to_{\eta} M_2$, then $M_1^* \to_{1 \bullet t_{\eta}} M_2^*$.

Proof. By induction on the derivation.

In order to give an inverse translation, first we provide the mutual inductive definitions, respectively for denotations Univ and continuations C, as follows. Both Univ and C are down-sets in the above sense.

$$a \in \mathcal{C} \qquad \frac{C \in \mathcal{C}}{\langle x, C \rangle} \in \mathcal{C}$$

$$\frac{C \in \mathcal{C} \quad P \in Univ}{\langle \lambda a. P, C \rangle} \qquad \frac{C \in \mathcal{C}}{\langle A^*, C \rangle} \in \mathcal{C}$$

$$\frac{C \in \mathcal{C}}{xC \in Univ} \qquad \frac{C \in \mathcal{C} \quad P \in Univ}{(\lambda a. P)C \in Univ}$$

$$\frac{C \in \mathcal{C} \quad P \in Univ}{\text{let } \langle x, a \rangle = C \text{ in } P \in Univ}$$

$$\frac{C \in \mathcal{C} \quad P \in Univ}{\text{let } \langle X, a \rangle = C \text{ in } P \in Univ}$$

We write $\langle R_1, R_2, \ldots, R_n \rangle$ for $\langle R_1, \langle R_2, \ldots, R_n \rangle \rangle$ with n > 1, and $\langle R_1 \rangle$ for R_1 with n = 1. $C \in \mathcal{C}$ is in the form of $\langle R_1, \ldots, R_n, a \rangle$ where R_i $(1 \le i \le n)$ is x, $\lambda a.P$, or A^* with $n \ge 0$. We explicitly mention that $C \in \mathcal{C}$ has exactly one occurrence of free variable a such that $C \equiv \langle R_1, \ldots, R_n, a \rangle$ with $n \ge 0$. $P \in Univ$ also has exactly one occurrence of free variable a in such C as a proper subterm of P.

The inductively defined sets Univ, $\mathcal{C} \subseteq \Lambda^{\exists}$ are down-sets with respect to $\twoheadrightarrow_{\lambda^{\exists}}$.

Lemma 2 1. If $P_1 \in Univ$ and $P_1 \twoheadrightarrow_{\lambda^3} P_2$, then $P_2 \in Univ$.

2. If $C_1 \in \mathcal{C}$ and $C_1 \twoheadrightarrow_{\lambda^{\exists}} C_2$, then $C_2 \in \mathcal{C}$.

Proof. Let $P, P_1 \in Univ$ and $C, C_1 \in C$. Then $P[a := C_1], P[x := \lambda a.P_1], P[X := A^*] \in Univ$, and $C[a := C_1], C[x := \lambda a.P_1], C[X := A^*] \in C$.

Proposition 1 1. Univ is strongly normalizing with respect to $\rightarrow_{\beta\eta}$, i.e., for any $P \in$ Univ, there is no infinite reduction sequence of $\rightarrow_{\beta\eta}$ starting with P.

2. Univ is Church-Rosser with respect to $\twoheadrightarrow_{\beta\eta}$, i.e., for any $P, P_1, P_2 \in Univ$, if we have $P \twoheadrightarrow_{\beta\eta} P_1$ and $P \twoheadrightarrow_{\beta\eta} P_2$, then there exists some $P_3 \in Univ$ such that $P_1 \twoheadrightarrow_{\beta\eta} P_3$ and $P_2 \twoheadrightarrow_{\beta\eta} P_3$.

Proof.

- 1. Since every λ -abstraction $\lambda a.P \in Univ$ is linear, for any $P_1 \to_{\beta\eta} P_2$, the contractum P_2 has less length than that of P_1 .
- 2. Univ is weak Church-Rosser with respect to $\rightarrow_{\beta\eta}$, and hence the property of Church-Rosser holds from Newman's Lemma.

Any (pseudo) term $P \in Univ$ is Church-Rosser and strongly normalizing with respect to $\beta\eta$ -reductions, and the unique $\beta\eta$ -normal form is denoted by $\psi_{\beta\eta} P$. The same property naturally holds for C as well. A nomalization function $\psi_{\beta\eta}$ can be inductively defined as follows:

Definition 9 $(\Downarrow_{\beta\eta})$ 1. For $P \in Univ$:

(a)
$$\Downarrow_{\beta\eta}(xC) = x(\Downarrow_{\beta\eta} C)$$

(b)
$$\Downarrow_{\beta\eta} ((\lambda a.P)C) = \Downarrow_{\beta\eta} (P[a := C])$$

$$(c) \ \Downarrow_{\beta\eta} (\texttt{let} \ \langle \chi, a \rangle = C \ \texttt{in} \ P) = \texttt{let} \ \langle \chi, a \rangle = \Downarrow_{\beta\eta} C \ \texttt{in} \ \Downarrow_{\beta\eta} P$$

2. For $C \equiv \langle R_1, \ldots, R_n, a \rangle \in C$ with $n \geq 0$, where $R_i \equiv x, \lambda a.P$, or A^* :

$$\Downarrow_{\beta\eta}\langle R_1,\ldots,R_n,a\rangle=\langle \Downarrow_{\beta\eta}R_1,\ldots,\Downarrow_{\beta\eta}R_n,a\rangle$$

(a)
$$R \equiv x$$
:
 $\psi_{\beta n} x = x$

(b)
$$R \equiv \lambda a.P$$
:

i.
$$\psi_{\beta\eta}(\lambda a.xa) = x$$
, if $P \equiv xa$;

ii.
$$\psi_{\beta\eta}(\lambda a.P) = \lambda a.(\psi_{\beta\eta}P)$$
, otherwise;

(c)
$$R \equiv A^*$$
:
 $\psi_{\beta n} A^* = A^*$

5 Residuated CPS-translation

Proposition 2 The following conditions are equivalent.

- 1. $f: A \rightarrow B$ is a residuated mapping.
- 2. $f: A \to B$ is monotone and there exists a monotone mapping $g: B \to A$ such that $A \ni a \sqsubseteq g(f(a))$ and $f(g(b)) \sqsubseteq b \in B$.

Proof. A residuated mapping is monotone in general. On the other hand, from the condition 1, for any $b \in B$ there exists $a \in A$ such that $f^{\leftarrow}[\downarrow b] = \downarrow a$ which cannot be empty, whence one has a choice function $g: B \to A$ by g(b) = a. Hence $g(b) \in \downarrow g(b) = f^{\leftarrow}[\downarrow b]$ holds true, so that we have $f(g(b)) \sqsubseteq b$. We also have $a \in f^{\leftarrow}[\downarrow f(a)] = \downarrow g(f(a))$ by the definition, and hence we have $a \sqsubseteq g(f(a))$.

From the condition 2, we have that $f(a) \sqsubseteq b$ if and only if $a \sqsubseteq g(b)$. Hence, we have $f^{\leftarrow}[\downarrow b] = \downarrow g(b)$ for every $b \in B$.

We write $M \sqsubseteq N$ for $N \twoheadrightarrow M$, i.e., the contextual and reflexive-transitive closure of one-step reduction \rightarrow .

Lemma 3 For any $P \in Univ$, there uniquely exists $M \in \Lambda 2$ such that $\downarrow_{\beta_n} P \equiv M^*$.

Proof. By induction on $P \in Univ$.

- 1. Case of $P \equiv xC \equiv x(R_1, \dots, R_n, a)$ with $n \ge 0$
 - (a) If $R_i \equiv x_i$, then we take $N_i \equiv x_i$, whence $\psi_{\beta\eta} R_i \equiv x_i \equiv N_i^*$.
 - (b) Case of $R_i \equiv \lambda a. P_i$ If $P_i \equiv x_i a$, then we take $N_i \equiv x_i$, and whence $\psi_{\beta\eta} R_i \equiv x_i \equiv N_i^*$. Otherwise, from the induction hypothesis for P_i , there uniquely exists N_i such that $\psi_{\beta\eta} P_i \equiv N_i^*$. Now we have $\psi_{\beta\eta} R_i = \lambda a. (\psi_{\beta\eta} P_i) \equiv \lambda a. N_i^*$.
 - (c) If $R_i \equiv A_i^*$, then we take $N_i \equiv A_i$.

Hence, we take $M \equiv xN_1 \dots N_n$, and then there uniquely exists $M \in \Lambda 2$ such that $\downarrow_{\beta\eta} P$

$$= x \langle \psi_{\beta\eta} R_1, \dots, \psi_{\beta\eta} R_n, a \rangle$$

$$\equiv x \langle N_1^{*\prime}, \dots, N_n^{*\prime}, a \rangle$$

 $= M^*$

where $N_i^{*\prime} = \lambda a. N_i^*$ if $R_i \equiv \lambda a. P_i$ with no outmost η -redex; otherwise $N_i^{*\prime} = N_i^*$.

2. Case of $P \equiv (\lambda a.P')C$

Since a is a linear variable, by the induction hypothesis for P'[a:=C], there uniquely exists $M \in \Lambda 2$ such that $\psi_{\beta\eta}(P'[a:=C]) \equiv M^*$. Therefore, we have a unique $M \in \Lambda 2$ such that $\psi_{\beta\eta}P \equiv M^*$.

3. Case of $P \equiv \text{let } \langle x, a \rangle = C$ in P_1 with $C = \langle R_1, \dots, R_n, a \rangle$ and $n \geq 0$

- (a) From the induction hypothesis for P_1 , there uniquely exists $M_1 \in \Lambda 2$ such that $\psi_{\beta\eta} P_1 \equiv M_1^*$.
- (b) If $R_i \equiv x_i$, then we take $N_i \equiv x_i$, whence $\downarrow_{\beta\eta} R_i \equiv x_i \equiv N_i^*$.
- (c) Case of $R_i \equiv \lambda a.P_i$ If $P_i \equiv x_i a$, then we take $N_i \equiv x_i$, and whence $\psi_{\beta\eta} R_i \equiv x_i \equiv N_i^*$. Otherwise, from the induction hypothesis for P_i , there uniquely exists N_i such that $\psi_{\beta\eta} P_i \equiv N_i^*$. Now we have $\psi_{\beta\eta} R_i = \lambda a.(\psi_{\beta\eta} P_i) \equiv \lambda a.N_i^*$.
- (d) If $R_i \equiv A_i^*$, then we take $N_i \equiv A_i$.

Hence, we take $M \equiv xN_1 \dots N_n$, and then there uniquely exists $M \in \Lambda 2$ such that $\downarrow_{\beta n} P$

$$= \operatorname{let} \langle x, a \rangle = \langle \psi_{\beta\eta} \, R_1, \dots, \psi_{\beta\eta} \, R_n, a \rangle \, \operatorname{in} \, (\psi_{\beta\eta} \, P_1)$$

$$\equiv$$
 let $\langle x,a
angle = \langle N_i^{*\prime},\ldots,N_i^{*\prime},a
angle$ in M_1^*

 $= M^*$

where $N_i^{*'} = \lambda a. N_i^*$ if $R_i \equiv \lambda a. P_i$ with no outmost η -redex; otherwise $N_i^{*'} = N_i^*$.

4. Case of $P \equiv \text{let } \langle X, a \rangle = C$ in P' is handled simiarly.

From the inductive proof of Lemma 3 above, an extracted function giving a witness is written down here.

1.
$$x^{\sharp} = x$$
; $(\lambda a.P)^{\sharp} = P^{\sharp}$; $(A^{*})^{\sharp} = A$

2.
$$(x\langle R_1,\ldots,R_n,a\rangle)^{\sharp}=xR_1^{\sharp}\ldots R_n^{\sharp}$$

3.
$$((\lambda a.P)C)^{\sharp} = (P[a := C])^{\sharp}$$

4. (let
$$\langle x,a\rangle=\langle R_1,\ldots,R_n,a\rangle$$
 in $P)^\sharp=(\lambda x.P^\sharp)R_1^\sharp\ldots R_n^\sharp$

5. (let
$$\langle X, a \rangle = \langle R_1, \dots, R_n, a \rangle$$
 in $P)^{\sharp} = (\lambda X.P^{\sharp})R_1^{\sharp} \dots R_n^{\sharp}$

where the clause 1 is for R_i appeared in $\langle R_1, \ldots, R_n, a \rangle \in \mathcal{C}$, and the clause 2 through 5 are for $P \in Univ$.

Corollary 1 (Composition of * and \sharp) 1. For any $P \in Univ$, we have $P \twoheadrightarrow_{\beta\eta} (P^{\sharp})^*$.

2. For any $M \in \Lambda^2$, we have $(M^*)^{\sharp} \equiv M$.

Proof.

- 1. From Lemma 3, we have $\psi_{\beta\eta} P \equiv (P^{\sharp})^*$ and $P \twoheadrightarrow_{\beta\eta} \psi_{\beta\eta} P$. Therefore, $P \twoheadrightarrow_{\beta\eta} (P^{\sharp})^*$ holds for any $P \in Univ$.
- 2. From the definition of *, M^* has neither β nor η -redex. Hence, $\psi_{\beta\eta}(M^*) \equiv M^*$ holds, and then $(M^*)^{\sharp} \equiv M$ for any $M \in \Lambda 2$.

Lemma 4 (Monotone \sharp) The above mapping \sharp : Univ $\to \Lambda 2$ is monotone.

Proof. By the definition of \sharp . In particular, let $P_1, P_2 \in Univ$, then the following holds.

- 1. If $P_1 \rightarrow_{\beta\eta} P_2$, then $P_1^{\sharp} \equiv P_2^{\sharp}$.
- 2. If $P_1 \rightarrow_{1\text{et}} P_2$, then $P_1^{\sharp} \rightarrow_{\beta} P_2^{\sharp}$.
- 3. If $P_1 \to_{1 \in t_\eta} P_2$, then $P_1^{\sharp} \to_{\eta} P_2^{\sharp}$.

6 Residuated CPS-translation

As expected from the previous results, the CPS-translation forms a residuated mapping from $\lambda 2$ to Univ.

Theorem 1 (Residuated CPS-trans.) The CPS-translation * is a residuated mapping from $\Lambda 2$ to Univ.

Proof. From Proposition 2, Lemmata 1 and 4, and Corollary 1, the translation * is a residuated mapping. In other words, for any $P \in Univ$, we have

$${M \in \Lambda 2 \mid M^* \sqsubseteq P} = \downarrow P^{\sharp}.$$

In fact, from Lemma 1 and Corollary 1, we have $\downarrow P^{\sharp} \subseteq \{M \in \Lambda 2 \mid M^* \sqsubseteq P\}$. On the other hand, from Lemma 4 and Corollary 1, the inverse direction $\{M \in \Lambda 2 \mid M^* \sqsubseteq P\} \subseteq \downarrow P^{\sharp}$ holds true.

We summarize results induced from the discussion above.

Corollary 2 1. $\lambda 2$ is strongly normalizing if and only if Univ is strongly normalizing.

- 2. $\lambda 2$ is weakly normalizing if and only if Univ is weakly normalizing.
- 3. $\lambda 2$ is Church-Rosser if and only if Univ is Church-Rosser. We remark that Λ^{\exists} itself is not Church-Rosser.
- 4. Let $\downarrow P$ be $\{Q \mid P \twoheadrightarrow_{\lambda^{\exists}} Q\}$ for $P \in Univ$. Then the inverse image under * of $\downarrow P$ is a principal down-set generated by $P^{\sharp} \in \Lambda 2$.
- 5. Given the CPS-translation *. Then an existence of its residual (inverse translation) is unique.
- 6. Define $P_1 \sim_{\beta\eta} P_2$ by $\psi_{\beta\eta} P_1 \equiv \psi_{\beta\eta} P_2$ for $P_1, P_2 \in U$ niv. There exists a bijection \star between $\Lambda 2$ and Univ/ $\sim_{\beta\eta}$. In particular, there exists a one-to-one correspondence between $\lambda 2$ -normal forms and Univ-normal forms.
- 7. Let $\downarrow_{\lambda^{\exists}} [\Lambda 2]^*$ be the down-set generated by $[\Lambda 2]^*$, i.e., $\{P \mid M^* \rightarrow_{\lambda^{\exists}} P \text{ for some } M \in \Lambda 2\}$. Let $\uparrow_{\beta\eta} [\Lambda 2]^*$ be the up-set generated by $[\Lambda 2]^*$, i.e., $\{P \in Univ \mid P \rightarrow_{\beta\eta} M^* \text{ for some } M \in \Lambda 2\}$.

Then we have $\downarrow_{\lambda^{\exists}} [\Lambda 2]^* \subseteq Univ = \uparrow_{\beta\eta} [\Lambda 2]^*$. We remark that \subseteq is strict. For instance, $xa \in \downarrow_{\lambda^{\exists}} [\Lambda 2]^*$ and $(\lambda a.xa)a \in Univ$, but $(\lambda a.xa)a \notin \downarrow_{\lambda^{\exists}} [\Lambda 2]^*$.

Proof.

- 1. If $M_1 \to_{\lambda 2} M_2$, then we have $M_1^* \to_{\lambda^{\exists}}^+ M_2^*$ by induction on the derivation. Therefore, strong normalization of *Univ* implies that of $\lambda 2$.
 - On the other hand, $\rightarrow_{\beta\eta}$ in *Univ* is strongly normalizing. If *Univ* has an infinite reduction path of $\rightarrow_{\lambda^{\exists}}$, then the path should contain an infinite reduction path consisting of $\rightarrow_{1\text{et},1\text{et}_{\eta}}$. Now, from Lemma 4, $\lambda 2$ has an infinite reduction path of $\rightarrow_{\beta\eta}$. Hence, strong normalization of $\lambda 2$ implies that of *Univ*.
- 2. From the monotone translations between $\Lambda 2$ and Unvi, and the one-to-one correspondence between $\lambda 2$ -normal forms and Univ-normal forms.
- 3. A2 and Univ form the so-called Galois connection under * and #.
- 4. The CPS-translation * forms a residuated mapping.
- 5. Suppose we had two inverse translations \sharp_1 and \sharp_2 , then $P^{\sharp_1} \equiv P^{\sharp_2}$ for any $P \in Univ$. Because we have $P \twoheadrightarrow_{\beta\eta} P^{\sharp_1*}$ for any $P \in Univ$ from Corollary 1 (1). Hence, we have $P^{\sharp_2} \equiv (P^{\sharp_1*})^{\sharp_2} \equiv P^{\sharp_1}$ from Lemma 4 (1).
- 6. Since $\sim_{\beta\eta}$ is an equivalence relation over *Univ*, we take

$$[P]_{\sim_{\beta\eta}} = \{P' \in Univ \mid P \sim_{\beta\eta} P'\} \text{ for } P \in Univ.$$

Then we define $\star(M) = [M^*]_{\sim_{\beta\eta}}$. In other words,

$$\star(M) = \uparrow_{\beta\eta}(M^*) = \{ P \in Univ \mid P \twoheadrightarrow_{\beta\eta} M^* \}.$$

Then $\star: \Lambda 2 \to Univ/\sim_{\beta\eta}$ is a bijection. In fact, for any $[P] \in Univ/\sim_{\beta\eta}$, there exists $M \in \Lambda 2$ such that $\star(M) = [P]$. Because we take $M \equiv P^{\sharp}$, whence $P \twoheadrightarrow_{\beta\eta} (P^{\sharp})^*$ and $\star(P^{\sharp}) = [P]$. On the other hand, suppose $M_1 \not\equiv M_2$. Then $\star(M_1) \not= \star(M_2)$, since M_1^* and M_2^* are distinct $\beta\eta$ -normal forms.

7. For any $M \in \Lambda^2$, we have $M^* \in Unvi$, and Univ is a down-set with respect to $\twoheadrightarrow_{\lambda^3}$. Then we have $\downarrow_{\lambda^3} [\Lambda^2]^* \subseteq Univ$.

For any $P \in Univ$, we have $P^{\sharp} \in \Lambda 2$ and $P \to_{\beta\eta} P^{\sharp*}$ from Lemma 1. Hence, $P \in \uparrow_{\beta\eta} [\Lambda 2]^*$ holds true. The inverse direction is clear, and therefore we have $Univ = \uparrow_{\beta\eta} [\Lambda 2]^*$.

It is remarked that instead of pseudo-terms, when we take account of well-typed terms, the binary relations $\twoheadrightarrow_{\lambda^2}$ and $\twoheadrightarrow_{\lambda^{\exists}}$ form partial orders on λ -terms.

References

- [1] R. Backhouse: Galois Connections and Fixed Point Calculus, Lecture Notes in Computer Science 2297 (2002) 89–150.
- [2] T. S. Blyth: Lattices and Ordered Algebraic Structures, Springer, 2005.
- [3] O. Danvy and J. L. Lawall: Back to Direct Style II: First-Class Continuations, Proc. of the ACM Conference on Lisp and Functional Programming (1992) 299-310.

- [4] K. Fujita: A sound and complete CSP-translation for $\lambda\mu$ -calculus, Lecture Notes in Computer Science 2701 (2003) 120–134.
- [5] K. Fujita: Galois embedding from polymorphic types into existential types, Lecture Notes in Computer Science **3461** (2005) 194–208.
- [6] K. Fujita: Galois embedding from universal types into existential types –extended abstract–, Kyoto University RIMS Kokyuroku 1503 (2006) 121–128.
- [7] M. Hassegawa: Relational parametricity and control (extended abstract), *Proc. Logic in Computer Science* (2005) 72–81.
- [8] J. C. Mitchell and G. D. Plotkin: Abstract types have existential type, *Proc. the 12th Annual ACM Symposium on Principles of Programming Languages* (1985) 37-51.
- [9] A. Melton, D. A. Schmidt, G. E. Strecker: Galois Connections and Computer Science Applications, Lecture Notes in Computer Science 240 (1986) 299–312.
- [10] M. Parigot: $\lambda\mu$ -Calculus: An Algorithmic Interpretation of Classical Natural Deduction, Lecture Notes in Computer Science **624** (1992) 190–201.
- [11] G. Plotkin: Call-by-Name, Call-by-Value and the λ -Calculus, Theoretical Computer Science 1 (1975) 125–159.
- [12] D. Prawitz: NATURAL DEDUCTION, A Proof Theoretical Study, ALMQVIST&WIKSELL, Stockholm, 1965.
- [13] H. A. Priestley: Ordered Sets and Complete Lattices, A Primer for Computer Science, Lecture Notes in Computer Science 2297 (2002) 21–78.
- [14] J. C. Reynolds: The discoveries of continuation, Lisp and Symbolic Computation 6 (1993) 233-247.
- [15] P. Selinger: Control Categories and Duality: on the Categorical Semantics of the Lambda-Mu Calculus, *Math. Struct. in Compu. Science* 11 (2001) 207–260.
- [16] A. Sabry and M. Felleisen: Reasoning about Programs in Continuation-Passing Style, LISP AND SYMBOLIC COMPUTATION: An International Journal 6 (1993) 289— 360.
- [17] A. Sabry and Ph. Wadler: A Reflection on Call-by-Value, ACM Transactions on Programming Languages and Systems 19-6 (1997) 916-941.
- [18] Ph. Wadler: Call-by-value is dual to call-by-name, International Conference on Functional Programming, August 25-29, Uppsala, 2003.