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1 Introduction
Traditionally cryptosystems are mainly divided into two categories; symmetric encryptions and
asymmetric encryptions. Symmetric ciphers are often called a conventional cipher, a secret key
cipher or a common key cipher. The cryptosystems in this category share the property that the
legitimate users share a common key in advance and the key are used to both encrypt plaintexts
and decrypt ciphertexts. On the other hand, the asymmetric ciphers are often called a public key
cryptosystem. The cryptosystem in this category share the property that the message receiver
publicize his encryption key arid keeps his decryption key. Any message sender can encrypt a
message using the public encryption key. It is clear that the decryption key is different from the
public key otherwise the anybody can decrypt any message. Thus, the first category of ciphers is
called a symmetric key cipher and the second is called asymmetric key cipher. There is another
possible category of cryptosystems that have not been studied so far. We examine cryptosystems
whose encryption keys are different from the decryption keys and the both are kept secret. On
the other hand, we shall show that the class of asymmetric secret key cryptosystem makes sense
in a certain occasion. Briefly speaking, we need extra properties for secret key ciphers, which the
traditional secret key cipher usually does not possess. To construct a valiant of oblivious transfer
scheme, we need commutative property for the family of secret key ciphers. Then wc shall $8how$ that
both commutativity property and security cannot be achieved together by a family of symmetric
secret key ciphers. Therefore, it is essential to construct a family of asymmetric secret key ciphers
that satisfies the commutative property.

We also consider the family of encryption functions. A family of encryption functions $\{f_{1}|i\in$

$I\}$ , where each $f_{i}$ is an encryption function of the set of messages $M$ onto Af, is called commutative
if $f_{j}(f_{j}(m))=f_{j}(f_{1}(m))$ for every $m$ in $M$ and $i,j\in I$ . We shall propose a commutative family of
asymmetric secret key ciphers. The commutative property is implicitly used to construct a blind
signature. Our method is similar to the construction of blind signature, however, ours is based on
different assumptions on algorithmic problems and attacking models.

Our motivation comes from the data management in the.ubiquitous network, in particular,
retrieving data from ciphertext embedded in an RFID. As we will see such scheme is closely related
to the oblivious transfer schemes and private information retrievals. Oblivious transfer schemes and

’This paper is an extended abstract and the detailed version will be publiShed elsewhere.
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all-or-nothing disclosure schemes attain the ability of retrieving secretly data from the database
server, however, both schemes suffer from the communIcation complexity. If the database is mas-
sive, the communication complexity is also large and this is fatal for some applications. In this
paper, we propose a concept of encrypted data retrieval scheme that solves the problem and give a
concrete method to construct such schemes employing a commutative family of asymmetric sccret
key ciphers.

2 Private encrypted data retrieval

2.1 Oblivious transfer and private information retrieval

Oblirrious $\mathfrak{R}unSfer$ (OT) refer\S to several types of two party $protoco1_{8}$ , where one party, the sender,
traomits part of its input to another $pa$rty, the chooser, in away that protects both parties: the
sender is assured that the chooeer does not get more information than it is entitled, and chooeer i8
assured that thc sender does not learn which part of the inputs it $rece\ddagger ved$ . The notion of l-out-
of-2 oblirrious tmnsfer ( $OT_{1}^{2}$ for short) was introduced in [8], as generalization of $RabIns$ concept
of OT [11]. Brassard, Cr\’epeau, and Robert in [3] generalized the $not\ddagger on$ further to J-out-of-N
$oblim\dot{o}us$ transfer $(OT_{1}^{N})$ under the name all-or-nothing disclosuoe(ANDOS). ANDOS allows the
sender, who holds several secrets, to discloee one of them to the receiver, with the guarantee that
no informatIon about other secrets will be revealed. Furthermore, the receiver has the $1^{arantee}$

the sender will not be able to find out which secret was picked.
Private Infomation Retrieval (PIR) schemes [5] allow allser to $acce_{\wedge}ss$ a $datab_{1}secor\iota si_{f};ting$

of $N$ data $m_{1},m_{2},$ $\ldots,m_{N}$ (usually data are just abit) and read any elements without adatabase
manager learning which element $wa8$ accessed. The emphasis in PIR is on $communicat\ddagger on$ complex-
ity which must be $o(N)$ . PIR schemae do not protect the owner of the database, because they do
not prevent the user from learning more than asingle element. Currently, the $qu\infty tion$ of protecting
the database was addressed as well. APIR scheme where auser does not leam more thana single
data is calleda $Symmetr\dot{\tau}c$ PIR (SPIR) [9].

An all-or-nothing discloeure is atwo party protocol in $whic1_{1}t\}_{1C}$ vendor, who holds several
secrets, to discloee one of them to the buyer, with the guarantee that no information about other
secrets will be revealed. Krthermore, the buyer has the $g_{t1}arantee$ the vendor will not be able to find
out which secret was picked. In the literature only l-out-of-t all-or-nothing disclosure schemes have
been studied as far as the authors know. J.Stern [12] propos\’ea l-out-of-t all-or-nothing disclosure
scheme bas$ed$ on $homomorph\ddagger c$ encryptions. $Suppoee$ that avendor poesesses $t$ data $d_{1},$ $d_{2},$

$\ldots,$
$d_{t}$ .

Abuyer wishae to obtain $s$ data out of $t$ data without informing which data the buyer tries to
retrieve. Suppoee thc indices of the buyer’s toice are $i_{1},$ $i_{2},$

$\ldots,$ $i_{\hslash}(1\leq i_{1}<i_{2}<\cdots<i_{s}\leq t)$ ,
that is, the buyer $wi\epsilon hes$ to obtain the data $d_{i_{1}},$ $d_{i_{2}},$

$\ldots,$
$d_{i_{\epsilon}}$ .

Wc Propose asimilar data retried scheme using our asymmetric secret kcy ciphe,rs. In the
scheme, the database is encrypted by the server’s encrypted key and each user has to aek the
server to decrypt it in the way that the server does not notice which data he is decrypting. In our
approach, the databaee is encrypted and publicized and this reduce the communication complexity
of both directioo. This is extremely ideal to ubiquitous setting where wireless transmission is
limited and required to reduce the amount of data transmission.

Suppose that $n$ is the number of the data in the $databa\epsilon e$ and $k$ is the size of group element
in the data retricval schcmes. The we $S11mmarir_{l}e$ thcse approachoe as follows. Clcarly ollr scheme
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is suitable to application in which data transmission is limited such as RFID embedded systems
because communication complexity of our method is much smaller than the others. In particular,
if the number of data is large, then the communication complexity of the other two will gets large
whereas the communication complexity of ours does not depend on the number of data.

Table 1: Data retrieval

3 Asymmetric secret key ciphers

3.1 Asymmetric secret key cipher based on RSA modulus
Examples in $[1, 2]$ are explained. Let $p$ and $q$ be distinct primes of the same size. Set $n=pq$. We
deflne an encryption function enc of the set of messages $\mathbb{Z}/n$ (denoted by $M$) onto itself. Suppose
$e\in Z/(p-1)(q-1)$ such that $e$ and $(p-1)(q-1)$ are coprime. Then the set $K$ of keys is
$Z/(p-1)(q-1)$ . Then there exists $d\in \mathbb{Z}/(p-1)(q-1)$ such that $m^{ed}=m$ for every $m\in M$ .

Secret key The pair $(e, d)$ is a secret key.

Public information The primes $p$ and $q$ are publicized.

Encryption Take message $m\in M$ . The function $f$ of $MxK$ into $M$ is defined by $f(m, e)=m^{e}$ ,
where $(m, e)\in MxK$ . The ciphertext $enc_{e}(m)$ of $m$ is given by $f(m, e)=m^{e}$ , that is, $enc_{\epsilon}(m)=$

$f(m,e)$

Decryption For any $C\in M$ , the decryption related to the key $d$ is given by $f(c, d)$ , that is,
$dec_{d}(c)=f(c,d)=c^{d}$ .

Commutative property The $fan\dot{u}ly$ of encryption functions $\{enc_{\epsilon}|e\in K\}$ is commutative
because $enc_{e_{1}}(enc_{\epsilon_{2}}(m))=m^{\epsilon_{1}\epsilon_{2}}=m^{e_{2}\epsilon_{1}}=enc_{\epsilon_{2}}(enc_{e_{1}}(m))$ for all $m\in M$ every $e_{1},$ $e_{2}\in K$ .

Security We suppose that the discrete logarithm problem for $(Z/p)^{*}$ and $(\mathbb{Z}/p)^{r}$ are intractable.

Remark The encryption is not a public key cryptosystem although we employ completely same
ingredient as the RSA public key cryptosystem. We note that the factorization of the modulus $n$ is
secret in RSA whereas the factorization is public in our cipher. On the other hand, the encryption
parameter $e$ is public in RSA, whereas both $e$ and $d$ are secret in our cipher. Publicizing the primes
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$p$ and $q$ , anybody can create the encryption and decryption keys in our cipher. Thus, this cipher
algorithm related to the modulus $n$ can be employed by multiple users.

The textbook RSA is not randomized cryptosystem and so the scheme is not semantic secure.
We shall discuss randomized asymmetric secret key ciphers which are more secure than the ones in
the full version of the paper.

4 Private encrypted data retrieval protocols

We shall briefly discuss how to construct secret data retrieval schemes using asymmetric secret key
ciphers.

4.1 Basic scheme
Suppose $\{enc_{k}|k\in K\}$ is a family of commutative symmetric ciphers.

The server $S$ encrypts the data $m_{1},m_{2},$ $\ldots,$ $m_{N}$ by his secret encryption key $e_{\iota}$ and publicizes
the ciphertexts $enc_{e_{n}}(m_{1}),$ $enc_{e_{*}}(m_{2}),$ $enc_{\epsilon}.(m_{3}),$

$\ldots$ , $enc_{e}.(m_{N})$ .
The receiver $\mathcal{U}$ wishes to obtain one of the data (say $m_{\alpha}$ ) by decrypting $enc_{\epsilon_{*}}(m_{\alpha})$ in the way

that $S$ cannot obtain any information on $\alpha$ while $\mathcal{U}$ gets only $m_{\alpha}$ . Note that $\mathcal{U}$ has access to the
ciphertexts $enc_{e}.(m_{1}),$ $enc_{e_{*}}(m_{2}),$ $enc_{\epsilon}.(m_{3}),$

$\ldots,$
$enc_{e_{*}}(m_{N})$ , which makes a difference between the

usual oblivious transfer protocol. The second condition implies that $\mathcal{U}$ cannot obtain the secret key
$e_{\epsilon}$ . A general one round private encrypted data retrievaJ protocol runs as follows:

Step 1 $\mathcal{U}$ generates the system parameters. $\mathcal{U}$ computes $Q=enc_{e_{u}}(enc_{e}.(m_{\alpha}))$ . Then $\mathcal{R}$ sends
$QtoS$ .
Step 2 $S$ receives $Q$ and computes $dec_{e}.(Q)=dec_{e}.(enc_{e_{u}}(enc_{\epsilon}.(m_{a})))$

$=dec_{C}.(enc_{\epsilon_{*}}(enc_{e_{u}}(m_{\alpha})))=enc_{\epsilon_{u}}(m_{\alpha})$ . Then $S$ sends $enc_{e_{u}}(m_{\alpha})$ to $\mathcal{U}$ .
Step 3 $\mathcal{U}$ receives $enc_{c_{u}}(m_{\alpha})$ and computes $dec_{\epsilon_{u}}(enc_{e_{u}}(m_{\alpha}))=m_{\alpha}$.
Correctness
If both party play honestly, $\mathcal{U}$ obtains $m_{\alpha}$ .
Privacy for $\mathcal{U}$

$S$ cannot distinguish a query for the $\alpha th$ and the $\beta th$ data for all $\alpha$ and $\beta$ .
Privacy for $S$

$\mathcal{U}$ cannot obtain any information on the other data. This implicitly implies that the protocol
guarantees that $\mathcal{U}$ cannot obtain any information on the secret key $e_{S}$ .
Computation
Computations of both $\mathcal{U}$ and $S$ are bounded above by a polynomial in the size $N$ of the database
and the security parameter $k$ .

4.2 Proposed scheme

In the basic scheme, there is a security issue. The family of commutative symmetric ciphers may
satisfy the homomorphic property as well. In such a case, $\mathcal{U}$ may be able to obtain information
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of both $m_{1}$ and $m_{2}$ by only one query. For example, $\mathcal{U}$ computes $\beta=enc_{e_{\delta}}(m_{1})enc_{\epsilon_{*}}(m_{2})=$

$enc_{e_{\iota}}(m_{1}m_{2})$ and sends $Q=enc_{e_{u}}(\beta)$ to S. $S$ computes $dec_{e_{\epsilon}}(Q)=enc_{e_{u}}(m_{1}m_{2})$ and sends it to
$\mathcal{U}$ . Then $\mathcal{U}$ can obtain $m_{1}m_{2}$ , which contains information on both $m_{1}$ and $m_{2}$ . Thus the scheme
does not satisfy the privacy for $S$ .

To repair this flaw, we operate another encryption for the data. Suppose that $R_{k}$ is a random
permutation with the key space $\{k|k\in K\}$ and totally anti-homomorp$hic$. This means that for
every pair of messages $m_{1}$ and $m_{2},$ $R_{k}(m_{1})R_{k}(m_{2})$ and $R_{k}(m_{1}m_{2})$ are not correlated, that is, there
is no relation between the distribution $R_{k}(m_{1})R_{k}(m_{2})$ and $R_{k}(m_{1}m_{2})$ .

Then the proposed scheme is described as follows.
The server $S$ encrypts the data $m_{1},$ $m_{2},$ $\ldots$ , $m_{N}$ by his secret encryption key $e_{\iota}$ and $k$ and

publicizes the ciphertexts $enc_{e}.(R_{k}(m_{1})),$ $enc_{e},(R_{(}m_{2})),$ $enc_{e}.(R_{k}(m_{3})),$
$\ldots,$ $enc_{e}.(R_{k}(m_{N}))$ .

Step 1 $\mathcal{U}$ gencrates the system parameters. $\mathcal{U}$ computes $Q=enc_{e_{u}}(enc_{e}.(R_{k}(m_{\alpha})))$. Then $\mathcal{R}$

sends $QtoS$ .
Step 2 $S$ receives $Q$ and computes $dec_{e}.(Q)=dec_{e}.(enc_{e_{u}}(enc_{\epsilon}.(R_{k}(m_{\alpha}))))$

$=dec_{\epsilon}.(enc_{\epsilon}.(enc_{c_{u}}(R_{k}(m_{a}))))=enc_{\epsilon_{u}}(R_{k}(m_{\alpha}))$. Then $S$ sends $enc_{\epsilon_{u}}(R_{k}(m_{\alpha}))$ to $\mathcal{U}$ .
Step 3 $\mathcal{U}$ receives $enc_{e_{u}}(R_{k}(m_{\alpha}))$ and computes $dec_{e_{u}}(enc_{\epsilon_{u}}(R_{k}(m_{\alpha})))=R_{k}(m_{\alpha})$ . Finally com-
putes $D_{k}(R_{k}(m_{\alpha})=m_{\alpha}$ .

We should note that using $R_{k}$ prevents $\mathcal{U}$ from obtaining more information from one query. For
example, by the strategy above, $\mathcal{U}$ can obtain $R_{k}(m_{1})R_{k}(m_{2})$ that is not related to $R_{k}(m_{1}m_{2})$ .
Therefore, $\mathcal{U}$ can obtain no information on $m_{1}m_{2}$ .
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