goooboooogn
0 15620 2007 0O 79-86 79

Verifying security protocols using theorem provers

| Miki Tanaka
National Institute of Information and Communications Technology
Koganei, Tokyo 184-8795, Japan
Email: miki.tanaka@nict.go.jp

Abstract

This is a report on a project in formal verification of cryptographic
protocol. We adapt Paulson’s work of verification of TLS (Transport
Security Layer) on Isabelle/HOL [1] to the proof-assistant Coq. Paulson’s
trace model of TLS is translated into the Coq syntax and the proofs of
security properties are explicitly constructed on the Coq system.

1 Introduction

It has been understood that getting security proofs right is very subtle and dif-
ficult. Hence, formal verification of security, employing so called formal method
technology has become a recent challenge in the field. The idea is to use some
strictly defined language (formal language) to model and reason about the sys-
tem of which you want to verify the properties. Here “strictly defined” in effect.
means that the language and the reasoning mechanism are syntactically explic-
itly defined so that the reasoning process can be rigidly executed by computers.
Therefore, if one can establish a proof, in a formal manner using such tech-
niques, that a security system has a certain security property, then, it is a good
quality guarantee of security for the system, modulo the assumptions with the
modelling. Of course one can argue what counts as a “good quality guarantee”,
but at least here, there is no room for human errors that come to light after
many years in the process of machine reasoning.

Application of such technology to providing security guarantees for crypto-
graphic protocols has been attempted for a while by now, starting from around
the discovery of an attack to the Needham-Schroeder Public Key protocol by
Lowe using a model-checker in 1995. Since then there have been various different
techniques in formal method at varying level in abstraction applied to security
proofs. Among those techniques we are interested in automated theorem prov-
ing because it allows for realistic modelling constraints and for extensibility with
verification that takes computational complexity aspects into account.

We report on a study on Paulson’s formal verification of TLS (Transport
Layer Security) using Isabelle [1]. We adapted Paulson’s work to the proof as-
sitant Coq, by translating the formal model into the Coq syntax and construct-

80

ing the proof on Coq system. In the following we take a quick look at both
the method and the result: after reviewing the notion of automated theorem
proving itself, we quickly go though the syntax, or equivalently, the language,
for describing protocol execution on theorem provers. We don’t give the precise
definition of the syntax but it is the same as Paulson’s syntax, presented in the
style of Coq. Then we briefly explain some of the security properties of TLS
that are proved by Paulson and also give their representations in Coq.

2 Automated Theorem Proving

Automated theorem proving is a research for using computers to reason in formal
languages based on various logics. Given that mathematical logic can be viewed
as pure symbolic manipulation, we can expect that computers can go quite far
with it, although we cannot expect them to provide a complete proof for all
possible valid statements

In this report we are interested in systems that use expressive higher order
logics, and in such cases, the systems cannot be fully automated. Instead they
are often “interactive”, indicating that the users need to provide guides to the
system when proving theorems. To what extent human involvement is required
differs depending on the system.

Paulson used interactive theorem prover Isabelle with higher order logic to
prove some security property of the protocol Transport Layer Security [1]. Both
Isabelle and Coq are in principle an LCF-style generic theorem prover. Isabelle is
equipped with relatively strong automation, and is originally written by Paulson
and others [2]. The automation is based on the two parts called “simplifier” (the
rewriting engine) and “classical reasoner” (based on the tableaux method). Coq
is based on an intuitionistic type theory called Calculus of Indutive Construction
and allows one to extract certified programs from proofs.

3 Verification of Transport Layer Security

Paulson used interactive theorem prover Isabelle with higher order logic to prove
some security property of the protocol Transport Layer Security [1].

3.1 TLS

TLS (Transport Layer Security, formerly called SSL, Secure Socket Layer) is a
protocol that provides secure connection above transport protocols such as TCP
and below application protocols such as HTTP, SMTP, etc. Currently, TLS is
mostly used in combination with those application protocols and form HTTPS,
etc., to provide the secure connection version of those protocols. As it is used
extensibly in many activities by common users over the Internet, it has been
standardized by IETF as RFC2246 [4] first time in 1999 (version 1.0). Originally
it was developed by Netscape as SSL from around 1996 and the current version
is TLSv1.1.

81

TLS protocol starts with a phase called “handshake” protocol. This phase is
for negotiation between the client and server on the encryption algorithms and
so on (cipher suite) to be used and establishing session keys using public-key
based key exchange, before actually starting to send encrypted messages over
the connection. Some certificate issuing authority is typically assumed for the
public key based key exchange, providing authentication only for the server.

3.1.1 TLS Handshake

Our main concern is the handshake part of TLS since this is the part of the TLS
protocol Paulson modelled using Isabelle. In this section, we briefly explain a
simplified version of this protocol as in [1]. Formal models are constructed based
on this version.

The client starts the negotiation by sending the ClientHello message contain-
ing his own name, a nonce Na, sessionlD, and a cipher suite that the client wants
to use in the following communication. Receiving this, the server responds with
ServerHello message which contains another nonce Nb, sessionID and another
cipher suite of his own choice. Following ServerHello, the server also sends to
the client his own public key certificate signed by the CA. On receiving these,
the client generate another nonce called “pre-master secret (PMS)” and send it
to the server encrypted by the public key of the server (ClientKeyExchange).
Only the server should be able to decrypt this message, and hence, at this point,
the client and server share three nonces Na, Nb, PMS, and PMS is a shared
secret. From these three, the both parties compute the “master secret (MS)”
using some pseudo-random function. From this master secret both the client
and the server compute session keys to be used to encrypt subsequent commu-
nication. As confirmation, each sends Finished messages, which consist of all
the preceding messages exchanged between them encrypted with the session key
just established.

3.2 Modelling Protocols

In order to model protocol execution syntactically, we take a view that com-
munication protocol executions consist of sequences of message exchanges and
some related incidents (or, say, actions). We model such actions as “events” and
the execution of protocols are modelled by the notion of “traces”, which are de-
fined as sequences (lists) of events. Then the security properties we would like
to prove become those of the set of traces that are associated to the particular
protocol of interest. Since lists are one of the most basic inductively defined

datatypes, the proofs of properties of traces are basically done by induction on
lists.

3.2.1 A quick look on the syntax

The syntax consists of the following datatypes: agents, message, event, key.

82

Agents, Keys, Messages The datatype agent has three constructors. Spy
and Server to represent the assumed adversary and the assumed CA who signs
public key certificates. The third constructor Friend takes a natural number as
the index to represent unbounded number of ordinary participants.

Inductive agent := Spy | Server | Friend : nat — agent.

Agents are divided into two groups: whether they belong to the subset bad or
not. We assume two axioms stating that Spy € bad and Server ¢ bad. For Friend
i, in Coq it is also necessary to state explicitly that for any natural number i
either Friend i € bad or Friend i ¢ bad holds. The private keys of agents in
bad are at Spy’s disposal.

The datatype keys are defined indirectly using functions. Keys for encryp-
tion and those for decryption are associated using the invKey function. Public
keys are defined as publicKey a for any agent a, and private keys are defined
by composition: privateKey a = invKey (publicKey a). The two kinds of ses-
sion keys, clientK and serverK, which are derived after successful execution of
handshake, are defined using the function sessionK which takes three natural
numbers (nonces) and a flag indicating whether it is for the client or the server.
The fact that any session key k is a symmetric key is stated as invKey k = k.
We also need to state the injectivity of these functions so that we can concluded
the equality of the arguments from the equality of the values.

The datatype message is defined inductively: constructors Agent and Key are
for coercing data of type agent and key to those of type message. Similarly,
Nonce and Number are for natural numbers. Hash and MPair take one or two
messages, respectively, to produce another message, which is the hash and the
pair (notation {|x, y|}) of the arguments. Finally Crypt takes a key and a
message to produce a message, which is the encrypted message using the key.

Events The datatype event corresponds to execution steps of protocols. An
execution of the protocol is modelled as a list of events, which are called “traces”.
We only need part of Paulson’s theory Event for the verification of TLS. We
distinguish two different kinds of event: Says a b x, where a b are agents and
x is a message, represents the event when agent a sends message x to agent b.
The second kind, Notes a x represents the event that agent a internally take
note of message x.

Functions on message sets In the analysis, several functions on messages
are used: the function analz takes a set of messages and returns the set of
messages one can obtain by decomposing pairs and decrypting using the keys
contained in that set. This is the ability one expects for active adversaries in
terms of retrieving information from a set of known messages. The function
parts is similar but the decryption is obtained for free, providing the set of
submessages for the given set of messages. The third function synth is for
composing new messages: it takes a set of messages as argument and returns the
set of messages one can compose from the original set and the publicly available
information using taking pairs and hashes and encrypting using available keys.

83

Initial States and knowledge sets The knowledge of agents during the
course of protocol execution is described using the inductively defined function
knows. Given a list of events evs and an agent a, knows a evs returns the set of
messages that agent a can obtain by observing the trace evs. At the start of
execution, all agents have associated initial states of their knowledge. For each
Friend i and Server, it consists of the set of all public keys of participating
agents and his own private key. For Spy, in addition to above, he also knows the
set of private keys of bad agents. The function spies is defined as knows Spy.

3.2.2 TLS traces

Using the language defined in the previous section, each specific protocol is
modelled as a set of rules for generating traces that correspond to runs of the
protocol. For the case of TLS, the following inductive definition defines the set
of TLS traces. Here only a few out of 15 rules are shown.

Inductive tls : Ensemble (list event) :=
| tls_nil : In _ tls nil

| tls_fake : V (evs:list event) (x:message) (a:agent),
In _ tls evs —
In _ (synth (analz (spies initState evs))) x —
In _ tls ((Says Spy a x)::evs)

| tls_spyKeys : V (evs:list event) (na nb m:nat)(r:role),
In _ tls evs —
In _ (analz (spies initState evs)) (Nonce na) —
In _ (analz (spies initState evs)) (Nonce nb) —
In _ (analz (spies initState evs)) (Nonce m) —
In _ tls ((Notes Spy (MPair (Nonce (PRF m na nb))
(Key (sessionK na nb m r))))::evs)

tlsnil is the rule for the base case stating that an empty list is a tls trace.
The next two rules, t1s_fake and tls_spyKeys are for describing Spy’s possible
behaviour. t1ls_fake states that Spy can say whatever message he can synthesize
and analyse from messages in his the knowledge he builds up during observing
the protocol run. tls_spyKeys states that when Spy knows three nonces, he can
use them to create a session key.

A new session in the handshake protocol is initiated by application of the
following rule:

| tls_clientHello : V (evs:list event)(na pa sid:nat)(a b:agent),
In _ tls evs — — In _ (used evs) (Nonce na) —
-~ (3x, 3y, 32z, PRFXxXyz =na) —
In _ tls ((Says a b
{| (Agent a), (Nonce na), (Number sid), (Number pa) [}):

An agent (client) should use a fresh nonce that is not in the range of PRF to
create a correct message to send to the other party (server).

: evs)

84

The rule that plays the central role in the TLS handshake protocol is this:

| tls_clientKeyExch : V (evs:list event)(pms:nat)(a b b’:agent) (kb:key),
In _ tls evs — — In _ (used evs) (Nonce pms) —
- (3x, 3y, 32, PRFxyz=opms) —
List.In (Says b’ a (certificate b kb)) evs —
In _ tls ((Says a b (Crypt kb (Nonce pms)))::
(Notes a {| Agent b, Nonce pms |})::evs)

After the client and the server finished their hello messages, the client creates
another nonce pms and uses server’s public key kb to send it securely. After
application of this rule, the both party now have a shared secret pms.

3.3 Properties Proved

Paulson categorises the properties he proved in several criteria and discusses
them in detail in {1]. We consider that what he calls security theorems are the
final goals of analysis. We proved in Coq all those security theorems and most
of other properties Paulson proved in his TLS theory script. In this section, we
present some of those security theorems using Coq syntax in order to give the
flavour of the properties formally proved in Paulson’s model.

The property analz_insert key states that the loss of a session key won’t
allow the Spy to learn more nonces that he should not know.

Lemma analz_insert_key : V (evs:list event)(x y z n:nat)(r:role),
In _ tls evs —
(In _ (analz (Add _ (spies initState evs) (Key (sessionK x y z r))))
(Nonce n))
~ (In _ (analz (spies initState evs)) (Nonce n)).

analz_insert_key is proved by application of a useful lemma:

Lemma analz_image_keys : V (evs:list event)(n:nat),
In _ tls evs —
V K:Ensemble key, (Vk, In _. K k —
3x, 3y, 3z, 3r,
sessionk x y z r = k) —
(In _ (analz (Union _ (Im _ _ K Key) (spies initState evs))) (Nonce n))
« (In _ (analz (spies initState evs)) (Nonce n)).

This lemma states that, even if you add a set of session keys to Spy’s knowledge,

it does not let Spy to learn any more nonce. The proof of analz_image keys is

quite complex. B '
Another set of examples we present here is about pms and ms.

Lemma Spy_not_see_pms :
V (evs:list event) (pms:nat)(a b:agent),
List.In (Notes a {| Agent b, Nonce pms |}) evs —
In _ tls evs — '
-~ In _bada— - In_ bad b —
= In _ (analz (spies initState evs)) (Nonce pms).

85

This lemma states that when agents a and b are not bad and the rule ClientKeyExch
was applied between them and a shared secret pms is established, then pms is
not derivable from the Spy’s current knowledge. This lemma is used in proofs of
other lemmas. In particular, it is used in the similar lemma about the master
secret ms

Lemma Spy_not_see_ms :
V (evs:list event) (pms na nb:nat) (a b:agent),
List.In (Notes a {| Agent b, Nonce pms |}) evs —
In _ tls evs —

- In_bad a — = In bad b —

- In _ (analz (spies initState evs)) (Nonce (PRF pms na nb)).

The proofs of both lemmas are quite substantial.

4 Proofin Coq'

Adapting the proof scripts in Isabelle to Coq was not a simple task. This mainly
due to the fact that Isabelle is equipped with an efficient term rewriting engine
and proof search engine that allow reasonable automation, while Coq is more
focused on constructive proofs and proof checking and is equipped with some
automation tactics. At the moment, what we have proved are the lemmas given
by Paulson, but still, we consider this experience to be a valuable one. Paulson’s
original Isabelle proof scripts are well adapted for maximising the performance
of Isabelle’s simplifier and the reasoner; the lemmas are formulated in such a way
that the reasoner and the simplifier can make most use of them. However, those
formulations were not the best for constructing more explicit proofs in Coq. So
we reformulated many of the lemmas and, as far as proving TLS properties go,
we could prove them without the help of many of lemmas Paulson prepared to
be used by the simplifier. Our current scripts (consisting of Message.v, Event.v,
Public.v and tls.v) have 161 lemmas proved in total. Paulson’s Isabelle scripts
have more than 270 lemmas, although simple comparison is not appropriate
here because the Coq scripts do not contain some lemmas present in Isabelle
scripts that are not relevant for proving TLS properties. For many cases where
the proofs in Isabelle were just the combination of “blast” and a few lines of
codes for treating special subgoals, we had to explicitly construct proofs using
induction on the construction of TLS traces, which would normally produce 15
subgoals to start with. On the other hand, we could dispense with many lemmas
that are rather simple and seem to exist to help automation, because they are
often not very usable in the explicit proofs we need to provide with Coq. Again,
the numbers are only for a reference but the Coq scripts contain around 6500
lines of codes, while those for Isabelle scripts add up to around 2600.

As for the automation in Coq, we added to the Hint database all the con-
structors from the syntax, and some axioms stating several decision properties.
The basic strategy for most proofs is induction on the structure of TLS traces,
often combined with the case analysis for an agent being bad or not.

86

5 Conclusion

We have used the proof-assistant Coq to reformulate Paulson’s modelling and
formal security proof of Transport Layer Security. Although two theorem provers
share a lot in common in principle, their usage and their mechanisms differ sub-
stantially, and hence, the resulting proofs are also very different. Our proofs
are more explicitly constructed than those done in Isabelle due to the fact that
the level of automation is different with Coq. The proof script consists of four

fles as is the case for Isabelle. We will soon make public the Coq proof scripts
adapted to V8.1.

Acknowledgment

This research was i)artially supported by the Ministry of Education, Culture,
Sports, Science and Technology, Japan (MEXT), Grant-in-Aid for Young Sci-
entists (B), Grant number 187602935003.

References

[1] L. Paulson, “Inductive analysis of the internet protocol TLS”, ACM Trans- |
actions on Information and System Security, vol.2, No.3, pages 332-351,
1999.

[2] T. Nipkow, L. Paulson, M. Wenzel, “Isabelle/HOL: a proof assistant for
higher-order logic”, Lecture Notes in Computer Science, Vol. 2283, 2002.

(3] The Coq proof assistant, http://coq.inria.fr.

[4] T. Dierks and C. Allen, “The TLS Protocol’, IETF, RFC 2246, January
1999. http://www.ietf.org/rfc/rfc2246.txt.

