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Arithmetical rank of squarefree monomial ideals
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INTRODUCTION

This report complements our paper [4]. Throughout this report, k is an
infinite field and R is a polynomial ring over k. We denote variables of R by z;
and y; (1 =1,2,...). Let I denote a squarefree monomial ideal (i.e., the ideal
generated by monomials in which the exponent of each variable is at most 1).
For example, I = (2122, £2T3Z4, T1Z4T5) is a squarefree monomial ideal.

The arithmetical rank of I, denoted by ara I, is defined by

ara ] = min {r : there exists a1, ...,a, € I such that \/(ay,...,a,) = \/.7}

That is, aral is the minimal number of elements in I which generate I up
to radical. The arithmetical rank has the following geometric interpretation.
Assume k is an algebraic closed field, and put R = k[z1,...,2z,]. Then the
algebraic variety associated to I is defined by

V) ={(z1,...,2p) €K™ : f(21,...,2n) =0forall f € I}.
AsV(VT)=V(I),ifr =aral and 1/(ay,...,a,) = VI, then
(0.1) V() = V(... a)) = V((@1)) N--- N V((ar)).

So, V(I) can be written as an intersection of just » hypersurfaces set-theoretically.
Moreover, (0.1) shows an importance to know explicitly r elements generate I
up to radical. ‘

In general, it is difficult to determine the arithmetical rank. If we find r
elements which generate I up to radical, then such r gives an upper bound
for aral, and in particular, p(J), the minimal number of generators of I, is
a trivial upper bound. On the other hand, the following fact is known (see
Lyubeznik [5]).



Fact 0.1. If I is a squarefree monomial ideal, then
(0.2) pdp R/I < aral,
where pdg R/1 is the projective dimension of R/I.

The projective dimension is easy to compute. So, the importance of this
inequality is to give a lower bound for the arithmetical rank. Here, we consider
the following problem.

Problem 0.2. Does aral = pdg R/I hold?

If 4(I) — height I = 0, then the problem is trivially true. Moreover, it is also
known that aral = pdg R/I holds in the case () — height I = 1, 2; see [4].
But, in general, there is a counter-example for this problem.

Example 0.3 ([11]). Let I be the Stanley—Reisner ideal of Reisner’s triangu-
lation of P?(R) (see Figure 1). That is, I is the squarefree monomial ideal in

FIGURE 1. Reisner’s triangulation of P?(R)

k[zi,...,zs] generated by following 10 monomials:
Z1T2X3, T1T2T4, L1T3T5, T1T4T6, T1L5L6, T2T3TL6, T2L4L5, T2L5T6, T3T4T5, L3T4T6-

Then, p(I) = 10 and height I = 3, so, the difference is rather big. If the
character of k is not 2, then R/I is Cohen-Macaulay and pdp R/I = 3. But Z.
Yan [11] showed ara ] = 4 using the étale cohomology. Therefore pdp R/I <
aral.

Now let us explain the organization of this report. In Section 1, we recall
the notion of the Alexander duality, and explain the following inequality:

indeg I <regl < arithdeg /.

In Section 2, we prove the main theorem of this report, which asserts that
Problem 0.2 is true in the case arithdeg I = regl by giving aral generators
(up to radical). See also [4, Theorem 4.1]. In Section 3, we construct another
ara ] generators in special cases, which is different from ones constructed in
Section 2. These generators do not contain no redundant elements in some
sense. Finally, as an appendix, we consider the analytic spread in the case
arithdeg I = indeg I. Note that contents in Section 3 and Appendix A are not
included in [4].
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1. ALEXANDER DUALITY

In this section, we recall the notion of the Alexander duality and introduce
an inequality corresponding to (0.2).

Set R = k[z1,...,2,) and [n] = {1,...,n}. Let A C 2I*! be a simplicial
complex with the vertex set [n], that is, (a) {i} € A for all i € [n]; (b) F € A,
G C F implies G € A. The Alezander dual complex of A, denoted by A*, is
defined by

A ={Fcln]: n\F¢a},
and the Stanley-Reisner ideal In C R associated to A is defined by
In= (i -2y, + 1 <41 <--- <ir <nsuchthat {i5,...,4 } € A).

It is clear that I is a squarefree monomial ideal. Conversely, for any square-
free monomial ideal I C R, there exists the unique simplicial complex A on
[n] such that I = I when indegI > 2. Then if height I > 2, we can define
I* = Ip., the Alezander dual ideal of I. It is known that I** = I.

We shall see the correspondence between Alexander dual ideals and original
ones. If I admits the prime decomposition '

q
I = n (:ctu,:z:m, e ’zttjl) N

=1

then I* = (my,...,m,), where mg = [[7%, Z¢,,. It is easy to see that u(I*) =
# Assp R/I and height I = indeg I*, where Assp R/I is the set of the associated
prime ideal of R/I and indeg I, the initial degree of I, is the minimal degree of
minimal generators of I. Since I is a squarefree monomial ideal, the arithmetic
degree of I, denoted by arithdeg I, is equal to f Assp R/I.

Example 1.1. Consider

I = (x1,22) N (x2, T3, Ta) N (1, T4, T5) = (T1T2, T1T3, T1T4, T2T4, T2T5),
then
I* = (2122, ToTaTq, T1Z4T5) = (21, T2) N (T1, T3) N (21, Z4) N (T2, T4) N (T2, T5)-
So, u(I*) = arithdeg I = 3 and height I = indeg I* = 2.

We now recall the following inequalities:
(1.1) height I < pdg R/I < p(I).

Then the notion which corresponds to the projective dimension is the regularity
reg I of I: _

regI=max{j—z’ : (Tor?(],k))jaéo}.

Theorem 1.2 (N. Terai [9, Corollary 0.3]). Let I be a squarefree monomial
ideal with height I > 2. Then we have

reg I* = pdp R/1.

From (1.1), we obtain the following corollary.
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Corollary 1.3 (Hoa-Trung [3, Theorem 1.1}, Friihbis-Kriiger-Terai [2, Theo-
rem 3.8]). Let I be a squarefree monomial ideal. Then we have

(1.2) indeg I < regl < arithdegl.

2. MAIN THEOREM
We consider Problem 0.2 in the case arithdeg I = reg I.

~ Theorem 2.1 ([4, Theorem 4.1]). Let I be a squarefree monomial ideal with
arithdeg I = regI. Then we have

ara] = pdp R/I.

Remark 2.2. This theorem has been already proved by Terai [10, Theorem 3.3,
but our proof gives ara I generators of I up to radical.

Remark 2.3. The case arithdeg I = indeg I, which is contained in this case
because of (1.2), is solved by Schenzel-Vogel [7] and Schmitt-Vogel [8]. In this
case, ara ] generators have been already known; see Section 3.

From now on, we prove Theorem 2.1. We use the following lemma.

Lemma 2.4 (Hoa-Trung [3, Theorem 2.6]). Let I be as in Theorem 2.1. Then

I can be rewritten in the following form by changing the notation of variables
in R:

I= (Y1, %ty Ttyy) N W2y Tagyy -+ 3 Btggy) M- 0 (Y Ttgrs -+ > Ttgz)s
where y; and z, are variables of R, and y, is different from other yp and z..
From this lemma, we also have
pdg R/I =14 {xtu, ce ey Tty s Ttgy ooy Ttggyr oo o> Ttgry -+ ,mtm} + 1.
Now to prove the theorem, it is enough to find pdp R/ generators.

Proof of Theorem 2.1. By Lemma 2.4, we can write

I‘:an"'nQQa Ql=(y€axt¢17°“axt¢jl)'

We denote the number of variables z; appearing in I by s, that is,

s-—-tt{:ctu,...,xtljl,...,xtﬂ,...,a:tqjq}.

Then pdg R/I = s+ 1. Set

P,_¢={w,-1---x,~,Hyj : 15z’1<---<z‘e§s}, 0<£<s,
J

where j runs through z;, - - - z;, ¢ @, and set

91=Ea, P=UPe

a€Py =0



108

Then Schmitt-Vogel lemma (Lemma 2.5) means \/(go, g1,...,9s) = /(P).

Since P generates I, we have 1/(go0,91,-..,9s) = VI. Therefore aral <
pdg R/I. This complete the proof. O

Lemma 2.5 (Schmitt—Vogel [8, Lemma, pp.249]). Let R be a ring and P is

a finite subset of R. Suppose subsets Py, Py, ..., P, of P satisfy the following

conditions: : '

(SV-1) P =y Pr;

(SV-2) §Py = 1;

(SV-3) For all £ (0 < £ < 38) and for all a,a” € Py, a # a", there exist ¢
(0L ¥ <¥{) and o’ € Py such that a-a" € (d').

Then setting g¢ = ) ,cp, a®® (£ = 0,1,...,s), where e(a) is an arbitrary

element in Z-q, we have

\/(go, g, ... sgs) = \/Z__).

Example 2.6. Consider I = (y1, 1, Z2)N(y2, Z1, 23)N(ys, &3). Then pdg R/I =
#{z1, 2, 23} + 1 = 4. In this case,

Py = {z12223},
Py = {z125y3, 2173, T223},
Py = {z1y3, Tay2ys, Tatn },
P3 = {y1y2’.¢/3}-

Let check conditions of Schmitt-Vogel lemma. From our setting, (SV-1) and
(SV-2) are clear. We shall see (SV-3). For example, we take z1z2ys, 173 € P,
then their product is

T1T2Y3 - T1T3 = T2ToT3Ys € (T172%3), and 2,923 € Pp.
Take z1ys, T2y2ys € P,, then their product is
T1Ys - ToYoYs = T1T2Y2ys € (T122ys), and T1Z2ys3 € P

Thus, the product of 2 elements a,a” € P, increase the variety of variables z;,
and if the element a’ € Py divisible by y;, then each elements a,a” € P, also
divisible by the same variable y;.

Moreover, if we set

e(z1Z273) = e(y1y2ys) = 1,
e(z172ys) = e(z2y2y3) = 2,
e(r173) = e(xa73) = e(z1y3) = e(x3y:) = 3,

then we have homogeneous generators.

3. IRREDUNDANT GENERATORS IN THE CASE
arithdeg I = reg ] = indegl + 1

In the previous section we constructed ara I generators in the case arithdeg I =
regI. However, we needed many “redundant” elements in I there in some
sense; see Example 3.3. In this section, we will give another generators
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which consists of irredundant elements of I in the case arithdegl = reg/ =
indeg I + 1.

Before stating our result, we now consider the case arithdeg/ = indeg/.
Notice that this condition implies that arithdeg/ = regl. Thus our method
in the previous section (see the proof of Theorem 2.1) gives at least one ara ]
generators of I (up to radical). On the other hand, if arithdeg I = 1ndegI
then it is known that I can be written by the following form:

I = (.’1111,‘. . .,$1j1) n ($21, e .,.'172_7'2) Nn--+N ($q1, .. ,xq]‘q),

where Z11,..., %1, 21,y L2jg, - -+, Zql, - - - » Lgj, 8re distinct variables of R.
Schenzel-Vogel [7] and Schmitt—Vogel [8] showed that any squarefree monomial
ideal I with arithdeg] = indeg satisfies aral = pdg R/I using this fact.
Indeed, Schenzel-Vogel [7, Lemma 2] showed that such an ideal I satisfies
pdp R/I = s+ 1, where s = Y1 | 5; — ¢, and Schmitt—Vogel [8, Proposition,
pp.248] showed that if we set

Pr={z10,T00, - Tqe, : ba+lat+- - +Llg=q+L}, g¢=Za,
a€P,

for £=0,1,...,s, then \/(g0,91,..-,9s) = VI.

Each polynomial appearing in the ara I generators given by Schmitt-Vogel
is described as a sum of several elements in the minimal set of monomial
generators of I. Therefore they consist of irredundant terms in some sense.

We now consider the case arithdeg I = reg I = indeg I + 1. In this case, we
can classify the following two cases; see [4, Lemma 5.2].

case 1: I = (x11,Z12,-..,%15) N (T21, Taz, - -, T25,) N -+ N (Tq15 Tg2y - - - » Tgsy)
ﬁ(37«7-0-117 Tg+12y -+ xq+1jq+1,
$111x127"'7$1i1ax217x227'-'7m2i27"'7$p1,xp23°'"xpi'p)’

Where 1 Sp S q, 1 S ie <j( (e= 1’2)"'1p)’ jp+1,---,jq1jq+1 > 1.

case 2: Iy = (z11,%12,.--, %15, Y1,Y2,-->Yp)
N(Za21, Z22, - - - » T2jy Y1, Y2, - - - » Yp)
0(2731, ZI32y... ,$3.7;3) Nn---N (.'Bql, Tg2y .- ,Il:qjq)
r'](377«1+11, Tg+12) - - + s Tg41jg41> L115 T12, - - - Thiy, T21, T225 - - - » Z243),

where ¢ >2,p>1,1<4 <je (£=1,2), J3,---,Jgr Jgr1 2 1.

Set
g+1 q+1
= Ghi-(g+1), s= Zymtp (g+1),
i=1

then pdg R/I; =s;+1fori=1,2.
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Proposition 3.1. Consider the ideal I,. For £=0,1,...,s;, we set
b+ +l=L+q
4 < iy for somet = 1,2,...,?}
b+ 4l b =L+q+1
U {xlglxzez © Tgg, Latllgsr * <l <jforalt=1,2,... ,p} ’

and g¢ = ) _,cp, @ Then we have

\/GO’QI’ <. "gsl) = \/K

Proof. Tt is clear that P = | J;L, P generates I. Hence it is enough to check con-
ditions of Schmitt—Vogel lemma. (SV-1) is nothing. Since Py = {z11221 - Tq}
(SV-2) is clear. For (SV-3), we set the former set of F; as Pl(l) and the latter
one as Pe(z). For any £ > 0, we take a,a” € P (a # a”). If both a and a” lie in
Pe(l), then we can write

Py = {5815137% g, -

”
Q= T1,T2e; "~ Tgty, QA = TreyToey - Taty-

‘Since ly + by + 4Ly =L+ 0+ +£0, and (&, b, .., L) # (€], 63, .., £]),
there exists u € {1,2,...,q} such that £, > £;. Then o' =1y, - - Tuey - - - Ty,
satisfies the condition. The case both a and a” lie in Pe(2) can be checked
similarly. If ¢ € P® and o” € P, then we can write

. n
0= T10,T2¢; * " * LglgTg+1lysry G = TreyTopy - - Tatll,

where £y + £y + -+ Ly + g1 =L+ q+1, ] + €5+ -+ £5 = £ +q, and there
exists t € {1,2,...,p} such that £ <4;. Then £ < ¢ and therefore

byl g <l g+l —Lg SLl+g.
So, @’ = Tyg, - - - Tegr - - - Tye, satisfies the condition. a

Proposition 3.2. Consider the ideal I;. For i = 1,2,...,p, we set y; =
T1ji+i = Tajgt+i- For £=0,1,... 2, we sel
£1+"'+£q=e+q
£ <y orly <
bt gt ln =E+g+]
U L1, T2 " xqeqxq+llq+1 ) it < Zt < jt for allt = 1, 2
itjetitls+--HL+Lla=L+q+1
U yim:ses e :cqeqxq+11q+1 . 1 S i S D y
and g¢ = Y ,cp, @- Then we have

\/(90791> oo ,gaz) = \/I_2

Since the proof of this proposition is similar to Proposition 3.1, we omit
here.

P, = {mlelwztg e Tgeg ¢
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Example 3.3. Let us compare the aral generators in previous section and
these proposition.
Consider

I = (z1, 2, 3) N (24, T5, T) N (T7, T1, T2, Ts)-
To use the method of previous section, we can set y; = 3, Y2 = Te, Y3 = Z7.

Then other variables are z;, za, 24, and zs. Thus pdg R/I = 4+ 1 = 5,
9o, 91, - - - » g4 are followings:

[ go = T1T2T4%s5,

g1 = T1Z2%4 + T1T2T5 + T1T4T5 + T2T4%s,
{ g2 = 2122 - Te + T1Z4 + T1T5 + T2T4 + T2Ts + T4ZTs5 - T3,
g3 =1 Te+ T - Tg + T T3 + T - TalZr,

( 94 = T3TeT7.

There are 16 elements of I in the summand of go, 91,...,94-
While Proposition 3.1 shows

( §o = T1%4,

g1 = T1T5 + T2Z4,

{ 92 = TaZs5 + T1T6 + T3T4,

g3 = Z3TsT7 + T2Zs,

\ 94 = T3T6T7-

So, there are only 9 elements of I in the summand of go, g1, ...,94. These are
minimal generators of I.
We consider another example corresponding to Proposition 3.2. Set

I = (z1, T2, %3, T4) N (Zs, Ts, T4) N (T7, T1, Ts5).

For the method of previous section, we can set y; = 3, y2 = Ts, Y3 = Z7, then
other variables are x,, 2, 4, and z5. So pdg R/I = 5.

[ Jo = Z1X2X4%s,

g1 = T1T2T4 + T1Z2T5 + T1X4T5 + T2T4Ts5,

ﬁ g2 = T1Tg * Tg + T1Z4 + T1Z5 + T2T4 - T7 + T2T5 + T4ZTs,

g3 =11 -Tg + T2 TeLr + Tq - T7 + Ts - T3,

\ 94 = T3TeZ7-

There are 16 elements of I in the summand of g, g1,- . -, 94.
While Proposition 3.2 shows

( Qo = T1Ts,

91 = T1T¢ + T2Zs5,

{ g2 = T1Z4 + T3Ts5 + T2ZeZ7,

g3 = T4Ts + T3TeT7,

\ §4 = T4ZT7.
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There are only 9 elements of I in the summand of gy, g1, .. ., g4, and these are
minimal generators of 1.

APPENDIX A. ANALYTIC SPREAD

In this section, we state the result that we get after the talk. We have
considered the inequality

height I < pdg R/I < aral < u(l).

But there is an invariant which lies between aral and u(I), and that is the
analytic spread {(I) of I.

Definition A.1. Let I be a homogeneous ideal of R. Let R[[t] be a Rees ring
~of I, that is, a subring of a polynomial ring R[t]. Then £(I) = dim R[It]/mR][It]
is called the analytic spread of I.

An ideal J is called a reduction of I if J C I and I™*! = JI™ for some n > 1.
Moreover, J is called a minimal reduction of I if J is a reduction of I, and J
itself does not have any proper reductions. It is known that the cardinality of
the minimal set of generators of minimal reductions of I is constant, and this
number is equal to the analytic spread of I. ‘

As stated in the beginning of this section, the following inequality is known:

(A.1) height I < pdg R/I < aral < I(I) < p(D).

We prove [(I) = pdp R/I for the squarefree monomial ideal I with arithdeg I =
indeg I. .

Theorem A.2. Let I be a squarefree monomial ideal with arithdeg I = indeg I.
Then we have

I(I) = pdp R/I.

We prove this theorem by showing that ara I generators as in previous sec-
tion generate minimal reduction of I. This result is stronger than aral =
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