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Abstract. A communication model in the p-belief system is presented
which leads to a Nash equilibrium of a strategic form game through
robust messages. In the communication process each player predicts the
other players’ actions under his/her private information with conditional
probability greater than p. The players communicate privately their con-
jectures through message according to the communication graph, where
each recipient of the message learns and revises his/her conjecture. The
emphasis is on that each player sends not exact information about his/her
individual conjecture to the other player, but he/she sends robust infor-
mation as the conditional probability about the other players’ actions
greater than his/her exact conjectures.
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1 Introduction

This article presents the communication model leading to a mixed strategy Nash
equilibrium for a strategic form game as a learning process through robust mes-

sages in the p-belief system associated with a partitional information structure.
We show that

Main theorem. Suppose that the players in a strategic form game have the
p-belief system with a common prior distribution. In a communication process
of the game according to a protocol with revisions of their beliefs about the other
players’ actions, the profile of their future predictions converges to a mized strat-
egy Nash equilibrium of the game in the long run.

* This paper is a preliminary version, and the final form will be published elsewhere.
* FIRR O\=b il hiR86 6  Tel 029 272 5201 Fax 029 271 2813
*** Partially supported by the Grant-in-Aid for Scientific Research(C)(No.18540153) in
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Recently, researchers in economics, Al, and computer science become enter-
tained lively concerns about relationships between knowledge and actions. At
what point does an economic agent sufficiently know to stop gathering infor-
mation and make decisions? There are also concerns about the complexity of
computing knowledge. The most interest to us is the emphasis on the consid-
ering the situation involving the knowledge of a group of agents rather than of
just a single agent. .

In game theoretical situations, the concept of mixed strategy Nash equilib-
rium (J.F. Nash [12]) has become central. Yet a little is known about the process
by which players learn if they do. This article will give a communication protocol
run by the mutual learning leading to a mixed strategy Nash equilibrium of a
strategic form game from the point of distributed knowledge system.

Let us consider the following protocol: The players start with the same prior
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distribution on a state-space. In addition they have private information given -

by a partition of the state space. Beliefs of players are posterior probabilities: A
player p-believes ( simply, believes) an event with 0 < p < 1 if the posterior prob-
ability of the event given his/her information is at least p. Each player predicts
the other players’ actions as his/her belief of the actions. He/she communicates
privately their beliefs about the other players’ actions through messages through
robust messages, which message is approximate information about his/her indi-
vidual conjecture on the others’ actions greater than his/her exact conjectures
as the conditional probability under his/her private information. The recipients
update their belief according to the messages. Precisely, at every stage each
player communicates privately not only his/her belief about the others’ actions
but also his/her rationality as messages according to a protocol,! and then the
recipient updates their private information and revises her/his prediction. In
addition, the players are assumed to be rational and maximizing their expected
utility according their beliefs at every stage. When a player communicates with
another, the other players are not informed about the contents of the message.

The main theorem says that the players’ predictions regarding the future be-
liefs converge in the long run, which lead to a mixed strategy Nash equilibrium
of a game. The emphasis is on the three points: First that each player sends
not exact information about his/her individual conjecture but robust informa-
tion about the actions greater than his/her exact conjectures as the conditional
probability under his/her private information, secondly that each player’s pre-
diction is not required to be common-knowledge among all players, and finally
that the communication graph is not assumed to be acyclic.

Many authors have studied the learning processes modeled by Bayesian up-
dating. The papers by E. Kalai and E. Lehrer [5] and J. S. Jordan [4] (and ref-
erences in therein) indicate increasing interest in the mutual learning processes
in games that leads to equilibrium: Each player starts with initial erroneous be-
lief regarding the actions of all the other players. They show the two strategies
converges to an e-mixed strategy Nash equilibrium of the repeated game.

! When a player communicates with another, the other players are not informed about
the contents of the message.



As for as J.F. Nash’s fundamental notion of strategic equilibrium is con-
cerned, R.J. Aumann and A. Brandenburger [1] gives epistemic conditions for
mixed strategy Nash equilibrium: They show that the common-knowledge of
the predictions of the players having the partitional information (that is, equiv-
alently, the S5-knowledge model) yields a Nash equilibrium of a game. However
it is not clear just what learning process leads to the equilibrium.

To fill this gap from epistemic point of view, Matsuhisa ([6], [8], [9]) presents
his communication system for a strategic game, which leads a mixed Nash equi-
librium in several epistemic models. The articles [6], [8] [10] treats the com-
munication model in the S4-knowledge model where each player communicates
to other players by sending exact information about his/her conjecture on the
others’ action. In Matsuhisa and Strokan [10], the communication model in the
p-belief system is introduced:2Each player sends exact information that he/she
believes that the others play their actions with probability at least his/her con-
jecture as messages. Matsuhisa [9] extended the communication model to the
case that the sending messages are non-exact information that he/she believes
that the others play their actions with probability at least his/her conjecture.
This article is in the line of [9]; each player sends his/her robust information
about the actions greater than his/her exact conjectures as the conditional prob-
ability under his/her private information in the Bayesian communication model
presented in Matsuhisa [9]. '

This paper organizes as follows. Section 2 recalls the p-belief system associ-
ated with a partition information structure, and we extend a game on p-belief
system. The Bayesian belief communication process for the game is introduced
where the players send robust messages about their conjectures about the other
players’ action. In Section 3 we give the formal statement of the main theorem
(Theorem 1) and sketch the proof. In Section 4 we conclude with remarks. The
illustrated example will be shown in the lecture presentation at AI*IA 2007.

2 The Model
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Let 2 be a non-empty finite set called a state-space, N a set of finitely many

players {1,2,...n} at least two (n > 2), and let 2 be the family of all subsets
of 2. Bach member of 2 is called an event and each element of {2 called a
state. Let u be a probability measure on {2 which is common for all players.
For simplicity it is assumed that (§2, 1) is a finite probability space with u full
support.3

2.1 p-Belief System*

2 C.f.: Monderer and Samet [11] for the p-belief system.
3 That is; u(w) # 0 for every w € £2.
* Monderer and Samet [11].



Let p be a real number with 0 < p < 1. The p-belief system associated with the
partition information structure (II;);cn is the tuple

(N, 2, p, (IL;)ien, (Bi(*,D))ien)

consisting of the following structures and interpretations: ({2, 1) is a finite prob-
ability space, and ¢’s p-belief operator B;(*;p) is the operator on 29 such that
B;(E,p) is the set of states of {2 in which ¢ p-believes that F has occurred with
probability at least p ; that is,

Bi(E;p) :={w€ 2| up(E|IL;(w)) 2 p }.

Remark 1. When p = 1 the 1-belief operator B;(*;1) becomes the knowledge
operator for S5-logic, i.e. the operator corresponding to the partition on a state
space.

2.2 Game on p-Belief System®

By a game G we mean a finite strategic form game

(N, (Ai)ien, (9i)ien)

with the following structure and interpretations: N is a finite set of players
{1,2,...,4,...n} withn > 2, A; is a finite set of i’s actions (or ¢’s pure strategies)
and g; is an i’s payoff function of A into IR, where A denotes the product
Ay X Ag X -+ X A,,, A_; the product A; x A X -+ X Aj—1 X Aj41 X -+ X
A,. We denote by g the n-tuple (g1,92,...9n) and by a—; the (n — 1)-tuple
(@1y-«-»@i—1,@it1,.-.,an) for a of A. Furthermore we denote a_; = (a:)ien\1
for each I C N.

A probability distribution ¢; on A_; is said to be i’s overall conjecture (or
simply #’s conjecture). For each player j other than %, this induces the marginal
distribution on j’s actions; we call it #’s individual conjecture about j (or simply
i’s conjecture about j.) Functions on {2 are viewed like random variables in the
probability space (§2, u). If x is a such function and z is a value of it, we denote
by [x = z] (or simply by [z]) the set {w € 2| x(w) = z}.

The information structure (II;) with a common prior u yields the distribution
on A x 2 defined by q;(a,w) = u([a = a]|IT;(w)); and the i’s overall conjecture
defined by the marginal distribution

qi(a—i,w) = p([a—; = a—]|IT;(w))

which is viewed as a random variable of ¢;. We denote by [q; = ¢;] the intersec-
tion N,_,ea_,[9:(a—s) = #i(a—;)] and denote by [¢] the intersection ;e yla: =
¢i]. Let g; be a random variable of i’s payoff function g; and a; a random vari-
able of an i’s action a;. Where we assume that IT;(w) C [a;] := [a; = a;] for all
w € [a;] and for every a; of A;. i’s action a; is said to be actual at a state w if

5 Aumann and Brandenburger [1]
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w € [a; = a;]; and the profile a; is said to be actually played at w if w € [a; =
ar] := (\;es(ai = as] for I C N. The pay off functions g = (g1, 9g2,...,9n) is said
to be actually played at a state w if w € [g = g] := (;en& = gi]. Let Exp
denote the expectation defined by

Exp(gi(bi,a—);w) = D gi(bi,a—s) Qi(a—i,w).
a-;€EA_;

A player 7 is said to be rational at w if each i’s actual action a; maximizes
the expectation of his actually played pay off function g; at w when the other
players actions are distributed according to his conjecture q;(-;w). Formally,
letting g; = gi(w) and a; = a;(w), Exp(gi(ai, a—);w) > Exp(gi(bi,a—;);w) for
every b; in A;. Let R; denote the set of all of the states at which 7 is rational.

2.3 Protocol 8

We assume that the players communicate by sending messages. Let T be the time
horizontal line {0,1,2,-:-¢,---}. A protocol is a mapping Pr: T — N x N,t —
(s(t),r(t)) such that s(t) # r(t). Here t stands for time and s(t) and r(t) are,
respectively, the sender and the receiver of the communication which takes place
at time ¢. We consider the protocol as the directed graph whose vertices are the
set of all players N and such that there is an edge (or an arc) from i to j if and
only if there are infinitely many ¢ such that s(t) =i and r(t) = j.

A protocol is said to be fair if the graph is strongly-connected; in words,
every player in this protocol communicates directly or indirectly with every
other player infinitely often. It is said to contain a cycle if there are players
t1,%2,...,% with k > 3 such that for all m < k, i,, communicates directly with
im+1, and such that iy communicates directly with 7;. The communications is
assumed to proceed in rounds”

2.4 Communication on p-Belief System

Let £ be a real number with 0 < € < 1. A Bayesian belief communication process
n(G) with revisions of players’ conjectures (¢}),+)enxT according to a protocol
for a game G is a tuple

7(G) = (Pr, (IT})ien, (B )ien, (9%) (it)eN xT)

with the following structures: the players have a common prior x4 on §2, the
protocol Pr among N, Pr(t) = (s(t),r(¢)), is fair and it satisfies the conditions
that r(t) = s(t + 1) for every t and that the communications proceed in rounds.
The revised information structure II} at time t is the mapping of 2 into 29 for
player i. If i = s(t) is a sender at t, the message sent by ¢ to j = r(t) is M}. An
n-tuple (¢%)icn is a revision process of individual conjectures. These structures
are inductively defined as follows:

® C.f.: Parikh and Krasucki [13]
" There exists a time m such that for all ¢, Pr(t) = Pr(t + m). The period of the
protocol is the minimal number of all m such that for every ¢, Pr(t + m) = Pr(¢).

121



— Set ITY(w) = II; (w)
— Assume that IT’ is defined. It yields the distribution

qi(a,w) = p(la = o]l (w)).
Whence

e R! denotes the set of all the state w at which ¢ is rational according to
his conjecture q¥(-;w); that is, each i’s actual action a; maximizes the
expectation of his pay off function g; being actually played at w when the
other players actions are distributed according to his conjecture q(- ;w)
at time ¢.8

e The message M{ : 2 — 2% gent by the sender i at time ¢t is defined as a

~ robust mformatlon

Miw)= [ {¢€92|di(a-i,€) 2dl(a-i,w)}.
a—s€EA_;

Then:

- The rev1sed partition IT*? at time ¢ + 1is defined as follows:
() = M w)N'M spyWw) ifi=r(t);
o IT; H'l (w) = M}(w) otherwise,

- The revision process (¢,)(. y)eNxT of conjectures is inductively defined as

follows:

e Let wp € 2, and set ¢° 0)(a_,(o)) =q) 0) (a_s(o),wo)

o Take w1 € Mg (wo) N Br(O)([gs(O)] N RY);p),° and set ¢} (a_sqr)) =
1
q; (a- (1),w1)
° Taﬁ%l)é ’

Weg1 € Mgy (we) N Brsy([9s()] N Regeyi P),

d set :
anc se t+1 (a R = ) |

s(t+1) -s(t+1)) =qy (a—s(t+1),wq+1)-

The specification is that a sender s(t) at time ¢ informs the receiver r(t) his/her
individual conjecture about the other players’ actions with a probability greater
than his/her belief. The receiver revises her/his information structure under the
information. She/he predicts the other players action at the state where the
player p-believes that the sender s(t) is rational, and she/he informs her/his the
predictions to the other player (¢ + 1).

We denote by oo a sufficient. large 7 such that for all w € 2, q](-;w) =

Qi (- ;w) = qfT2(-;w) = - - -. Hence we can write q] by q° and ¢] by ¢7°.

Remark 2. This communication model is a variation of the model introduced by
Matsuhisa [6].

8 Formally, letting g; = gi(w), ai = ai(w), the expectation at time ¢, Exp?, is defined
by
Exp(gi(a,a-)iw) = Y gi(as,6-0) qi(a—i,w).
a_;€EA_§

An player i is said to be rational according to his conjecture q}(-,w) at w if for all
bi in A;, Exp‘(g.-(a,-,a-i);w) 2> Eth(gi(bha"i);w)'
® We denote [gi] := [g: = gi]
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3 The Result

We can now state the main theorem :

Theorem 1. Suppose that the players in a strategic form game G have the
knowledge structure with p a common prior. In the Bayesian belief communi-
cation process w(G) according to a protocol Pr among all players in the game,
the n-tuple of their conjectures (@})(iyenxT converges to a mized strategy Nash
equilibrium of the game in finitely many steps.

The proof is based on the below proposition:

Proposition 1. Notation and assumptions are the same in Theorem 1. For any
players i,j € N, their conjectures qi° and q§° on A x {2 must coincide; that is,
q°(a;w) = q§°(a;w) for everya € A and w € 2.

Proof. On noting that Pr is fair, it suffices to verify that qf°(a;w) = q§°(a;w)
for (4, j) = (8(00),r(0)). Since IT;(w) C [ai] for all w € [a;], we can observe that
ai°(a—i;w) = q§°(a;w), and we let define the partitions of 2, {W°(w) | w € 2}
and {Q%(w) | w € 2}, as follows:

WP (w) = ﬂ [ai°(a-i, *) = q{°(a-i,w)] = ﬂ [a5°(a, *) = q§°(a, w)],
a_i€EA_; ’ a€A

Q5 (w) = I3 (w) N Wi (w).
It follows that
Q7 () CWiP(w) forall { € W°(w),

and hence W (w) can be decomposed into a disjoint union of components Q3°(£)
for £ € Wy°(w);

Wew) = |J Q&) for & € W (w).
k=1,2,....m
It can be observed that
p(la = a]]l W) =D Mp(la = all QF (&) (1)
k=1

for some Ax > 0 with Y .-, A = 1.1
On noting that W$°(w) is decomposed into a disjoint union of components
I13°(€) for £ € W°(w), it can be observed that

q5° (a;w) = p(la = ]| W;*(w)) = u(la = a]] II;°(¢k)) (2)

10 This property is called the converity for the conditional probability u(X|*) in Parikh
and Krasucki [13].
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for any &, € W2°(w). Furthermore we can verify that for every w € 2,
w([a = a]| Wi*(w)) = u(la = o] Q7 (w)). (3)

In fact, we first note that W;°(w) can also be decomposed into a disjoint union
of components Q$°(£) for § € W5°(w). We shall show that for every £ € Wi°(w),
k([a = a]| Wi°(w)) = u([a = a]| Q3°(£)). For: Suppose not, the disjoint union G
of all the components Q;(¢) such that u([a = a]| Wi°(w)) = u([a = a]| Q°(£)) is
a proper subset of W°(w). It can be shown that for some wp € W°(w) \ G such
that Q;(wo) = W;°(w) \ G. On noting that u([a = a]|G) = p([a = a]| Wi°(w))
it follows immediately that u([a = a]| Q7 (wo)) = u([a = a]| Wf°(w)), in con-
tradiction. Now suppose that for every wo € W;°(w) \ G, Q;(wo) # Wi°(w)\ G.
The we can take an infinite sequence of states {wx € W°(w) | £ =0,1,2,3,...}
with wr41 € We(w) \ (G U QP (wo) U Q5°(w1) U QF(w2) U - -+ U QP (wk)) in
contradiction also, because {2 is finite.
In viewing (1), (2) and (3) it follows that

a®(a;w) = Y Aea$®(a; &) (4)

k=1

for some & € W°(w). Let &, be the state in {€x}iw, attains the maximal
value of all q$°(a;&k) for k = 1,2,3,---,m, and let {, € {{c}5=; be the state
that attains the minimal value. By (4) we obtain that q$°(a; () < q°(a;w) <
a3 (a3 &) for (i, ) = ((00), H(00)).

On continuing this process according to the fair protocol Pr, it can be plainly
verified: For each w € 2 and for any ¢t > 1,

q°(a;¢,) < £q°(a56w) £ q°(aw) < q°(asé0) < -+ £ q°(a; L)

for some (., -,¢u;€w, - €, € 2, and thus q{°(a;w) = q°(a;w) because
q°(a; ¢w) < qf°(a;w) < q§°(a;&,) and g§°(a; () = q3°(a;§) for every ¢, § € 2.
in completing the proof. ,

Proof of Theorem 1: We denote by I'(i) the set of all the players who directly
receive the message from ion N;ie., I'(i) = {j € N| (i,5) = Pr(t) for somet €
T}. Let F; denote [¢{°] := ,_,ea,[q7°(a-i;*) = ¢§°(a—s)]. It is noted that
F;NF;#0for eachi € N, j € I'(i).

We observe the first point that for each i € N, j € I'(%) and for every a € A,
p(la_; = a_;}| FiNF;) = ¢§°(a-;). Then summing over a_;, we can observe that
u(lai = a5]| Fi N F;) = ¢3°(a;) for any a € A. In view of Proposition 1 it can
be observed that ¢3°(a;) = ¢3°(a;) for each j, k, # 4; i.e., $7°(a;) is independent
of the choices of every j € N other than i. We set the probability distribution
o; on A; by oi(a;) := #5° (a;), and set the profile o = (o).

We observe the second point that for every a € [[;cn Supp(ai), ¢5°(a—i) =
o1(a1) - 0i—1(ai—1)0i+1(ai+1) - - - on(an) : In fact, viewing the definition of o;
we shall show that ¢§°(a—:) = [Iren (5} 47°(ak). To verify this it suffices to
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show that for every k = 1,2,--+,n, ¢°(a_;) = ¢°(a-1.) [Txer\ iy 95 (ak) : We
prove it by induction on k. For k = 1 the result is immediate. Suppose it is true
for £ > 1. On noting the protocol is fair, we can take the sequence of sets of
players {Ix}1<k<n With the following properties:

(a) h={i}chc---ClxyClxgy1C---Clp,=N:
(b) For every k € N there is a player ix+1 € Uy, £'(J) With Tes1 \ Tk = {ik+1}-

We let take j € I such that x4y € I'(j). Set Hj,,, = [Qiyy = i JNF3N
Fj,,,- It can be verified that p([a_;—i,,, = 6—j—ip 1] | Hinyy) = 654, ,, (a—5)
Dividing u(F; N F;,,,) yields that

”’([a-j = a‘—j] IFJ' N Fih+1) = ¢?:+1 (a—j)l‘([a“ik+1 = aik+1] ‘FJ’ n Fik-g-z)'

Thus ¢3°(a—;) = &52,,(@—j—ins,)P5(aiy,, ); then summing over aj, we obtain
¢7°(a-1.) = #5,, (@I —ips, ) 97°(aiy,, ). It immediately follows from Proposi-
tion 1 that ¢¢°(a_y,) = ¢§°(a—1y~isy, )95 (i, ), 8S required.

Furthermore we can observe that all the other players i than j agree on the
same conjecture o;(a;) = ¢7°(a;) about j. We conclude that each action a;
appearing with positive probability in o; maximizes g; against the product of
the distributions o; with [ # i. This implies that the profile o = (0;)ien is a
mixed strategy Nash equilibrium of G, in completing the proof. m]

4 Concluding remarks

We have observed that in a communication process with revisions of players’
beliefs about the other actions, their predictions induces a mixed strategy Nash
equilibrium of the game in the long run. It is well to end some remarks on
related literatures. The S5-knowledge model is an operator model equivalent
to the Kripke semantics for the modal logic 85 (= KT45), which is the binary
relation on a state-space satisfying reflectivity, transitivity and symmetry. The
S4-knowledge model is equivalent to the Kripke semantics for the modal logic
S4 (= KT4), which is the binary relation on a state-space satisfying reflectivity,
transitivity.

Matsuhisa [6] and [8] established the same assertion in the S4-knowledge
model. Furthermore Matsuhisa [7] showed a similar result for e-mixed strategy
Nash equilibrium of a strategic form game in the S4-knowledge model, which
gives an epistemic aspect in Theorem of E. Kalai and E. Lehrer [5]. This article
highlights a communication among the players in a game through sending rough
information, and shows that the convergence to an exact Nash equilibrium is
guaranteed even in such communication on approximate information after long
run.

The main theorem in this article is an extension in the Bayesian communi-
cation for the S5-knowledge model.!! There is an agenda to further research;

11 See Remark 1.
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first, to extend our main theorem to S4-knowledge model, which gives another
generalization of the theorem for the S5-knowledge model, because it coincides
with the theorems in Matsuhisa [6] and [8], and secondly, to unify all the com-
munication models in the preceding papers ([6], [8], [10], [9]) including the result
presented in this article.
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