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In this paper, we give characterizations of finitely generated semigroups with regular
congruence classes and finitely generated semigroups with finite congruence claeses.

1 Presentations of semigroups

Definition. $X$ is a finite alphabet, $X$“ is the set of all words over X. $X^{+}$ is the set of
all non-empty words over $X$ , that is, $X^{+}=X^{*}-\{1\}$ . Under juxtaposition, $X^{*}$ is the free
monoid with a set $X$ of free generators and $X^{+}$ is the free semigroup with a set $X$ of free
generators.
A monoid $M$ is finitely generated if there exists a finite set of $X$ and there exists a surjective
homomorphism of $X^{*}$ to $M$ which maps an empty word onto the identity element of $M$ .
A semigroup $S$ is finitely generated if there exists a finite set of $X$ and there exists a
surjective homomorphism of $X^{+}$ to $S$ .

Deflnition (1) Let $X$ be a finite alphabet and $R$ a subset of $X^{*}xX^{*}$ . Then $R$ is
string-rewriting system.

(2) For $u,v\in X$“, $(w_{1},w_{2})\in R,$ $uw_{1}v\Rightarrow_{R}uw_{2}v$.

The congruence $\mu_{R}$ on $X^{*}$ (or $X^{+}$ ) generated $by\Rightarrow R$ is the Thue congruence defined by
$R$.
(3) A monoid $S$ has a (finite)presentation if there exists a (finite) set of $X$ , there exists a
surjective homomorphism $\phi$ of $X^{*}$ to $S$ and there exists a (finie) string-rewriting system
$R$ consisting of pairs of words over $X$ such that the Thue congruence $\mu_{R}$ is the congruence
$\{(w_{1},w_{2})\in X^{*}xX^{*}|\phi(w_{1})=\phi(w_{2})\}$ .

’This is an absrtact and the paper will appear elsewhere.
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2Semigroups with regular congruence classes

Deflnition. A semigroup $S$ has regular congruence dasses if there exists a finite set
$X$ and there exists a surjective homomorphism $\phi$ of $X^{+}$ to $S$ such that for each words
$w\in X^{+}\phi^{-1}(\phi(w))$ is a regular language.

Deflnition. $X$ is a finite set of alphabet, $X^{*}$ is the set of words over $X,$ $L$ is a subset of
$X^{*}$ , is called a language. The syntactic congruence $\sigma_{L}$ on $X^{*}$ is defined by $w\sigma_{L}w’$ if and

only if the sets { $(x,y)\in X^{*}xX^{*}$ I $xwy\in L$}, $\{(x,y)\in X^{*}xX^{*}|xw’y\in L\}$ are equal

to each other. The syntactic monoid of $L$ Is defined to be a monoid $X^{*}/\sigma_{L}$

Result 1. Let $L$ be a language over X. Then $L$ is regular if and only if $Syn(L)$ is a

finite monoid.

Result 2. Let $L$ be a language of $X^{*}$ . Then the following are equivalent;

(1) $L$ is a $\sigma_{L}$ -dass in $X^{*}$ .

(2) xLy $\cap L\neq((x,y\in X^{*})\Rightarrow xLy\subseteq L$ .
(3) $L$ is an inverse image $\phi^{-1}(m)$ of a homomorphism $\phi$ of $X^{*}$ to a monoid $M$ .

Result 3. For every finitely generated monoid $M$, then $e$ tist languages $\{L_{m}\}_{m\in M}ofX^{*}$

such that $M$ is embedded in the direct pmduct of syntactic monoids.

Deflnition. A monoid $S$ is called residually finite if for each pair of elements $\cdot m,$ $m’\in S$ ,
there exists a conguence on $S$ such that the factor monoid $S/\mu$ is finite and $(m,m’)\not\in\mu$ .

Result 4. If a finitely generated semigroup $S$ has regular congfuence classes, then $M$ is
residually finite.

Deflnition. Let $S$ be a finite generated semigroup. Let $X$ be a finite set and there exists

a surjective homomorphism $\phi$ of $X^{+}$ to $S$ . Then the word problem of $S$ is decidable if
there exists an algorithsm to decide whether $\phi(w_{1})$ is equal to $\phi(w_{2})$ for each pair of words
$w_{1},w_{2}\in X^{+}$ .
Result 5. The word problem is decidable for finitely generated semigroups with regular
congruence classes.

Exampe 1. $A$ finite semigrvup $S$ is semigrv up with regular congruence $cluse\epsilon$ .

Definition. Let $S$ be a semigroup. For any $s\in S$ , let $\sigma_{\epsilon}=\{(a, b)\in SxS|$ $xay=$

$s$ if and if $xby=s(x,y\in S^{1})$}.
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Then $\sigma_{s}$ is a congruence on $S$ .

Theorem 1. $A$ finitely generated semigroup $S$ has regular congmence classes if and only

if for any $s\in S,$ $S/\sigma_{l}$ is a finite semigrvup.

Theorem 2. For a finitely generated semigroup $S$ , it does not depend on presentations
of $S$ that $S$ has regular congruence classes.

Theorem 3. Let $S$ be a finitely generated semigroup utth regular $cong u$ence dasses.
Then a subgroup of $S$ is finite.

Example 2. Let $X$ denote a finite alphabet and $w_{1},$ $\cdots,w_{r}\in X^{+}$ words over $X$ . Let
$I=X^{*}w_{1}X^{*}\cup\cdots\cup X^{*}w_{r}X^{*}$ be an ideal of the free semigroup $X^{+}$ . Then The Rees factor
semigroup $X^{+}/I$ module $I$ is a (unnecessarily finite) semigroup with regular congruence
classae.

${\rm Re} 8ult6$ . (1) For every finite group $G$, there exzsts a regular language $L$ of $X^{*}$ such
that $G$ is isomorphic to $Syn(L)$ .
(2) If a group $G$ has regular congruence dasses, then $G$ is a finite.
Theorem 4. Let $S$ be a semigroup with regular congruence classes. If $S$ is a completely
$(O-)simpl\infty emigroup$ , then $S$ is finite.

Exampe 3. A residually finite semigrvup $S$ is not always a semigrvup Utth ngkr
congruence classes.

3 Semigroups with finite congruence classes.

Deflnition. A semigroup $S$ has finite congruence dasses if there exists a finite set $X$ and
there exists a surjective homomorphism $\phi$ of $X^{+}$ to $S$ such that for each words $w\in X^{+}$

$\phi^{-1}(\phi(w))$ is a finite set.

Theorem 5. Let $S$ be a semigroup with finite congruence classes. Then $S$ has no
idempotents except 1 (that is , $S$ possibly has an idempotent).

Theorem 6. Let $S$ be a semigroup with $r\eta ular$ congruence classes. Then $S$ is a semigrvup
utth finite congruence classes if and only if for any $s\in S,$ $S/\sigma_{\epsilon}$ is a finite nilpotent
semigroup utth zero.

Theorem 7. For a finitely generated semigroup $S$ , it does not depend on presentations
of $S$ that $S$ has finite congruence classes.
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Theorem 8. Let $S$ be a finitely presented semigroup with a string-rewriting system con-
sisting of pairs of words of the same length. Then $S$ is a semigroup with finite congruence
classes.

Example 4. Let $X=\{x_{1}, x_{2}, \cdots , x_{r}\}$ and $\mathcal{R}=\{(x_{i},x_{j})|1\leq i<j\leq r\}$. Then $X^{*}/\mathcal{R}^{*}$

is a monoid with finite congruence classes and is the commutative free monoid.

Theorem 9. Let $S$ be a finitely generated semigroup with a non-overlapping string-

rewriting system. Then $S$ is a semigroup with finite congruence classes.

Theorem 10. Any finitely generated subsemigroup of the free semigroup is a semigroup

with finite congruence classes.

Example 5 There exists a finitely generated subsemigroup $S$ of the kee semigroup which

is a semigroup with finite congruence classes but does not have a finite presentation.

Actually, let $X=\{A, B, V, W\}$ . Then $V(AB)^{n}W=VA(BA)^{n-1}W$ in $X^{+}$ . So the

finitely generated subsemigroup $<V,$ VA, AB, $BA,$ $W,$ $BW>is$ isomophic to non-finitely

presented semigroup $Y=<a,b,$ $c,d,e,$ $f|ac^{n}e=M^{n-1}f(n=0,1,2, \cdots)>$ . By $th\infty rem$

$10$ , the semigroup is a semigroup with finite congruence classes.

The

Theorem 11. Any semigroup with either $C(3)$ or $C(2)+T(4)$ has finite congruence

classese. (Refer to $[1],[3],[4]$ and [7] for the conditions $C(p),$ $T(q).$ )
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