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A Context Sensitive Grammer generating
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Abstract
It is still an open problem whether the set @ of all primitive words is a context free language
or not. There are many related works to this problem. It is known that Q is not a deterministic
context free language but it is a (deterministic) context sensitive language(l]. However, a context

sensitive grammer generating @ have not explicitly given so far. We give such a context sensitive
grammer here.

1 Introduction

Let X be a finite nonempty set of letters, called an alphabet and let X* be the free monoid generated
by X under the operation of catenation. An element of X* is called a word over X. The identity of X*
, denoted by ¢, is called the empty word and X* \ {¢} is denoted by X+. The catenation of two words
z and y i: denoted by zy. A word z € X is primitive if y = f™ for some f € X+ implies n = 1, where
m=ff-r

A phrase-structure grammar G is a quadruple G = (V, X, S, P) where V(resp.X) is a finite nonempty
set of nonterminal (resp.terminal) symbols, § € V is the initial symbol, and P ¢ (VU X)*V(V U X)* x
(VU X)* is a finite nonempty set of production rules. A production rule (I, r) € P is often written in
the form [ — r. A relation — is extended on (V U X)* and defined by zly — zry where (I, r) € P and
z, y € (VU X)*. The transitive closure and reflective and transitive closure of — is denoted by —* and
—*, respectively. The language generated by G is defined by {w € X*|S —* w} and denoted by L(G).
The number of nonterminal symbols and terminal symbols occured in a € (V U X)* is denoted by |a.

A phrase-structure grammar G = (V, X, S, P) is said a context sensitive grammer (CSG for short) if

every production rule I — r satisfies |l| < |r|. Then a languege generated by a CSG is called a context
sensitive language (CSL for short).

2 CSG generating the set of all primitive words over X

At first, we give the phase-structure grammer G which generate the set Q of all primitive words. G is
very close to be a CSL. After that, we transform the grammer into the context sensitive one by new
special nonterminal symbols.

Lemma 2.1 Let Q C X be the set of all primitive words. There is some phase-structure grammer

G which generates Q and whose maximum length on computation is n + 6, for each primitive word of
the length n.

(Sketch of Proof) We define the phrase-structure grammer G = (V, X, S, P) as follows: The set V' of
all nonterminal symbols is defined by
V= {SvSIsL"I_J7 R,UO:ali‘a:a ﬁ,ﬁ,ﬁ,ToaT,$, &‘a' € X}
The initial symbol is S. The production rules P = Uf___l P;:

(Produce an initial configuration)
Py = {8 — $LRS,00m0&, S1 — 451,51 — ala € X},

* This is an abstract and the paper will appear elsewhere.
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(get ready to check mode again)
—
P, = {aog — ooa, Rog — ogR, Loy — Lo;,01a — ao1,ary — 1eala € X}.

(Move R one letter to the right and start to check the multiplicity)
Py = {01Rroa — aRT7|a € X}, ‘

(Scanner o goes to the left and memorize the next letter)
Py ={a% — %a,R% — TR, L%a — aL5},L5R — L R5R|a € X},

(Scanner @, goes to the right and check the letter)
Ps = {72b — b72,5.R — Ro,,8,17a — Far,d37c — ooToc, Fat& — ooTokla, b,c € X,a # c},

(Scanner &3 goes to the right and check the multiplicity)
Ps = {cBa — adR,0BR — ROR,0kTa — Trala € X},

(Movement of the Left-mergin L)
Pr={aT — Ta,$T — $Lja € X},

(Clean up all 6 non-terminal symbols)
Py = {01R1o& — E,aE — Ea,$LE — ¢la € X},

Then the grammer G generates Q. It is easily shown that when G generates a primitive word z, the
length of each configuration on its derivation is equal to or shorter than |z| + 6.

EXAMPLE 2.1 These are examples of derivations by the grammer G.
(1)

S

—* $LRaocoTo&

—* $L0'1RToa&

— $LaR% & start to check

—* $aLRo,r&

— $aLRooro&

—* $Lao; R1o& success

—* a.

(2)
S
—* $LRaaocgmo&
~* $LaR%Ta& start to check
—* 8aLRriTad
— $aLRTar&
—* 8aLRaggT&. fail

This derivation cannot go any longer.
(3)

S
—* $LRab0‘oTo&
—* $LaRTTb& start to check
—* $aLRG2Tb&
- $aLRUoTob&
—* $La0‘1RTob&
— $LabRTT& start to check
—* $aLbRo,T&
— $aLbRogro&
—* $Labo, R1o& success
—* ab.
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(4)
S
—* $LRaabogto&
—* $LaRTrabd& start to check
—* $aLR7 Tabd
— $aLRT atb&
—* $aLRaFRTH&
— $aLRaogmob&
—* $LaaRTTb& start to check
—* $aLaR5.Tb&
— $aLaRogrob&
—* $LaabRGTT& start to check
—* 8aLabRT&
—» $aLabRogmo&
—* $Laabo; RTo& success
—* aab.

Lemma 2.2 Let Q C X+ be the set of all primitive words. Then there is a CSG G which generates

(Sketch of Proof) We define the following CSG G = (V, X, S, P) as follows. Let Vy be the set of the
foundamental nonterminal symbols, V; be the set of the contextual nonterminal symbols.

Vo = {L, T: R,UO,UI»‘F,E;,U—R',E’TO,Ty $7&|a € X},
Vi = {[aje € (Vo U X)3U (VoL X)°},
V={S8,}UV UV,

where S is the initial symbol. The production rules P = U}_, P::

(Produce an initial configuration)
P = {S —a,8$ —>ab,§— [$LR]S1[GCO'QT0&], Sy —a,s — aSlla, b,ce X,a # b}

Each rule from P, to P; is the same production rule as that in Lemma 2.1, respectively. Note that
each rules [ — r in P, to Py has the property of |I| = |r|.

(Rules for the contextural nonterminal symbols)
Py = {fyalaz = [1Bi)B2, au[ezy] — BulBe], [vad] — (B8] la — B € U :P,a = anea,B =
ﬂlﬁ21716 € (‘/0 UX).a |al| = Iﬁll > 01 |a2l = lﬁ%' > 0}

(Eliminate all 6 nonterminal symbols)
Py = {[$La] — a,[ac1 Rmo&] — aja € X}
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