A Context Sensitive Grammer generating the set of all primitive words *

静岡理工科大学 國持良行 (Yoshiyuki Kunimochi)

Department of Computer Science, Shizuoka Institute of Science and Technology Toyosawa 2200-2, Fukuroi-shi, Shizuoka 437-8555, Japan

Abstract

It is still an open problem whether the set Q of all primitive words is a context free language or not. There are many related works to this problem. It is known that Q is not a deterministic context free language but it is a (deterministic) context sensitive language[1]. However, a context sensitive grammer generating Q have not explicitly given so far. We give such a context sensitive grammer here.

1 Introduction

Let X be a finite nonempty set of letters, called an alphabet and let X^* be the free monoid generated by X under the operation of catenation. An element of X^* is called a word over X. The identity of X^* , denoted by ε , is called the *empty word* and $X^* \setminus \{\varepsilon\}$ is denoted by X^+ . The catenation of two words x and y is denoted by xy. A word $x \in X^+$ is primitive if $y = f^n$ for some $f \in X^+$ implies n = 1, where $f^n = \widetilde{ff \cdots f}$.

A phrase-structure grammar G is a quadruple G = (V, X, S, P) where V(resp.X) is a finite nonempty set of nonterminal (resp. terminal) symbols, $S \in V$ is the initial symbol, and $P \subset (V \cup X)^*V(V \cup X)^* \times V(V \cup X)^*$ $(V \cup X)^*$ is a finite nonempty set of production rules. A production rule $(l, r) \in P$ is often written in the form $l \to r$. A relation \to is extended on $(V \cup X)^*$ and defined by $xly \to xry$ where $(l, r) \in P$ and $x, y \in (V \cup X)^*$. The transitive closure and reflective and transitive closure of \to is denoted by \to^+ and \to^* , respectively. The language generated by G is defined by $\{w \in X^* | S \to^* w\}$ and denoted by L(G). The number of nonterminal symbols and terminal symbols occurred in $\alpha \in (V \cup X)^*$ is denoted by $|\alpha|$.

A phrase-structure grammar G = (V, X, S, P) is said a context sensitive grammer (CSG for short) if every production rule $l \to r$ satisfies $|l| \le |r|$. Then a language generated by a CSG is called a context sensitive language (CSL for short).

2 CSG generating the set of all primitive words over X

At first, we give the phase-structure grammer G which generate the set Q of all primitive words. G is very close to be a CSL. After that, we transform the grammer into the context sensitive one by new special nonterminal symbols.

Lemma 2.1 Let $Q \subset X^+$ be the set of all primitive words. There is some phase-structure grammer G which generates Q and whose maximum length on computation is n+6, for each primitive word of the length n.

(Sketch of Proof) We define the phrase-structure grammer G = (V, X, S, P) as follows: The set V of all nonterminal symbols is defined by

$$V = \{S, S_1, L, \overleftarrow{L}, R, \sigma_0, \sigma_1, \overleftarrow{\sigma}, \overrightarrow{\sigma_a}, \overrightarrow{\sigma_R}, \overline{\sigma}, \tau_0, \tau, \$, \& | a \in X\}.$$

The initial symbol is S. The production rules $P = \bigcup_{i=1}^{8} P_i$:

(Produce an initial configuration)

$$P_1 = \{S \to \$LRS_1\sigma_0\tau_0\&, S_1 \to aS_1, S_1 \to a|a \in X\},$$
* This is an abstract and the paper will appear elsewhere.

```
(get ready to check mode again)
P_2 = \{a\sigma_0 \to \sigma_0 a, R\sigma_0 \to \sigma_0 R, L\sigma_0 \to \overline{L}\sigma_1, \sigma_1 a \to a\sigma_1, a\tau_0 \to \tau_0 a | a \in X\}.
(Move R one letter to the right and start to check the multiplicity)
P_3 = \{ \sigma_1 R \tau_0 a \to a R \overleftarrow{\sigma} \tau | a \in X \},
(Scanner \sigma goes to the left and memorize the next letter)
P_4 = \{ a \overleftarrow{\sigma} \rightarrow \overleftarrow{\sigma} a, R \overleftarrow{\sigma} \rightarrow \overleftarrow{\sigma} R, L \overleftarrow{\sigma} a \rightarrow aL\overrightarrow{\sigma}_a, L \overleftarrow{\sigma} R \rightarrow \overline{L} R \overrightarrow{\sigma}_R | a \in X \},
(Scanner \vec{\sigma}_a goes to the right and check the letter)
P_5 = \{ \overrightarrow{\sigma_a}b \to b\overrightarrow{\sigma_a}, \overrightarrow{\sigma_a}R \to R\overrightarrow{\sigma_a}, \overrightarrow{\sigma_a}\tau a \to \overleftarrow{\sigma}a\tau, \overrightarrow{\sigma_a}\tau c \to \sigma_0\tau_0c, \overrightarrow{\sigma_a}\tau \& \to \sigma_0\tau_0\& | a, b, c \in X, a \neq c \},
(Scanner \overrightarrow{\sigma_R} goes to the right and check the multiplicity)
P_6 = \{ \overrightarrow{\sigma_R} a \to a \overrightarrow{\sigma_R}, \overrightarrow{\sigma_R} R \to R \overrightarrow{\sigma_R}, \overrightarrow{\sigma_R} \tau a \to \overleftarrow{\sigma} \tau a | a \in X \},
(Movement of the Left-mergin \overleftarrow{L})
P_7 = \{a \stackrel{\longleftarrow}{L} \rightarrow \stackrel{\longleftarrow}{L} a, \$ \stackrel{\longleftarrow}{L} \rightarrow \$ L | a \in X\},
(Clean up all 6 non-terminal symbols)
P_8 = \{\sigma_1 R \tau_0 \& \to E, aE \to Ea, \$LE \to \varepsilon | a \in X\},\
    Then the grammer G generates Q. It is easily shown that when G generates a primitive word x, the
length of each configuration on its derivation is equal to or shorter than |x|+6.
    EXAMPLE 2.1 These are examples of derivations by the grammer G.
    (1)
                                                                       \rightarrow* $LRa\sigma_0\tau_0&
                                                                       \rightarrow* $L\sigma_1R\tau_0a&
                                                                       \rightarrow \$LaR \overleftarrow{\sigma} \tau \& \text{ start to check}
                                                                       \rightarrow* $aLR\overrightarrow{\sigma_a}\tau&
                                                                       \rightarrow $aLR\sigma_0\tau_0&
                                                                        \rightarrow* $La\sigma_1R\tau_0& success
                                                                        \rightarrow* a.
    (2)
                                                                     \rightarrow* $LRaa\sigma_0\tau_0&
                                                                     \rightarrow* $LaR\overleftarrow{\sigma}\tau a\& start to check
                                                                     \rightarrow* \$aLR\overrightarrow{\sigma_a}\tau a\&
                                                                      \rightarrow $aLR\\sigmaa\tau
                                                                      \rightarrow^* \$aLRa\overline{\sigma}_R^*\tau\&. fail
This derivation cannot go any longer.
     (3)
```

S $\rightarrow^* \$LRab\sigma_0\tau_0\&$ $\rightarrow^* \$LaR\overline{\sigma}\tau b\&$ start to check $\rightarrow^* \$aLR\overline{\sigma}_a\tau b\&$ $\rightarrow \$aLR\sigma_0\tau_0b\&$ $\rightarrow^* \$La\sigma_1R\tau_0b\&$ $\rightarrow \$LabR\overline{\sigma}\tau\&$ start to check $\rightarrow^* \$aLbR\overline{\sigma}_a\tau\&$ $\rightarrow \$aLbR\sigma_0\tau_0\&$ $\rightarrow^* \$Lab\sigma_1R\tau_0\&$ success $\rightarrow^* ab$.

(4)

$$S$$
 $\rightarrow^* \$LRaab\sigma_0\tau_0\&$
 $\rightarrow^* \$LaR\overleftarrow{\sigma}\tau ab\&$ start to check

 $\rightarrow^* \$aLR\overrightarrow{\sigma}a\tau b\&$
 $\rightarrow \$aLR\overrightarrow{\sigma}a\tau b\&$
 $\rightarrow^* \$aLRa\overrightarrow{\sigma}R\tau b\&$
 $\rightarrow^* \$aLRa\sigma_0\tau_0b\&$
 $\rightarrow^* \$LaaR\overleftarrow{\sigma}\tau b\&$ start to check

 $\rightarrow^* \$aLaR\overrightarrow{\sigma}a\tau b\&$
 $\rightarrow^* \$LaabR\overleftarrow{\sigma}\tau b\&$ start to check

 $\rightarrow^* \$aLabR\overleftarrow{\sigma}a\tau b\&$ start to check

 $\rightarrow^* \$aLabR\overrightarrow{\sigma}a\tau b\&$ start to check

Lemma 2.2 Let $Q \subset X^+$ be the set of all primitive words. Then there is a CSG G which generates Q.

(Sketch of Proof) We define the following CSG G = (V, X, S, P) as follows. Let V_0 be the set of the foundamental nonterminal symbols, V_1 be the set of the contextual nonterminal symbols.

$$\begin{split} V_0 &= \{L, \overleftarrow{L}, R, \sigma_0, \sigma_1, \overleftarrow{\sigma}, \overrightarrow{\sigma_a}, \overrightarrow{\sigma_R}, \overrightarrow{\sigma}, \tau_0, \tau, \$, \& | a \in X \}, \\ V_1 &= \{ [\alpha] | \alpha \in (V_0 \cup X)^3 \cup (V_0 \cup X)^5 \}, \\ V &= \{S, S_1\} \cup V_0 \cup V_1, \end{split}$$

where S is the initial symbol. The production rules $P = \bigcup_{i=1}^{9} P_i$:

(Produce an initial configuration)

$$P_1 = \{S \rightarrow a, S \rightarrow ab, S \rightarrow [\$LR]S_1[ac\sigma_0\tau_0\&], S_1 \rightarrow a, S_1 \rightarrow aS_1|a,b,c \in X, a \neq b\}$$

Each rule from P_2 to P_7 is the same production rule as that in Lemma 2.1, respectively. Note that each rules $l \to r$ in P_2 to P_7 has the property of |l| = |r|.

(Rules for the contextural nonterminal symbols)

$$P_8 = \{ [\gamma \alpha_1] \alpha_2 \rightarrow [\gamma \beta_1] \beta_2, \alpha_1 [\alpha_2 \gamma] \rightarrow \beta_1 [\beta_2 \gamma], [\gamma \alpha \delta] \rightarrow [\gamma \beta \delta], |\alpha \rightarrow \beta \in \bigcup_{i=2}^7 P_i, \alpha = \alpha_1 \alpha_2, \beta = \beta_1 \beta_2, \gamma, \delta \in (V_0 \cup X)^*, |\alpha_1| = |\beta_1| > 0, |\alpha_2| = |\beta_2| > 0 \}$$

(Eliminate all 6 nonterminal symbols)

$$P_9 = \{ [\$La] \rightarrow a, [a\sigma_1 R\tau_0 \&] \rightarrow a | a \in X \}$$

References

- [1] Dömösi, P., Horváth, S., Ito, M.,: Formal languages and primitive words, Publ. Math., Debrecen, 42, (1993) pp.315-321.
- [2] Dömösi, P., Horváth, S., Ito, M., Kászonyi, L., Katsura, M.,: Formal languages consisting of primitive words, LNCS, 710, (1993), pp.194–203.
- [3] Ito,M., Katsura, M., Shyr,H., Yu,S.S.: Automata accepting primitive words, Semigroup Forum, 37, (1988), pp.45-52.
- [4] Ito,M., Katsura, M.: Context-free languages consisting of non-primitive words, Int. Journal of Comp. Math., 40, (1991), pp.157-167.