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1 Introduction
Let $d,$ $m$ be integers with $d\geq 2$ and $m>d$ . Let $PG(m, 2)$ be an n-
dimensional projective space over the binary field $GF(2)$ .
Definition 1. A family $S$ of d-dimensional subspaces of $PG(m, 2)$ is called
a d-dimensional dual hyperoval in $PG(m, 2)$ if it satisfies the following con-
ditions;

(1) any two distinct members of $S$ intersect in a projective point,

(2) any three mutually distinct members of $S$ intersect in the empty pro-
jective set,

(3) all members of $S$ generate $PG(m, 2)$ , and

(4) there are exactly 2$d+1$ members of $S$ .
Known dual hyperovals in $PG(d(d+3)/2,2)$ are Huybrechts’ dual hyper-

ovals ([3]), Veronesean dual hyperovals ([4]), and Characteristic dual hyper-
ovals ([2]). Huybrechts’ dual hyperovals and Characteristic dual hyperovals
satisfy the Property $(T)$ : for any distinct members $X,$ $Y$ and $Z$ of $S$ , the
intersection \langle X, $Y$ ) $\cap Z$ is a line, where \langle X, $Y\rangle$ is the projective subspace
spanned by $X$ and Y. On the other hand, Veronesean dual hyperovals do
not satisfy Property $(T)$ . In this note, we show the other construction of d-
dimensional dual hyperovals in $PG(d(d+3)/2,2)$ based on Veronesean dual
hyperovals in section 2, which will appear in [1]. These dual hyperovals are
not isomorphic to any Veronesean dual hyperoval, and that they do not sat-
isfy the property $(T)$ . Hence, we have a new family of dual hyperovals in
$PG(d(d+3)/2,2)$ . In section 3, we study the automorphism group of $S$ .
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2 A construction
Let $n\geq d+1$ and $\sigma$ a generator of $Gal(GF(2^{n})/GF(2))$ . Let . $H$ be a
$d+1$-dimensional $GF(2)$-vector subspace of $GF(2^{n})$ . We may assume that
$H$ has a basis $\{e_{0)}e_{1,}e_{d}\}$ such that $\{e_{i}e_{j}|0\leq i\leq j\leq d\}$ are linearly
independent over $GF(2)$ . Let us denote by $\overline{H}$ the vector space generated by
$\{(e_{i}e_{j}, e_{i}^{\sigma}e_{j}+e_{i}e_{j}^{\sigma})|0\leq i\leq j\leq d\}\subset GF(2^{d})\cross GF(2^{d})$ . For a non-zero vector
$u$ of $H$ , its support, denoted as Supp$(u)$ , is the subset $M$ of $\{e_{0}, e_{1)}e_{2}, \ldots, e_{d}\}$

for which $u= \sum_{e_{i}\in M}e_{i}$ . Let $V\subset H$ be a vector subspace generated by
$\{e_{1}, e_{2}, \ldots, e_{d}\}$ over $GF(2)$ , and let $H \ni s=\sum_{i=0}^{d}\alpha_{i}e_{i}rightarrow\overline{s}=\sum_{i=1}^{d}\alpha_{i}e_{i}\in V$

be a natural projection, where $\alpha_{i}\in GF(2)$ for $0\leq i\leq d$ .

Deflnition 2. Let $x_{s,t}\in GF(2)$ for $s,$ $t\in H$ which satisfy the following
conditions:

(1) $x_{s,t}=x_{s,t+e_{0}}=x_{s+e_{0},t}=x_{s+e_{0},t+e_{0}}$ ,

(2) $x_{s,w}=0$ for $w\in\{0, e_{0}, e_{1}, \ldots, e_{d}\}$ ,

(3) $x_{s,t}=x_{w,t}$ for $w\in Supp(\overline{s})\backslash Supp(t\gamma$ ,

(4) $x_{s,t}+x_{t,s}=x_{w,s}+x_{w,t}$ for $w\in Supp(\overline{s})\cap Supp(t\gamma$ ,

(5) $x_{s,s}=x_{w,s}$ for $w\in Supp(\overline{s})$ , and

(6) $x_{s,t}+x_{s,s}=x_{s,s+t}$ .

Using this $\{x_{s,t}\}$ , we define $b(s, t)$ for $s,$ $t\in H\backslash \{0\}$ as follows:

Definition 3. In $GF(2^{n})\cross GF(2^{n}))$ let us define $b(s, t)$ for $s,$ $t\in H\backslash \{0\}$ as

$b(s, t)$ $=$ $(st, s^{\sigma}t+st^{\sigma})$

$+x_{s,t} \sum_{w\in Supp(s)}(we_{0}+w^{2}, w^{\sigma}e_{0}+we_{0}^{\sigma})$

$+$
$\sum_{w\in Supp(t)}x_{w,s}(we_{0}+w^{2}, w^{\sigma}e_{0}+we_{0}^{\sigma})$

.

We are able to show that $b(s, t)\neq 0$ for $s,$ $t\in H\backslash \{0\}$ . So we may regard
that $b(s, t)\in PG(2n-1,2)=GF(2^{n})\cross GF(2^{n})\backslash \{(0_{:}0)\}$ for $s,$ $t\in H\backslash \{0\}$ .
We prove tbe following $(b1)-(b6)$ for $b(s, t)$ with $s,$ $t\in H\backslash \{0\}$ in [1].
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(b1) $b(s, s)=(s^{2},0)$ ,

(b2) $b(s, t)=b(t, s)$ for any $s,$ $t$ ,

(b3) $b(s, t)\neq 0$ ,

(b4) $b(s, t)=b(s^{J}, t’)$ if and only if $\{s, t\}=\{s’, t’\}$ ,

(b5) $\{b(s, t)|t\in H\backslash \{0\}\}\cup\{0\}$ is a vector space over $GF(2)$ ,

(b6) $b(w, w’)=(ww’, w^{\sigma}w’+ww^{\prime\sigma})$ for $w,$ $w’\in\{e_{0}, e_{1}, \ldots, e_{d}\}$ .

Using $(b1)-(b6)$ , we are able to prove the following theorem.

Theorem 1. Inside $PG(2n-1,2)=GF(2^{n})\cross GF(2^{n})\backslash \{(0,0)\}$ , let $X(s)$ $:=$

$\{b(s, t)|t\in H\backslash \{0\}\}$ for $s\in H\backslash \{0\}$ and $X(\infty)$ $:=\{b(s, s)|s\in H\backslash \{0\}\}$ . Then
$X(s)$ for $s\in H\backslash \{0\}$ and $X(\infty)$ are d-dimensional subspaces of $PG(2n-1,2)$ .
Moreover, we have that $S:=\{X(s)|s\in H\backslash \{0\}\}\cup\{X(\infty)\}$ is a d-dimensional
dual hyperoval in $PG(d(d+3)/2,2)$ .

Let $\chi$ be the characteristic function of $V\backslash \{0\}$ , that is, $\chi$ is a map from $V$

to $GF(2)$ defined by $\chi(v)=0$ or 1 according to whether $v=0$ or not. We
use the symbol $J(u)$ for $u\in H$ to denote $\{0\}$ if $\overline{u}=0$ , or Supp $(\overline{u})$ if $\overline{u}\neq 0$ .
With the above convention, we consider the following function from $H\cross H$

to $GF(2):x_{s,t}$ $:= \chi(\overline{s}+t)\neg+\sum_{w\in J(t)}\chi(\overline{s}+w)$ . Then we have the following
Theorem.

Theorem 2. $\{x_{s,t}\}$ defined above satisfies (1) $-(6)$ . Moreover, if $S$ is a dual
hyperoval in Theorem 1 defined by $\{x_{s,t}\}$ above, we have that

(1) $S$ is not isomorphic to the Veronesean dual hyperoval, and

(2) $S$ does not satisfy Property $(T)$ .

As a consequence of Theorem 2, we have a new family of dual hyperoval
$S$ in $PG(d(d+3)/2)$ .

We define $\alpha\{s, t_{1}, t_{2}\}\in GF(2)$ 下 s: $\alpha\{s, t_{1}, t_{2}\}$ $:=x_{s,t_{1}}+x_{s,t_{2}}+x_{s,s}+$

$x_{s,s+t_{1}+t_{2}}$ . Then we see the following proposition.

Proposition 1. Let $s\cdot,$ $t_{1},$ $t_{2}\in H\backslash \{0\}$ . Assume that $t_{1}\neq t_{2}$ . Then, $we$

have $b(s, t_{1})+b(s, t_{2})=b(s, t_{1}+t_{2}+\alpha\{s, t_{1}, t_{2}\}(s+e_{0}))$ , where $\alpha\{s, t_{1}, t_{2}\}=$

$\chi(\overline{s}+t_{1}^{-})+\chi(\overline{s}+t_{2}^{-})+\chi(t_{1}^{-}+t_{2}^{-})$ if $t_{1}^{-}\neq 0,$ $t_{2}^{-}\neq 0$ and $\overline{s}\neq t_{1}^{-}+t_{2}^{-}$ . Otherwise,
we have $\alpha\{s, t_{1}, t_{2}\}=0$ .
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3 The automorphism group
Theorem 3. The automorphism group of $S$ is $2^{d}$ : $GL(d, 2)$ .

We recall tbat a automorpbism of $S$ is an element $\Phi$ of $PGL(d(d+3)/2,2)$
which permute the members of $S$ in $PG(d(d+3)/2,2)$ , which means, for any
automorhism $\Phi$ , there exists a one-to-one mapping $\rho$ from $H\backslash \{0\}\cup\{\infty\}$ onto
itself such that $\Phi$ sends any member $X(s)$ to $X(\rho(s))$ . We note that, by the
definition of dual hyperoval, for any automorphism $\Phi$ , there exists only one
$\rho$ which satisfies that $\Phi$ sends any member $X(s)$ to $X(\rho(s))$ . So, to prove
Theorem 3, it is sufficient to prove that $\rho$ is a linear mapping of $H$ which
fixes $e_{0}$ , and that any such mapping $\rho$ defines an automorphism $\Phi$ , because
the group consists of linear mappings of $H$ which fixes $e_{0}$ is $2^{d}$ : $GL(d, 2)$ .

In this note, we only prove that, for any linear mapping $\rho$ from $H$ onto
itself which fixes $e_{0}$ , there exists an automorphism $\Phi$ which maps $X(t)$ to
$X(\rho(t))$ for $t\in H\backslash \{0\}$ and fixes $X(\infty)$ .

Proof. Recall that the vectors $b(w, w’)=(ww’, w^{\sigma}w’+ww^{\prime\sigma})$ form a basis of
the underlying vectorspace of the ambient space fi for $w,$ $w’\in\{e_{0}, e_{1}, \ldots , e_{d}\}$ .
We define a map $\Phi$ from $\overline{H}$ to itself on this basis as follows; $\Phi(b(w,w’))=$

$b(\rho(u), \rho(w’))$ for $w,$ $w’\in\{e_{0}, e_{1}, \ldots, e_{d}\}$ . This map is uniquely extended to
a linear map on $\overline{H}$ , which we also denote by $\Phi$ . We have to show that, for
every $u,$ $v\in H$ ,

$\Phi(b(u, v))=b(\rho(u), \rho(v))$ . (1)

If $u=v$ , it is easy to see that $\Phi(b(u, u))=b(\rho(u), \rho(u))$ . Rom now on, we
consider the case that $u\neq v$ . We note that a subspace $X(u)=\{b(u, v)|v\in$

$H\backslash \{0\}\}$ is generated by the vectors $b(u, w)$ for $w\in\{u, e_{0}, \ldots, e_{d}\}$ , since
$b(u, v)= \sum_{w\in Supp(v)}b(u, w)+x_{u,v}(b(u, u)+b(u, e_{0}))$ . Let $m(u, v)$ be the min-
imal number $m$ such that $b(u, v)= \sum_{i=1}^{m}b(u, w_{i})$ for some distinct elements
$w_{i}$ $(i=1, \ldots , m)$ in $\{u, e_{0}, e_{1}, \ldots, e_{d}\}$ . Any such expression with $m=m(u, v)$
is called a minimal expression of $b(u, v)$ . We prove claim (1) by induction on
$m(u, v)$ .

Step 1: Assume first that $u\in\{e_{0}, e_{1}, \ldots , e_{d}\}$ . If $m(u, v)=1$ , then $b(u, v)$

is one of the basis vectors $b(w, w’)(w, w’\in\{e_{0}, \ldots.e_{d}\})$ of $\overline{H}$, and hence claim
(1) follows from the definition of $\Phi$ . Assume $m(u, v)>1$ and that the claim
holds for every $v^{J}\in H$ with $7n(u, v^{J})<m(u, v)$ . Let $b(u, v)= \sum_{i=1}^{m}b(u, w_{i})$

with $m$ $:=m(u, \cdot v)$ be minimal expression of $b(u, v)$ . Since $X(u)\cup\{0\}=$

$\{b(u_{\}h)|h\in H\}$ is a subspace with a bijection $H\ni h\mapsto b(u, h)\in X(u)$ , there
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exists a unique $v_{1}\in H$ such that $b(u, v_{1})= \sum_{i=1}^{m-1}b(u, w_{\dot{r}},)$ . We have $b(u, v)=$
$b(u, v_{1})+b(u, w_{m})$ . In particular, we have $v=v_{1}+w_{m}+\alpha\{u, v_{1}, w_{m}\}(u+e_{0})$ ,
and hence we have $\rho(v)=\rho(v_{1})+\rho(w_{m})+\alpha\{\rho(u), \rho(v_{1}), \rho(w_{m})\}(\rho(u)+$

$e_{0})$ . Now, since $u\in\{e_{0}, \ldots, e_{d}\}$ , we have $\Phi(b(u, w_{i}))=b(\rho(u), \rho(w_{i}))$ by
definition. As $m(u, v_{1})\leq m-1$ , we have $\Phi(b(u, v_{1}))=b(\rho(u), \rho(v_{1}))$ by
the induction hypothesis. Combining these remarks, it follows the linearity
of $\Phi$ that $\Phi(b(u, v))=\Phi(b(u, v_{1}))+\Phi(b(u, w_{m}))$ . Note that $b(\rho(u), \rho(v_{1}))+$

$b(\rho(u), \rho(w_{m}))=b(\rho(u), \rho(v_{1})+\rho(w_{m})+\alpha\{\rho(u), p(v_{1}), \rho(w_{m})\}(\rho(u)+e_{0}))$ .
Hence we have $\Phi(b(u, v))=b(\rho(u), \rho(v))$ . Thus, the claim is verified.

Step 2: Next, we prove (1) for $u\in H$ with $wt(u)\geq 2$ by induction on
$m(u, v)$ . The starting point in this case is a minimum number $m(u, v)$ for
$u\in H$ . Remark that with fixed $u\in H$ , the minimality of $m(u, v)$ implies that
$v\in\{u, e_{0}, \ldots , e_{d}\}$ . Then, claim (1) has already been established in Steep 1.
Then, the verbatim repetition of the proof above goes through, execept at
one point where we claim $\Phi(b(u, w_{m}))=(b(\rho(u), \rho(w_{n\iota}))$ . In these case when
$wt(u)\geq 2$ , this claim holds from the conclusion of Step 1, replacing $(u, v)$ by
$(w_{m}, u)$ . Hence we have claim (1) for every $u,$ $v\in H$ .

Since $\rho$ is a bijection on $H$ , the vectors $b(\rho(u), \rho(v))$ for $u,$ $v\in H$ generate
$\overline{H}$ . Thus claim (1) implies that the linear map $\Phi$ is surjective, and hence
bijective on $\overline{H}$ . Furthermore, claim (1) shows that $\Phi$ maps each member
$X(u)$ isomorphically onto a member $X(\rho(u))$ . Thus we conclude that $\Phi$ is
an automorphism with associated bijection $\rho$ . $\square$
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