On some d-dual hyperovals in PG(d(d+3)/2, 2)

詫間電波高專 谷口 浩朗 (Hiroaki Taniguchi) Takuma National College of Technology

1 Introduction

Let d, m be integers with $d \ge 2$ and m > d. Let PG(m, 2) be an n-dimensional projective space over the binary field GF(2).

Definition 1. A family S of d-dimensional subspaces of PG(m, 2) is called a d-dimensional dual hyperoval in PG(m, 2) if it satisfies the following conditions;

- (1) any two distinct members of S intersect in a projective point,
- (2) any three mutually distinct members of S intersect in the empty projective set,
- (3) all members of S generate PG(m, 2), and
- (4) there are exactly 2^{d+1} members of S.

Known dual hyperovals in PG(d(d+3)/2, 2) are Huybrechts' dual hyperovals ([3]), Veronesean dual hyperovals ([4]), and Characteristic dual hyperovals ([2]). Huybrechts' dual hyperovals and Characteristic dual hyperovals satisfy the Property (T): for any distinct members X, Y and Z of S, the intersection $\langle X, Y \rangle \cap Z$ is a line, where $\langle X, Y \rangle$ is the projective subspace spanned by X and Y. On the other hand, Veronesean dual hyperovals do not satisfy Property (T). In this note, we show the other construction of ddimensional dual hyperovals in PG(d(d+3)/2, 2) based on Veronesean dual hyperovals in section 2, which will appear in [1]. These dual hyperovals are not isomorphic to any Veronesean dual hyperoval, and that they do not satisfy the property (T). Hence, we have a new family of dual hyperovals in PG(d(d+3)/2, 2). In section 3, we study the automorphism group of S.

2 A construction

Let $n \geq d+1$ and σ a generator of $Gal(GF(2^n)/GF(2))$. Let H be a d+1-dimensional GF(2)-vector subspace of $GF(2^n)$. We may assume that H has a basis $\{e_0, e_1, \ldots, e_d\}$ such that $\{e_i e_j | 0 \leq i \leq j \leq d\}$ are linearly independent over GF(2). Let us denote by \overline{H} the vector space generated by $\{(e_i e_j, e_i^{\sigma} e_j + e_i e_j^{\sigma}) | 0 \leq i \leq j \leq d\} \subset GF(2^d) \times GF(2^d)$. For a non-zero vector u of H, its support, denoted as Supp(u), is the subset M of $\{e_0, e_1, e_2, \ldots, e_d\}$ for which $u = \sum_{e_i \in M} e_i$. Let $V \subset H$ be a vector subspace generated by $\{e_1, e_2, \ldots, e_d\}$ over GF(2), and let $H \ni s = \sum_{i=0}^d \alpha_i e_i \mapsto \overline{s} = \sum_{i=1}^d \alpha_i e_i \in V$ be a natural projection, where $\alpha_i \in GF(2)$ for $0 \leq i \leq d$.

Definition 2. Let $x_{s,t} \in GF(2)$ for $s,t \in H$ which satisfy the following conditions:

- (1) $x_{s,t} = x_{s,t+e_0} = x_{s+e_0,t} = x_{s+e_0,t+e_0}$
- (2) $x_{s,w} = 0$ for $w \in \{0, e_0, e_1, \dots, e_d\},\$
- (3) $x_{s,t} = x_{w,t}$ for $w \in Supp(\bar{s}) \setminus Supp(\bar{t})$,
- (4) $x_{s,t} + x_{t,s} = x_{w,s} + x_{w,t}$ for $w \in Supp(\bar{s}) \cap Supp(\bar{t})$,
- (5) $x_{s,s} = x_{w,s}$ for $w \in Supp(\bar{s})$, and
- (6) $x_{s,t} + x_{s,s} = x_{s,s+t}$.

Using this $\{x_{s,t}\}$, we define b(s,t) for $s,t \in H \setminus \{0\}$ as follows:

Definition 3. In $GF(2^n) \times GF(2^n)$, let us define b(s,t) for $s,t \in H \setminus \{0\}$ as

$$b(s,t) = (st, s^{\sigma}t + st^{\sigma}) + x_{s,t} \sum_{w \in Supp(s)} (we_0 + w^2, w^{\sigma}e_0 + we_0^{\sigma}) + \sum_{w \in Supp(t)} x_{w,s} (we_0 + w^2, w^{\sigma}e_0 + we_0^{\sigma}).$$

We are able to show that $b(s,t) \neq 0$ for $s,t \in H \setminus \{0\}$. So we may regard that $b(s,t) \in PG(2n-1,2) = GF(2^n) \times GF(2^n) \setminus \{(0,0)\}$ for $s,t \in H \setminus \{0\}$. We prove the following (b1)-(b6) for b(s,t) with $s,t \in H \setminus \{0\}$ in [1].

- (b1) $b(s,s) = (s^2,0),$
- (b2) b(s,t) = b(t,s) for any s, t,
- (b3) $b(s,t) \neq 0$,
- (b4) b(s,t) = b(s',t') if and only if $\{s,t\} = \{s',t'\},\$
- (b5) $\{b(s,t)|t \in H \setminus \{0\}\} \cup \{0\}$ is a vector space over GF(2),

(b6)
$$b(w, w') = (ww', w^{\sigma}w' + ww'^{\sigma})$$
 for $w, w' \in \{e_0, e_1, \dots, e_d\}.$

Using (b1)-(b6), we are able to prove the following theorem.

Theorem 1. Inside $PG(2n-1,2) = GF(2^n) \times GF(2^n) \setminus \{(0,0)\}$, let $X(s) := \{b(s,t) | t \in H \setminus \{0\}\}$ for $s \in H \setminus \{0\}$ and $X(\infty) := \{b(s,s) | s \in H \setminus \{0\}\}$. Then X(s) for $s \in H \setminus \{0\}$ and $X(\infty)$ are d-dimensional subspaces of PG(2n-1,2). Moreover, we have that $S := \{X(s) | s \in H \setminus \{0\}\} \cup \{X(\infty)\}$ is a d-dimensional dual hyperoval in PG(d(d+3)/2, 2).

Let χ be the characteristic function of $V \setminus \{0\}$, that is, χ is a map from V to GF(2) defined by $\chi(v) = 0$ or 1 according to whether v = 0 or not. We use the symbol J(u) for $u \in H$ to denote $\{0\}$ if $\bar{u} = 0$, or $Supp(\bar{u})$ if $\bar{u} \neq 0$. With the above convention, we consider the following function from $H \times H$ to GF(2): $x_{s,t} := \chi(\bar{s} + \bar{t}) + \sum_{w \in J(t)} \chi(\bar{s} + w)$. Then we have the following Theorem.

Theorem 2. $\{x_{s,t}\}$ defined above satisfies (1)-(6). Moreover, if S is a dual hyperoval in Theorem 1 defined by $\{x_{s,t}\}$ above, we have that

- (1) S is not isomorphic to the Veronesean dual hyperoval, and
- (2) S does not satisfy Property (T).

As a consequence of Theorem 2, we have a new family of dual hyperoval S in PG(d(d+3)/2).

We define $\alpha\{s, t_1, t_2\} \in GF(2)$ as: $\alpha\{s, t_1, t_2\} := x_{s,t_1} + x_{s,t_2} + x_{s,s} + x_{s,s+t_1+t_2}$. Then we see the following proposition.

Proposition 1. Let $s, t_1, t_2 \in H \setminus \{0\}$. Assume that $t_1 \neq t_2$. Then, we have $b(s, t_1) + b(s, t_2) = b(s, t_1 + t_2 + \alpha\{s, t_1, t_2\}(s + e_0))$, where $\alpha\{s, t_1, t_2\} = \chi(\bar{s} + \bar{t_1}) + \chi(\bar{s} + \bar{t_2}) + \chi(\bar{t_1} + \bar{t_2})$ if $\bar{t_1} \neq 0$, $\bar{t_2} \neq 0$ and $\bar{s} \neq \bar{t_1} + \bar{t_2}$. Otherwise, we have $\alpha\{s, t_1, t_2\} = 0$.

3 The automorphism group

Theorem 3. The automorphism group of S is 2^d : GL(d, 2).

We recall that a automorphism of S is an element Φ of PGL(d(d+3)/2, 2)which permute the members of S in PG(d(d+3)/2, 2), which means, for any automorhism Φ , there exists a one-to-one mapping ρ from $H \setminus \{0\} \cup \{\infty\}$ onto itself such that Φ sends any member X(s) to $X(\rho(s))$. We note that, by the definition of dual hyperoval, for any automorphism Φ , there exists only one ρ which satisfies that Φ sends any member X(s) to $X(\rho(s))$. So, to prove Theorem 3, it is sufficient to prove that ρ is a linear mapping of H which fixes e_0 , and that any such mapping ρ defines an automorphism Φ , because the group consists of linear mappings of H which fixes e_0 is $2^d : GL(d, 2)$.

In this note, we only prove that, for any linear mapping ρ from H onto itself which fixes e_0 , there exists an automorphism Φ which maps X(t) to $X(\rho(t))$ for $t \in H \setminus \{0\}$ and fixes $X(\infty)$.

Proof. Recall that the vectors $b(w, w') = (ww', w^{\sigma}w' + ww'^{\sigma})$ form a basis of the underlying vectorspace of the ambient space \overline{H} for $w, w' \in \{e_0, e_1, \ldots, e_d\}$. We define a map Φ from \overline{H} to itself on this basis as follows; $\Phi(b(w, w')) = b(\rho(w), \rho(w'))$ for $w, w' \in \{e_0, e_1, \ldots, e_d\}$. This map is uniquely extended to a linear map on \overline{H} , which we also denote by Φ . We have to show that, for every $u, v \in H$,

$$\Phi(b(u,v)) = b(\rho(u), \rho(v)). \tag{1}$$

If u = v, it is easy to see that $\Phi(b(u, u)) = b(\rho(u), \rho(u))$. From now on, we consider the case that $u \neq v$. We note that a subspace $X(u) = \{b(u, v) | v \in H \setminus \{0\}\}$ is generated by the vectors b(u, w) for $w \in \{u, e_0, \ldots, e_d\}$, since $b(u, v) = \sum_{w \in Supp(v)} b(u, w) + x_{u,v}(b(u, u) + b(u, e_0))$. Let m(u, v) be the minimal number m such that $b(u, v) = \sum_{i=1}^{m} b(u, w_i)$ for some distinct elements $w_i \ (i = 1, \ldots, m)$ in $\{u, e_0, e_1, \ldots, e_d\}$. Any such expression with m = m(u, v) is called a minimal expression of b(u, v). We prove claim (1) by induction on m(u, v).

Step 1: Assume first that $u \in \{e_0, e_1, \ldots, e_d\}$. If m(u, v) = 1, then b(u, v)is one of the basis vectors b(w, w') $(w, w' \in \{e_0, \ldots, e_d\})$ of \overline{H} , and hence claim (1) follows from the definition of Φ . Assume m(u, v) > 1 and that the claim holds for every $v' \in H$ with m(u, v') < m(u, v). Let $b(u, v) = \sum_{i=1}^{m} b(u, w_i)$ with m := m(u, v) be minimal expression of b(u, v). Since $X(u) \cup \{0\} =$ $\{b(u, h) | h \in H\}$ is a subspace with a bijection $H \ni h \mapsto b(u, h) \in X(u)$, there exists a unique $v_1 \in H$ such that $b(u, v_1) = \sum_{i=1}^{m-1} b(u, w_i)$. We have $b(u, v) = b(u, v_1) + b(u, w_m)$. In particular, we have $v = v_1 + w_m + \alpha \{u, v_1, w_m\}(u+e_0)$, and hence we have $\rho(v) = \rho(v_1) + \rho(w_m) + \alpha \{\rho(u), \rho(v_1), \rho(w_m)\}(\rho(u) + e_0)$. Now, since $u \in \{e_0, \ldots, e_d\}$, we have $\Phi(b(u, w_i)) = b(\rho(u), \rho(w_i))$ by definition. As $m(u, v_1) \leq m - 1$, we have $\Phi(b(u, v_1)) = b(\rho(u), \rho(v_1))$ by the induction hypothesis. Combining these remarks, it follows the linearity of Φ that $\Phi(b(u, v)) = \Phi(b(u, v_1)) + \Phi(b(u, w_m))$. Note that $b(\rho(u), \rho(v_1)) + b(\rho(u), \rho(w_m)) = b(\rho(u), \rho(v_1) + \rho(w_m) + \alpha \{\rho(u), \rho(v_1), \rho(w_m)\}(\rho(u) + e_0))$. Hence we have $\Phi(b(u, v)) = b(\rho(u), \rho(v))$. Thus, the claim is verified.

Step 2: Next, we prove (1) for $u \in H$ with $wt(u) \geq 2$ by induction on m(u, v). The starting point in this case is a minimum number m(u, v) for $u \in H$. Remark that with fixed $u \in H$, the minimality of m(u, v) implies that $v \in \{u, e_0, \ldots, e_d\}$. Then, claim (1) has already been established in Steep 1. Then, the verbatim repetition of the proof above goes through, except at one point where we claim $\Phi(b(u, w_m)) = (b(\rho(u), \rho(w_m))$. In these case when $wt(u) \geq 2$, this claim holds from the conclusion of Step 1, replacing (u, v) by (w_m, u) . Hence we have claim (1) for every $u, v \in H$.

Since ρ is a bijection on H, the vectors $b(\rho(u), \rho(v))$ for $u, v \in H$ generate \overline{H} . Thus claim (1) implies that the linear map Φ is surjective, and hence bijective on \overline{H} . Furthermore, claim (1) shows that Φ maps each member X(u) isomorphically onto a member $X(\rho(u))$. Thus we conclude that Φ is an automorphism with associated bijection ρ .

References

- [1] H. Taniguchi, A new family of dual hyperovals in PG(d(d+3)/2, 2) with $d \ge 3$, to appear in Discrete Math.
- [2] M. Buratti and A. Del Fra, Semi-Boolean quadruple systems and dimensional dual hyperovals, Adv. Geom. 3 (2003), 245–253.
- [3] C. Huybrechts, Dimensional dual hyperovals in projective spaces and $c.AC^*$ geometries, Discrete Math. 255 (2002), 503–532.
- [4] J. A. Thas and H. Van Maldeghem, Characterizations of the finite quadric Veroneseans $\mathcal{V}_n^{2^n}$, Quart. J. Math. Oxford. 55 (2004), 99–113.
- [5] S. Yoshiara, Notes on Taniguchi's dimensional dual hyperovals, Europ. J. Combin. 28 (2007), 674–684.