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1 Introduction.
Let Map(X, $Y$) denote the space consisting of all continuous maps $f$ :

$Xarrow Y$ . For complex manifolds $X$ and $Y$ , we denote by Hol(X, Y) the
subspace of Map(X, Y) consisting of all holomorphic maps $f$ : $Xarrow Y$

It is natural to ask if the two spaces Hol(X, Y) and Map(X, Y) are in
some topological sense (e.g. homotopy or homology) equivalent. Early
examples of this type can be found in the work of Gromov [7] and that
of Atiyah-Jones [1]. In many cases of interest, the infinite dimensional
space Hol(X, Y) has a filtration by finite dimensional subspaces, given by
some kind of “map degree“, and the topology of these finite dimensional
spaces approximates the topology of the entire space Map(X, Y); the
approximation becomes more accurate as the degree increases.

Now consider the case $Y=\mathbb{C}P^{n}$ and $H_{2}(X, \mathbb{Z})=\mathbb{Z}$ . In this case,
the degree of the map $f$ : $Xarrow \mathbb{C}P^{n}$ is $d$ if the induced homomorphism
$f_{*}$ on $H_{2}(\mathbb{Z})$ is multiplication by $d$ , and we denote by $Ho1_{d}^{*}(X, \mathbb{C}P^{n})$

(resp. $Ho1_{d}(X,\mathbb{C}P^{n})$ ) the space consisting of all based holomorphic (resp.
holomorphic) maps $f$ : $Xarrow \mathbb{C}P^{n}$ of the degree $d$. We also denote by
$Map_{d}^{*}(X, \mathbb{C}P^{n})$ (resp. $Map_{d}(X,$ $\mathbb{C}P^{n})$ ) the corresponding space of based
continuous maps (resp. continuous maps) of degree $d$ .

’This paper is based on the joint work with A. Kozlowski [16]. Partially sup-
ported by Grrt-in-Ald for Scientific Research (No. 19540068 $(C)$ ), The Ministry of
Education, Culture, Sports, Science and Technology, Japan.
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As the first such explicit result of this kind, Segal shows the following
basic and interesting result.

Theorem 1.1 (G. Segal, [20]). If $M_{g}$ is a compact closed Riemann surface
of genus $g$ , the inclusions

$\{\begin{array}{l}i_{d,\mathbb{C}}Ho1_{d}^{*}(M_{g}, \mathbb{C}P^{n})arrow Map_{d}^{*}(M_{g)}\mathbb{C}P^{n})j_{d,\mathbb{C}}Ho1_{d}(M_{g}, \mathbb{C}P^{n})arrow Map_{d}(M_{g}, \mathbb{C}P^{n})\end{array}$

are homology equivalences through dimension $(2n-1)(d-2g)-1$ if $g\geq 1$

and homotopy equivalences through dimension $(2n-1)d-1$ if $g=0$ .

Remark. A map $f$ : $Xarrow Y$ is called a homology (resp. homotopy)
equivalence through dimension $N$ if the induced homomorphism

$f_{*}:$ $H_{k}(X, \mathbb{Z})arrow H_{k}(Y, \mathbb{Z})$ (resp. $f_{*}:$ $\pi_{k}(X)arrow\pi_{k}(Y)$ )

is an isomorphism for all $k\leq N$ .
Segal conjectured in [20] that this result should generalize to a much

larger class of target spaces, such as complex Grassmannians and flag
manifolds, and even possibly to higher dimensional source spaces. For
example, Boyer, Hurtubise and Milgram [2], and Cohen, Jones and Segal
[5] attempted to find the most general target spaces for which the stability
theorem holds (c.f. [3], [8], [9], [10], [11], [17]).

There have been however, very few attempts to investigate (as sug-
gested by Segal) the phenomenon of topological stability for source spaces
of complex dimension greater than 1. Havlicek [12] considers the space
of holomorphic maps $hom\mathbb{C}P^{1}\cross \mathbb{C}P^{1}$ to complex Grassmanians and Ko-
zlowski and Yamaguchi [14] studies the case of linear maps $\mathbb{C}P^{m}arrow \mathbb{C}P^{n}$ .
Recently Mostovoy [19] proved the complete analogue of Segal’s theorem
for the space of holomorphic maps from $\mathbb{C}P^{m}$ to $\mathbb{C}P^{n}$ .

Theorem 1.2 (J. Mostovoy, [19]). If $2\leq m\leq n$ and $d\geq 1$ are integers,
the inclusions

$\{\begin{array}{l}j_{d,\mathbb{C}}Ho1_{d}(\mathbb{C}P^{m}, \mathbb{C}P^{n})arrow Map_{d}(\mathbb{C}P^{m}, \mathbb{C}P^{n})i_{d,\mathbb{C}}Ho1_{d}^{*}(\mathbb{C}P^{m}, \mathbb{C}P^{n})arrow Map_{d}^{*}(\mathbb{C}P^{m}, \mathbb{C}P^{n})\end{array}$
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are homotopy equivalences through dimension $D_{\mathbb{C}}(d;m, n)$ if $m<n$ ,
and homology equivalences through dimension $D_{\mathbb{C}}(d;m, n)$ if $m=n$,
where $L^{x\rfloor}$ denotes the integer part of a real number $x$ and the number
$D_{\mathbb{C}}(d;m, n)$ is given by $D_{\mathbb{C}}(d;m, n)=(2n-2m+1)( \lfloor\frac{d+1}{2}\rfloor+1)-1$ .

The main purpose of this note is to study the real analogue of the above
two Theorems and we shall explain this in the proceeding section.

2 The real analogues.
In this note we shall consider real analogues of the above result. Be-

fore we describe our results we need a real analogue of the notion of a
holomorphic map.

For $K=\mathbb{C}$ or $\mathbb{R}$ , let $V\subset K^{n}$ be an algebraic subset and $U$ be a
(Zariski) open subset of $V$ . A function $f$ : $Uarrow K$ is called a regular

function if it can be written as the quotient of two polynomials $f=g/h$,
with $h^{-1}(O)\cap U=\emptyset$ . For a subset $W\subset K^{p}$ , a map $\varphi$ : $Uarrow W$ is called $a$

regular map if its coordinate functions are regular functions. Rom now on
we shall treat the words “regular map” and “algebraic map as synonyms.

A pre-algebraic vector bundle over a real algebraic variety $X$ means a
triple $\xi=(E,p, X)$ , such that $E$ is a real algebraic variety, $p$ : $Earrow$

$X$ is a regular map, the fiber over each point is a K-vector space and
there is a covering of the base $X$ by Zariski open sets over which the
the vector bundle $E$ is biregularly isomorphic to the trivial bundle. $An$

algebraic vector bundle over $X$ is a pre-algebraic vector bundle which is
algebraicaUy isomorphic to a pre-algebraic vector suヒト bundle of a trivial
bundle.

It is natural to consider analogues of all the above theorems for real
algebraic varieties, with holomorphic maps replaced by regular maps.
This is indeed what was done independently by Mostovoy [18] and Guest,

Kozlowski and Yamaguchi [11], [14] for the case of maps $\mathbb{R}P^{1}arrow \mathbb{R}P^{n}$ .
For $K=\mathbb{R}$ or $\mathbb{C}$ and $1\leq k<n$ , let $G_{n,k}(K)$ denote the Grassmann

manifold consisting of all $k$ dimensional K-linear subspaces in $K^{n}$ . For a
compact affine real algebraic variety $X$ , let Alg(X, $G_{n,k}(K)$ ) denote the
space consisting of all regular maps $f$ : $Xarrow G_{n,k}(K)$ . Then the first main
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result of this note is a real analogue of some of results due to Gravesen
[6] (c.f. [13]) and it is as follows.

Theorem 2.1 (A. Kozlowski and K. Yamaguchi, [16]). Let $X$ be a com-
pact affine real algebmic variety, with the property that every topologi-
cal K-vector bundle of rank $k$ over $X$ is topologically isomorphic to an
algebraic K-vector bundle. Then the inclusion $i$ : Alg(X, $G_{n,k}(K)$ ) $arrow$

$Map(X, G_{n,k}(K))$ is a weak homotopy equivalence.

Remark. Note that the spaces $\mathbb{R}P^{m}$ and $\mathbb{C}P^{m}$ satisfy the assumption
of Theorem 2.1 (where we can take $K$ to be $\mathbb{R}$ or $\mathbb{C}$ in either case). It
is known that, for every compact smooth manifold $M$, there exists a
non-singular real algebraic variety $X$ diffeomorphic to $M$ such that every
topological vector bundle over $X$ is isomorphic to a real algebraic one [4].

3 The space $Alg_{d}(\mathbb{R}P^{m}, \mathbb{R}P^{n})$ .
Ftom now on, we shall consider only regular (i.e algebraic) and contin-

uous maps between real projective spaces. In other words, we consider
the case $(K, k)=(\mathbb{R}, 1)$ in Theorem 2.1.

For $1\leq m<n$ and $\epsilon\in \mathbb{Z}/2=\pi_{0}(Map(\mathbb{R}P^{m}, \mathbb{R}P^{n}))$ , we denote by
$Map_{\epsilon}(\mathbb{R}P^{m}, \mathbb{R}P^{n})$ the corresponding patb component of Map$(\mathbb{R}P^{m}, \mathbb{R}P^{n})$ .
We also denote by $Map_{\epsilon}(\mathbb{R}P^{m}, \mathbb{R}P^{n})$ the subspace of $Map_{\epsilon}(\mathbb{R}P^{m}, \mathbb{R}P^{n})$

consisting of all based maps $f$ : $\mathbb{R}P^{m}arrow \mathbb{R}P^{n}$ such that $f(e_{m})=e_{n}$ ,
where we take $e_{k}=[1$ : $0$ :.. . : $0]\in \mathbb{R}P^{k}$ as a base point of $\mathbb{R}P^{k}$

$(k=m, n)$ .
Ftom now on, let $\{z_{0}, \cdots z_{m}\}$ denote the fixed variables. Then a

regular map $f$ : $\mathbb{R}P^{m}arrow \mathbb{R}P^{n}$ can always be represented as $f=[f_{0}$ :
$f_{1}$ :. .. : $f_{n}$], such that $f_{0},$ $\cdots$ , $f_{n}\in \mathbb{R}[z_{0}, z_{1}, \cdots z_{m}]$ are homogenous
polynomials of the same degree $d$ with no common real root except
$0_{m+1}=(0, \cdots 0)\in \mathbb{R}^{m+1}$ (but they may have common complex roots).

We shall refer to a regular map represented in this way as an algebraic
map of degree $d$ . We denote by Alg$d(\mathbb{R}P^{m}, \mathbb{R}P^{n})\subset Map(\mathbb{R}P^{m}, \mathbb{R}P^{n})$ the
subspace of consisting of all algebraic maps $f$ : $\mathbb{R}P^{m}arrow KP^{n}$ of de-
gree $d$ and we also denote by $Alg_{d}^{*}(\mathbb{R}P^{m},KP^{n})$ the corresponding sub-
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space of based maps given by $Alg_{d}^{*}(\mathbb{R}P^{m}, \mathbb{R}P^{n})=Alg_{d}(\mathbb{R}P^{m}, \mathbb{R}P^{n})\cap$

$Map^{*}(\mathbb{R}P^{m}, \mathbb{R}P^{n})$ .
For $m\geq 2$ and $g\in Map_{\epsilon}^{*}(\mathbb{R}P^{m-1}, \mathbb{R}P^{n})$ , we denote by $A_{d}(m, n;g)\subset$

$Alg_{d}^{*}(\mathbb{R}P^{m}, \mathbb{R}P^{n})$ and $F(m, n;g)\subset Map_{\epsilon}^{*}(\mathbb{R}P^{m}, \mathbb{R}P^{n})$ the subspaces de-
fined by

$\{\begin{array}{ll}A_{d}(m, n;g) =\{f\in Alg_{d}^{*}(\mathbb{R}P^{m},\mathbb{R}P^{n}):f|\mathbb{R}P^{m-1}=g\},F(m, n;g) =\{f\in Map_{\epsilon}^{*}(\mathbb{R}P^{m}, \mathbb{R}P^{n}):f|\mathbb{R}P^{m-1}=g\}.\end{array}$

It is easy to see that there is a homotopy equivalence $F(m, n;g)\simeq\Omega^{m}\mathbb{R}P^{n}$

and that there are inclusions

$\{\begin{array}{l}Alg_{d}(\mathbb{R}P^{m}, \mathbb{R}P^{n})\subset Map_{[d]_{2}}(\mathbb{R}P^{m}, \mathbb{R}P^{n})Alg_{d}^{*}(\mathbb{R}P^{m}, \mathbb{R}P^{n})\subset Map_{[d]_{2}}^{*}(\mathbb{R}P^{m},\mathbb{R}P^{n})A_{d}(m, n;g)\subset F(m, n;g)\subset Map^{*}(\mathbb{R}P^{m}\mathbb{R}P^{n})\end{array}$

where $[d]_{2}\in \mathbb{Z}/2$ denotes the integer $d$ mod 2. From now on, we consider
the spaces of algebraic maps $Alg_{d}(\mathbb{R}P^{m}, \mathbb{R}P^{n})$ for $1\leq m<n$ . However,
the case $m=1$ is already well studied by Kozlowski-Yamaguchi and
Mostovoy ([14], [18], [22]), and we mainly consider the case $2\leq m<n$ .

First, consider the space $Alg_{d}(\mathbb{R}P^{m}, \mathbb{R}P^{n})$ for the case $d=1$ . Then the
second main result of this note is stated as follows.

Theorem 3.1 (The case $\epsilon=1$ , c.f. [23]). If $m<n$ , the inclusion maps

$\{\begin{array}{l}i_{1}Alg_{1}^{*}(\mathbb{R}P^{m}, \mathbb{R}P^{n})arrow Map_{1}^{*}(\mathbb{R}P^{m})\mathbb{R}P^{n})j_{1}Alg_{1}(\mathbb{R}P^{m}, \mathbb{R}P^{n})arrow Map_{1}(\mathbb{R}P^{m}, \mathbb{R}P^{n})\end{array}$

are homotopy equivalences through dimension $2(n-m)-2$ .

Corollary 3.2 ([23]). (i) If $m<n$ , there are isomorphisms

$\pi_{1}(Map_{1}^{*}(\mathbb{R}P^{m},\mathbb{R}P^{n}))\cong\{$

$\mathbb{Z}$ if $(m, n)=(1,2)$ ,
$0$ if $1\leq m\leq n-2$ ,

$\mathbb{Z}/2$ if $m=n-1\geq 2$ .

$\pi_{1}(Map_{1}(\mathbb{R}P^{m}, \mathbb{R}P^{n}))\cong\{\begin{array}{ll}\mathbb{Z}/2 if 1\leq m\leq n-2,(\mathbb{Z}/2)^{2} if m=n-1 and n\equiv 0,3(mod 4),\mathbb{Z}/4 if m=n-1 and n\equiv 1,2(mod 4).\end{array}$

(ii) If $m=n$, there are isomorphisms
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$\pi_{1}(Map_{1}^{*}(\mathbb{R}P^{n}, \mathbb{R}P^{n}))\cong\{\begin{array}{ll}0 if n=1,\mathbb{Z} if n=2,(\mathbb{Z}/2)^{2} if n\geq 3.\end{array}$

$\pi_{1}(Map_{1}(\mathbb{R}P^{n}, \mathbb{R}P^{n}))\cong\{\begin{array}{ll}\mathbb{Z} if n=1,(\mathbb{Z}/2)^{2} if n=2,(\mathbb{Z}/2)^{3} if n\geq 3 and n\equiv 0,3(mod 4),\mathbb{Z}/4\oplus \mathbb{Z}/2 if n\geq 5 and n\equiv 1,2(mod 4).\end{array}$

The sketch proof of Theorem 3.1.
Since the proof is analogous, we only consider the based case. The

basic idea of the proof is to use the orthogonal group action on $\mathbb{R}P^{n}$ .
Consider the natural map $\alpha_{m,n}$ : $O(n)arrow Map_{1}^{*}(\mathbb{R}P^{m},\mathbb{R}P^{n})$ defined by

the matrix multiplication

$\alpha_{m,n}(A)([x_{0} : \cdots : x_{m}])=[x_{0} : \cdots : x_{m} : 0:\cdots : 0]\cdot(\begin{array}{ll}1 0_{n}t0_{n} A\end{array})$

for $([x_{0}$ :. . . : $x_{m}],$ $A)\in \mathbb{R}P^{m}\cross O(n)$ , where $0_{n}=(0, \cdots 0)\in \mathbb{R}^{n}$ . Since
the subgroup $\{E_{m}\}\cross O(n-m)$ is fixed under this map, it induces the
map $\overline{a}_{m,n}$ : $V_{n,m}=O(n)/O(n-m)arrow Map_{1}^{*}(\mathbb{R}P^{m},\mathbb{R}P^{n})$ in a natural way,
where $V_{n,m}$ denotes the real Stiefel manifold of orthogonal m-frames in
$\mathbb{R}^{n}$ given by $V_{n,m}=O(n)/O(n-m)$ . It follows $hom$ [ $[23]$ , Theorem 1.2]
that $\overline{\alpha}_{m,n}$ is a homotopy equivalence through dimension $2(n-m)-2$.

However, an easy computation shows that there is a homotopy equiv-
alence $Alg_{1}(\mathbb{R}P^{m}, \mathbb{R}P^{n})\simeq V_{n,m}$ and we can easily see that the inclusion
map $i_{1}$ is homotopic to the map $\overline{\alpha}_{m,n}$ (up to homotopy equivalences).
This completes the proof. $\square$

Next, consider the space $Alg_{d}(\mathbb{R}P^{m}, \mathbb{R}P^{n})$ for $d\geq 2$ . For this purpose,
we recall several notations.

Let $F(X, r)$ denote the space of ordered configuration space of distinct $r$

points in $X$ defined by $F(X, r)=$ { $(x_{1},$ $\cdots$ , $x_{r})\in X^{r}$ : $x_{k}\neq x_{j}$ if $j\neq k$}.
The r-th symmetric group $S_{r}$ acts on $F(X, r)$ in a usual manner and we
denote by $C_{r}(X)$ the unordered configuration space of distinct r-points
in $X$ defined by $C_{r}(X)=F(X, r)/S_{r}$ . Let $\pm \mathbb{Z}$ denote the local system
of $F(X, r)$ such that it is locally isomorphic to $\mathbb{Z}$ and changing the sign
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after odd permutation of the points $x_{1},$ $\cdots x_{l}\in X$ . We use the same
$notation\pm \mathbb{Z}$ as the local system on $C_{r}(X)$ given by its direct image as in
[21]. Then the final our main result of this note is as follows.

Theorem 3.3 (A. Kozlowski and K. Yamaguchi, [16]). Let $2\leq m\leq$

$n-1,$ $g\in Alg_{d}^{*}(\mathbb{R}P^{m-1}, \mathbb{R}P^{n})$ be a fixed algebraic map and let $M(m, n)=$

$2 \lceil\frac{m+1}{n-m}\rceil+1$ , where $\lceil x\rceil=\min\{N\in \mathbb{Z}:N\geq x\}$ .

(i) If $d\geq M(m, n)$ , the inclusion $i_{d}’$ : $A_{d}(m, n;g)arrow F(m, n;g)\simeq$

$\Omega^{m}S^{n}$ is a homotopy equivalence through dimension $D(d;m, n)$ if
$m+2\leq n$ , and a homology equivalence through dimension $D(d$ :
$m,$ $n$) if $m+1=n$, where $D(d;m, n)$ denotes the numbers given by

$D(d;m, n)=(n-m)( \lfloor\frac{d+1}{2}\rfloor+1)-1$ .

(ii) If $k\geq 1,$ $H_{k}(A_{d}(m, n;g),$ $\mathbb{Z}$ ) contains the subgroup

$L\frac{d+1}{\oplus^{2}}Jr=1H_{k-(n-m)r}(C_{r}(\mathbb{R}^{m}), (\pm \mathbb{Z})^{\otimes(n-m)})$ .

as a direct summand.

Corollary 3.4 (A. Kozlowski and K. Yamaguchi, [16]). If $2\leq m\leq n-1$

and $d\geq M(m,n)$ , there $i8$ an isomorphism

$H_{k}(A_{d}(m, n;g),$ $\mathbb{Z}$ ) $\cong H_{k-r(n-m)}(C_{r}(\mathbb{R}^{m}), (\pm \mathbb{Z})^{\otimes(n-m)})L\frac{d+1}{\oplus^{2}}Jr=1$

for any integer $1\leq k\leq D(d;m, n)$ .

Theorem 3.5 (A. Kozlowski and K. Yamaguchi, [16]). If $2\leq m\leq n-1$ ,
$d=2d^{*}\equiv 0(mod 2)$ and $d’\geq M(m, n)$ , the inclusion maps

$\{\begin{array}{l}i_{d}Alg_{d}^{*}(\mathbb{R}P^{m},\mathbb{R}P^{n})arrow Map_{[d]_{2}}^{*}(\mathbb{R}P^{m}, \mathbb{R}P^{n})j_{d}Alg_{d}(\mathbb{R}P^{m}, \mathbb{R}P^{n})arrow Map_{[\triangleleft}2(\mathbb{R}P^{m}, \mathbb{R}P^{n})\end{array}$

are homotopy equivalences through dimension $D(d^{*};m, n)$ if $m+2=n$
and homology equivalences through dimension $D(d^{*} : m, n)$ if $m+1=n$,

where $D(d^{*}; m,n)=(n-m)( \lfloor\frac{d^{*}+1}{2}\rfloor+1)-1$ .
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