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Abstract

This note is an expansion of three lectures given at the workshop Topol-
ogy, Complex Analysis and Arithmetic ofHyperbolic Spaces held at Kyoto
University in December of 2006 and wiil appear in the proceedings for this
workshop.

Introduction

Our attention in this note will be on the non-exceptional real rank one symmetric
spaces arising ffom the simple Lie groups $SO(n, 1),$ $SU(n, 1)$ , and $Sp(n, 1)$ and fi-
nite volume quotients of these spaces. These spaces and their quotients are known
as real, complex, and quatemionic hyperbolic n-space and real, complex, and
quatemionic hyperbolic n-manifolds, respectively. For these spaces, our aim is
2-fold:

$(\theta)$ Provide a description of some of the anthmetic quotients of these symmebic
spaces.

(B) Produce interesting examples of closed quotients of these symmetric spaces
with regard to various spectral problems.

These two goals are essentially independent, although in general the forner is the
only means we have for producing examples in general; in particular, to achieve the
latter we are forced to consider arithmetic constructions. We shall take a leisurely
and loose approach to these goals, providing some background but largely leaving
assertions unproven. The reader interested in more detail and rigor is directed to
the references provided below.
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Organization of the article This note is organized into five sections. In the first
section, we briefly recall the definitions of real, complex, and quaternionic hyper-
bolic $n$-space. In the second section, we provide a description for constructing
certain arithmetic lattices in the associated isometry groups for these spaces. In the
third section, we discuss some recent results on isospectral manifolds modelled on
these symmetric spaces (and more general symmetric spaces of noncompact type).
In the four section, we discuss some recent work on weaker spectral constructions.
In the fifth section, we discuss some variants of Sunada’s method used to produce
the asserted examples Rom Section 4.
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spectral equivalences. Indeed, one should consider those sections as writtenjointly
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1 Hyperbolic spaces

For completeness, a short section introducing real, complex, and quatemionic hy-
perbolic space, their isometry groups, and their orbifold quotients is provided be-
low. The reader should look to [48], [14], and [21] for more thorough $\alpha eaunents$

of this material.
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Notation Throughout, $X$ will denote either $R,C$ , or $\mathbb{H}$. On $X$ , we have the invo-
$lution*defined$ by

$x^{*}=\{\begin{array}{ll}identity, X=Rcomplex conjugation, X=Cquatemionic conjugation, X=\mathbb{H}.\end{array}$

We extend this to a map on matrices

$*:M(r,s;X)arrow M(s,r;X)$

by $applying*to$ the coefficients of the matrix and then taking its transpose.

The standard model form and the projective model For what follows, we set

$I_{n,1}=(\begin{array}{llll}1 0 000 1 00| | \ddots ||0 0 010 0 0-1\end{array})$ ,

and call this the standard$fom$. More to the point, associated to $I_{n,1}$ is the (bilinear,
hermitian, or quaternionic hermitian) form

$B_{n,1}(x,y)=y^{*}I_{n,1}x$ ,

where $x,y\in X^{n+1}$ are viewed as column vectors. On $X^{n+1}$ , we define the set

$V=\{x\in X^{n+1} : B_{n,1}(x,x)<0\}$ .

The $X$-projectivization of V, namely the set of $B_{n,1}$ -negative $X$-lines $L_{X}^{n}$ , can be
equipped with a metric

$d([x], \beta])=\cosh^{-1}(\frac{1}{2}\frac{B_{n,1}(x,y)B_{n,1}(y,x)}{B_{n,1}(x,x)B_{n,1}(y,y)})$ .

The metric space $(\mathcal{L}_{X}^{n},d)$ is called X-hyperbolic $n$-space and we denote this metric
space by $H_{X}^{n}$ .
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Isometry groups Associated to $B_{n,1}$ (or $I_{n,1}$ ) is the real Lie group

$SU(B_{n,1};X)=\{A\in M(n+1;X)$ : $I_{n,1}^{-1}A^{*}I_{n,1}A=I_{n+1}\}$ .

The identity component of the associated projective group $PSU(B_{n.1,\prime};X)$ acts on
$\mathbb{P}X^{n}$ and leaves invariant $l_{X}^{n}$ . It is a simple matter to see that $PSU(B_{n,1};X)$ pre-
serves the metric $d$ upon noting that for all $x,y\in X^{n+1}$ , the elements of $SU(B_{n,1};X)$

are precisely those linear transformations $A$ such that

$B_{n,1}(Ax,Ay)=B_{n,1}(x,y)$ .
The group $PSU(B_{n,1};X)$ is, up to finite index, the full $isome\alpha y$ group of the $me\alpha ic$

space $H_{X}^{n}$ . For notational simplicity, we use the $\alpha aditional$ notation:

$PSU(B_{n,1};R)=PSO(n, 1)$

$PSU(B_{n,1} ; C)=PSU(n, 1)$

$PSU(B_{n,1};\mathbb{H})=PSp(n, 1)$ .

Lattices and manifolds Given a torsion free, discrete subgroup $\Gamma$ of Isom(F),
the quotient $H_{X}^{n}/\Gamma$ is Riemannian manifold which is locally isometric to $H_{X}^{n}$ . We
call such manifolds X-hyperbolic manifolds. When $H_{X}^{n}/\Gamma$ has finite volume, we
say $\Gamma$ is a lattice and if in addition $II_{X}^{n}/\Gamma$ is compact, we say $\Gamma$ is cocompact. Ac-
cording to the $S\theta ong$ Rigidity Theorem (see [37] and [45]), there is a bijection
between the isometry classes of finite volume $X$-hyperbolic $n$-manifolds and the
Isom$(H_{X}^{n})$-conjugacy classes of lattices in Isom(F). Consequently, to understand
the former it suffices to understand the latter and we will only be concemed with
lattices in Isom$(II_{X}^{n})$ up to wide commensurability. Recall $\Gamma_{1},\Gamma_{2}<G$ are commen-
surable in the wide sense if $[\Gamma_{j} : g-1\Gamma_{1}g\cap\Gamma_{2}]<\infty$ for some $g\in G$ and $j=1,2$.

2 Arithmetic constructions
In this section, we introduce a general construction for lattices in Isom$(H_{X}^{n})$ . Be-
fore commencing with this task, we provide an overview on nonarithmetic mani-
folds. In the case of $II_{R}^{n}$ , nonarithmetic lattices exist in every dimension (see [18]).
However, in high dimensions, these manifolds are hybrids arising from gluing pairs
of carefully chosen arithmetic ones along totally geodesic hypersurfaces. In the
case of $II_{H}^{n}$ , for $n>1$ , every lattice is arithmetic by rigidity theorems of Corlette
[10] and Gromov-Schoen [17]. In the case of $H_{C}^{n}$ , the story is far less complete.
Nonarithmetic lattices are known to exist when $n=2,3$ by work of Mostow [38]
and Deligne-Mostow [11]. $ln$ higher dimensions it is unknown whether or not

62



Arithmetic lattices and weak spectral geometry

nonarithmetic lattices exist. With this said, we hope that this section will provide
those interested but not familiar with arithmetic constructions some basic knowl-
edge on constructing arithmetic lattices. A more detailed introduction can be found
in [59].

2.1 Two basic arithmetic examples

The first example of an arithmetic lattice is the subgroup $Z^{n}\subset R^{n}$ . The quotient
$R^{n}/Z^{n}$ is the standard flat $n$-torus (upon equipping $R^{n}$ with the geometry induced
ffom the standard inner product). The lattice $Z^{n}$ provides us with another example,
namely the subgroup $SL(n;Z)<SL(n;R)$ of those elements of $SL(n;R)$ which
preserve $Z^{n}$ . To be complete, we must say in which sense this is a lattice, and this
is done as follows. We can equip $SL(n;R)$ with a volume form $\omega$ which is invariant
under both left and right translation in $SL(n;R)$ . For instance, if we select $\mathfrak{B}d$ in
$\Lambda^{dimSL(n;R)}T_{id}SL(n;R)$ , a volume form on the tangent space of $SL(n;R)$ at the
identity element, we define $\omega_{g}$ in $\Lambda^{\dim(SL(n;R))}T_{g}SL(n;R)$ to be the image of $\Re d$

under the map induced by the isomorphism

$dR_{g}-1:T_{g}SL(n;R)rightarrow T_{id}SL(n;R)$ ,

where $R_{g}-1$ is the diffeomorphism of $SL(n;R)$ given by right multiplication by
$g^{-1}$ . The volume form $\omega$ provides $SL(n;R)$ with a measure via integration and
as it is invariant under $SL(n;Z)$ , descends to a measure on the quotient space
$SL(n;R)/SL(n;Z)$ . It is with respect to this measure that the quotient space
$SL(n;R)/SL(n;Z)$ has finite volume.

More generally, if $G$ is a locally compact topological group equipped with a right
Haar measure $\mu$ , for any discrete subgroup $\Gamma$ of $G$, the quotient space $G/\Gamma$ comes
equipped with the induced quotient measure.1 We say $\Gamma$ is a lattZce if $G/\Gamma$ has
finite volume with respect to this measure. If in addition $G/\Gamma$ is compact, we say
$\Gamma$ is a cocompact lattice. As $II_{X}^{n}$ is the coset space of Isom$(II_{X}^{n})$ modulo a maximal
compact subgroup $K$, this definition and the one given above specific to Isom$(H_{X}^{n})$

coincide. This identification on the level of sets is made by using the $\alpha ansitive$

action of Isom$(H_{X}^{n})$ on $H_{X}^{n}$ and the fact that point stabilizers are maximal compact
subgroups of Isom$(H_{X}^{n})$ .

1A right Haar measure is a regular Borel measure on $G$ which is invariant under the right action
of $G$ on itself. It is well known that every locally compact topological group admits a right Haar
measure.
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2.2 Lattices arising from forms

We start the generalization of the above pair of examples to Isom$(H_{X}^{n})$ with perhaps
the most elementary construction based on bilinear, hermitian, and quaternionic
hermitian forms over $R,C$, and $\mathbb{H}$, respectively. We call this construction the$fom$

construction (for $X=C$, we sometimes refer to this as thefirst $\eta pe$ construction).

Model forms and the basic examples We say $B\in GL(n+1;X)is*$-symmetric
if $B=B^{*}$ and say that $a*$-symmetric matrix $B\in GL(n+1;X)$ is a model$fom$ if $B$

has signature pair $(n, 1)$ . That is, upon diagonalizing $B$, all the eigenvalues are real
and precisely $n$ of the eigenvalues are positive. For a subring $R\subset X$ , we say that $B$

is R-defined if $B$ can be conjugated into $GL(n+1;R)$ .
The simplest example of a model form is $I_{n,1}$ which is $R$-defined for any subring $R$

of $X$ containing Z. Setting

$0_{X}=\{\begin{array}{ll}Z, X=R,Z[i], X=C,Z[i,j,k], X=\mathbb{H},\end{array}$

by work of $Borel-Harish$-Chandra [4], $PSU(n, 1;t9_{X})$ is a lattice in Isom$(H_{X}^{n})$ . The
proofof this takes the only possible route, consffucting a finite volume fundamental
set for the action of $PSU(n, 1;t9_{X})$ on $II_{X}^{n}$ . Actually, one constructs a fundamental
set for the action of $PSU(n, 1;t9_{X})$ on Isom$(H_{X}^{n})$ using reduction theory (see [44]).

More generally, for any $0_{X}$-defined model form $B$ in $GL(n+1;X)$ , we have a real
Lie group

$PSU(B;X)=\{A\in SL(n+1;X) : B^{-1}A^{*}BA=I_{n+1}\}$

with subgroup $PSU(B;O_{X})$ . Selecting a real analytic isomorphism between $PSU(B;X)$

and $PSU(n, 1;X)$ (one can take this to be conjugation in $GL(n+1;X)$), the image
$oPSU(B;0_{X})$ is a lattice in Isom$(H_{X}^{n})$ .
One interesting side note is that for $X=R$, ranging over all the possible forms $B$ ,
the above $cons\alpha uction$ produces infinitely many distinct wide commensurability
classes of lattices. While for $X=C$ or $\mathbb{H}$ , this produces one wide commensurability
class. To produce additional wide commensurability classes over $C$ and $\mathbb{H}$, one
must change the ring $O_{X}$ .
Using work ofKneser (see [41]), $Borel-Harish$-Chandra [4], and Mostow-Tamagawa
[36], the lattices $PSU(B, t9_{X})$ are noncocompact for all $B$ when $X=\mathbb{H}$ , for all $B$

when $X=C$ and $n>1$ , and for all $B$ when $X=R$ and $n>3_{:}$ In particular, we have
not yet found a construction for producing cocompact lattices in Isom$(H_{X}^{n})$ .
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Cocompact examples in $PSO(n, 1)$ For a finite field extension $k/\prime Q$ , there are,
up to the field isomorphisms of $R$ and $C$, finitely many embeddings

$\sigma_{1},$
$\ldots,$

$\sigma_{r_{1}}$ : $karrow R$ , $\tau_{1},$ $\ldots,\tau_{r_{2}}$ : $karrow C$

where for the latter we insist that $\tau_{j}(k)$ not be contained in R. For instance, when
$k=Q(\sqrt{2})$ , we have a pair of embeddings which we identify with the elements
of $Ga1(Q(\sqrt{2})/Q)$ . We say $k$ is totally real if $r_{2}=0$ and totally imaginary if
$r_{1}=0$ . Moreover, given a totally real extension $F$ of $Q$, by adjoining $\sqrt{-d}$ to $F$

where $d\in N$ is square-Ree, we (generically) obtain a totally imaginary quadratic
extension $E/F$ of $F$ . We call the pair $E/F$ a CMfield (CM stands for complex
multiplication). Finally, $0_{k}$ shall denote the ring of algebraic $k$-integers.
For a totally real field $k$, fix an embedding $\sigma_{1}$ : $karrow$ R. For a k-&fined model
form $B\in GL(n+1;k)$ , for each $\sigma_{j}\neq\sigma_{1}$ , we obtain a new form $\sigma_{JB}$ with signature
pair $(p_{j},q_{j})$ by applying $\sigma_{j}$ to the matrix $B$ . We say that $B$ is admissible if

$(p_{j},q_{j})=(n+1,0)$

for all $j\neq 1$ . Again, work of $Borel-Harish$-Chandra implies that $PSO(B;O_{k})$ is a
lattice in Isom$(H_{R}^{n})$ .
Example. For $k=Q(\sqrt{2})$ , we can take $B$ to be

$B=(\begin{array}{lllll}1 0 0 00 1 0 0| | \ddots \vdots \vdots 0 0 1 \vdots 0 0 0 -\sqrt{2}0\end{array})$ .

For the nontrivial Galois involution $\sigma$, the resulting form

$\sigma_{B=}(\begin{array}{lllll}1 0 0 00 l 0 0| | \ddots | |0 0 l 00 0 0 \sqrt{2}\end{array})$

is positive definite as required.
Indeed, for any totally real field $F$ , the Weak Approximation Theorem allows for
the selection of $\alpha_{1,\ldots,\%+1}\in t9_{F}$ such that

$B=diag(\alpha_{1},\ldots, \%+1)$

is admissible. It follows Rom $Borel-Harish$-Chtdra and Mostow-Tamagawa that
these lattices $PSO(B;0_{F})$ are cocompact for any $F\neq Q$ .
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Cocompact examples in $PSU(n, 1)$ For $X=C$, we can take a CM field $E/F$ and
select a model form $B$ defined over $F$ which is admissible. Viewing $B$ instead as a
hermitian matrix and taking instead the associated group $PSU(B;C)$ , the subgroup
$PSU(B;0_{E})$ is a lattice in $PSU(n, 1)$ and is cocompact so long as $F\neq Q$ .

Cocompact examples in $PSp(n, 1)$ To produce lattices in $PSp(n, 1)$ , we need
some new algebraic objects. For a totally real field $F$ and $\alpha,\beta\in F$ , we define

$A_{\alpha,\beta}=( \frac{\alpha,\beta}{F})$

to be the -dimensional $F$-algebra spanned by 1, $x,y,xy$ (as a $F$-vector space) with
multiplication given by

$x^{2}=\alpha$ , $y^{2}=\beta$ , $\eta=-yx$ , $\lambda x=x\lambda$ , $\lambda y=y\lambda$

for all $\lambda\in F$ . The algebra $A_{\alpha,\beta}$ is called a F-quatemion algebra. For each em-
bedding $\sigma_{j}$ of $F$ into $R$, we obtain a new algebra

$\sigma_{jA\otimes_{F}R=}(\frac{\sigma_{j}(\alpha),\sigma_{j}(\beta)}{R})$ ,

and according to a theorem of Wedderbum (see [43]),

$\sigma_{j}A\otimes_{F}R\cong \mathbb{H}$ or $M(2;R)$ .
We require $A$ have the property that $\sigma_{jA}\otimes_{F}R\cong \mathbb{H}$ for all $j$ . For a model for
$B\in GL(n+1;A)$ , we say $B$ is admissible as before if the signature pair for all
$j\neq 1$ is $(n+1,0)$ . Taking $a,\beta\in O_{F}$ , we have the subring $0=0_{F}[1,x,y,\eta]$ ,
$SU(B;0)$ is a lattice in $PSp(n, 1)$ by work of Borel-Harish-Chtdra.

Remark. Up to wide commensurability, one can take $B$ to reside in $GL(n+1;F)$
(indeed, $B$ can be assumed to be diagonal with coefficients in $O_{F}$).

2.3 Arithmetic constructions in general

In this short subsection, we give a quick overview on arithmetic lattices in Isom$(H_{X}^{n})$ .
In particular, we mention how typical the above examples are and wben there exist
additional consffuctions of arithmetic lattices.

$InPSp(n, 1)$ $Thelatticescons\alpha uctedaboveyieldalla\dot{n}thmeticlatticesinPSp(n, 1)$

up to wide commensurability so long as $n\neq 1$ . In this exceptional case, there is an
isometry between $H_{R}^{4}$ and $H_{Eh}^{1}$ .
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In $PSO(n, 1)$ For $n+1$ odd, this produces all the $a\dot{n}th\iota netic$ lattices in $PSO(n, 1)$ .
For $n$ odd and not equal to 3 or 7, there is but one other construction in $PSO(n, 1)$

which utilizes quatemion algebras. The case of $n=3$ is exceptional due to a local
isomorphism between $SO(3,1)$ and $SL(2;C)$ . In the case $n=7$, there is another
anithmetic construction coming Rom $\alpha iality$ algebras. This construction is possible
due to an unusually large symmetry group for the associated Dynkin diagram for
the associated complex simple Lie group.

In $PSU(n, 1)$ For $X=C$, each pair $r,d\in N$ such that $rd=n+1$ has an associated
arithmetic consoeuction. The pair $r=n+1$ and $d=1$ is the one given above and
produces the arithmetic lattices of first type. For the pair $r=1$ and $d=n+1$ , the
construction utilizes cyclic division algebras $A$ over CM fields $E/F$ equipped with
an involution of second kind. Essentially nothing is known about the associated
complex hyperbolic manifolds produced by these lattices (see [29] and [55] for
some recent work on these lattices); perhaps the deepest result is the vanishing
of first cohomology for congruence covers of the associated arithmetic manifolds
(see [51]). One such example is Mumford’s fake $CP^{2}[39]$ (see also [47]), which
has the same rational homology as $CP^{2}$ . For brevity, we have chosen to omit a
detailed description of these constructions and refer the reader to our prelminary
manuscript [31] on this topic.

2.4 Why care about arithmetic and nonarithmetic construcbons?

It is natural to ask why one should care about arithmetic and nonarithmetic con-
structions. Or more to the point, why arithmetic constructions produce amenable
examples for geometers to work with. Here is a loose summary of”properties”
typical arithmetic and nonarithmetic lattices and manifolds possess:

Arithmetic
$\bullet$ Predictable nature of group elements; see for instance $Cooper-Long$-Reid

[9].

$\bullet$ Predictable nature of totally geodesic submanifolds and geodesics; see for
instance Maclachlan-Reid [26].

$\bullet$ $Symme\alpha y$ ; see for instance Farb-Weinberger [12] and $Cooper-Long$-Reid
[9].

$\bullet$ Downside; it is difficult to find an explicit description like a group presenta-
tion (see [25]).
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Nonarithmetic:
$\bullet$ Margulis dichotomy (see below or [28], [59]); see for instance Step 3 below.

$\bullet$ UsuaUy ”explicitly” constructed.

$\bullet$ Downside; Substructures (like totally geodesic submanifolds) are more mys-
terious.

$\bullet$ Downside; For most $symme\alpha ic$ spaces, only arithmetic consmctions are
possible (see [28] or [59]).

3 Spectral geometry

Associated to any Riemannian $n$-manifold $M$ are several sets which encode some
portion of the geometry and topology of $M$. Perhaps the most natural (from a
geometric viewpoint) of these sets is the geodes$ic$ length spectrum consisting of
the lengths of the closed geodesics 7 on $M$, where each length is counted with
multiplicity. We denote this set by $\mathcal{L}(M)$ . We could instead insist that the geodesics
be primitive or simple and this produces theprimitive geodesic length spectrum and
simple geodesic length spectrum which we denote by $l_{p}(M),\mathcal{L}_{s}(M)$ , respectively.
If we forget the multiplicities of these sets, we call the resulting set the (primitive
or simple) geodesic length set and denote it by $L(M)$ (resp., $L_{p}(M),L_{s}(M)$).

Another natural set to associate to $M$ is the spectrum of the Laplace-Beltrami oper-
ator acting on the Hilbert space $L^{2}(M)$ of square integrable functions of $M$. More
generally, this operator acts on the Hilbert space of square integrable -forms and
we denote the spectra for this operator on these spaces by $\epsilon(M)$ and $\mathcal{E}_{p}(M)$ . Given
a pair of isometric Riemannian $n$-manifolds $M,N$, we have equality among the
spectra for the pair. The so-called inverse problem asks if the converse holds.

Question (Inverse Problem). If $\epsilon(M)=\epsilon(N)$ , are $M$ and $N$ isometric?

In 1964, Milnor [33] answered this question in the negative by producing a pair
of nonisometric flat 16-tori with equal eigenvalue spectra. Since Milnor’s article,
many additional examples have been given. Most notably for us is a construction
due to Sunada [56] which is purely algebraic. For brevity alone, we shall speak
in detail only on this consffuction and refer the reader to the survey [15] for an
detailed overview on the subject of isospectral $cons\alpha uctions$ .
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3.1 Sunada’s method

Sunada’s construction (which itself was inspired by number theory; see [42]) uti-
lizes the following group theoretic concept.

Definition 1. For afinite $g$ハクuP $G$, we call apair ofsubgroup $H,K$ ahmmost conju-
gate zffor each G-conjugacy class $[g]$ , we have the equality

$|H\cap[g]|=|K\cap[g]|$ .

For a Riemannian $n$-manifold $M$ whose fundamental group $\pi_{1}(M)su\dot{\eta}ectsG$, it
is an easy exercise to verify $L(M_{H})=\mathcal{L}(M_{K})$ for the menic covers corresponding
to the pullbacks of $H$ and $K$. That these covers also have equal eigenvalue spectra
follows Rom the equivalence of almost conjugacy with the following condition.

$(\phi)$ For every finite dimensional complex representation

$p:Garrow GL(n;C)$

we have the equality

$dimFix(p(H))=dimFix(p(K))$ .

Given the equivalence of Definition 1 and (J), it is not difficult to prove that
$\epsilon(M_{H})=\epsilon(M_{K})$ .

3.2 Using $S$unada’s method

Using known examples of almost conjugate pairs $H,K$, Sunada [56] produced
many new examples of isospectral, nonisometric hyperbolic 2-manifolds. Since
then, examples of isospectral hyperbolic $n$-manifolds for every $n$ were found (see
[3], [7], [49], [27], [57]). For complex and quatemionic hyperbolic manifolds,

Spatzier [53] (see also [54]) found examples so long as the dimension is suffi-
ciently high. Recently, we completed his work [30], finding examples in every
dimension. Both of these $cons\alpha uctions$ utilize Sunada’s method. Indeed, the work
involved in applying Sunada’s method is showing the manifolds are nonisometric.
The main tool we use for this is recent work ofBelolipetsky-Lubotzky [2]. Briefly,
the main points of our construction are:

(Step 1) Find families of finite groups $N_{j}$ with $r_{j}$ pairwise almost conjugate, noncon-
jugate $sub_{\Psi}oups\{H_{j,k}\}_{k=1}^{r_{j}}$ . Important here is that $r_{j}$ tends to infinity as a
function of $j$ .
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(Step 2) For a manifold $M$, find surjective homomorphisms $\pi_{1}(M)arrow N_{j}$ .
(Step 3) Find bounds on the number of ways a given cover can be isomekic to another

cover of $M$ associated to the pullbacks $ofH_{j,k}$ under the sur ections of $\pi_{1}(M)$

to $N_{j}$ .

It is worth noting that our approach was inspired by the approach taken by Be-
lolipetsky and Lubotzky [1] in the resolution of the inverse Galois problem for
$isome\alpha y$ groups of closed hyperbolic $n$-manifolds. As a somewhat lengthy side
note, we describe this philosophy employed in [1].

One approach to the inverse Galois problem for Riemann surfaces is as follows
(see [16] for rigorous $\alpha ea\mathfrak{a}nent,$ $[22]$ for the inverse Galois problem for hyperbolic
3-manifolds, and [24] for the general case of the trivial group). Using the largeness
of surface groups, given a finite group $G$, one can find a surjective homomorphism
$\pi_{1}(\Sigma_{9})arrow G$. For each hyperbolic structure on $\pi_{1}(\Sigma_{9})$ , one obtains a hyperbolic
structure on the cover corresponding to the pullback of the trivial group under
the surjection of $\pi_{1}(\Sigma_{g})$ onto $G$. In particular, these hyperbolic $s\alpha uctures$ always
have $G$ as a subgroup of their isometry groups; this provides an embedding of the
Teichm\"uller space of $\Sigma_{g}$ into the Teichm\"uller space of the cover. Loosely, when
the hyperbolic structure possesses more symmetry than $G$, these $s\alpha uctures$ sit on
an embedded copy of the Teichmuller space of a smaller surface. In particular,
generic $s\alpha uctures$ on the image of Teich$(\Sigma_{g})$ have precisely $G$ for their isometry
group.
Belolipetsky-Lubotzky [1] proceed in a similar manner to produce hyperbolic $n-$

manifolds with isometry group $G$. The real and obvious sticking point is the lack
of a Teichm\"uller space due to Strong Rigidity. The variational method in their ap-
proach $kcomes\cdot discrete$ ; they produce $t$ covers of a large, nonarithmetic manifold
and by a counting argument show that some (generically) of these covers must have
precisely $G$ for their $isome\alpha y$ group.
Sunada [56] (see also [5]) takes a similar approach for symmetry groups but instead
to produce isospectral, nonisometric Riemann surfaces. Va largeness of $\pi_{1}(\Sigma_{8})$ .
one is afforded surjective homomorphisms $\pi_{1}(\Sigma_{g})arrow G$, where $G$ possesses an
almost conjugate pair $H,K$. This produces two copies the Teichmiiller space for $\Sigma_{g}$

in the TeichmUller space of the surface corresponding to $H$ (or equivalent $K$). By
selecting a hyperbolic metric on $\Sigma_{9}$ with trivial isometry group, which by the same
reasoning above, occurs generically, the lifted metrics on the covers corresponding
to the pullbacks of $H,K$ are nonisometric (and by Sunada’s theorem, isospectral).

With this view, our approach in [30] was to replace the continuous $V\dot{\bm{t}}ational$ ap-
proach of Sunada with a discrete variational approach as done by Belolipetsky-
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Lubotzky. The first two steps aim to produce large families of isospectral covers
while the third step replaces the Baire category argument used in a continuous
variational approach.

3.3 A sketch of how to achieve the basic steps

For completeness, we provide a sketch of how the ffiee steps to our approach are
achieved.

Step One The starting point for our approach (aside from Sunada’s paper [56])

is a paper of Brooks, Gornet, and Gustafson [5].

For any field $k$, we define the 3-dimensional Heisenberg group over $k$ to be

$\mathfrak{N}_{3}(k)=\{(\begin{array}{lll}1 x t0 1 y0 0 1\end{array})$ : $x,y,t\in k\}$ .

Via the inclusion of $GL(3;k)$ into $GL(n+3;k)$ into the upper three by three block,

we may view $\mathfrak{N}_{3}(k)$ as a subgroup of $GL(n+3;k)$ for all $n\geq 0$ . The horizontal
subgroup

$H(k)=\{(\begin{array}{lll}1 x 00 l 00 0 1\end{array})$ : $x\in k\}$

and twists of it will produce the sought after $H_{j,k}$ . Specifically, for a finite field
$F_{q}$ with $q=p^{n},$ $Brooks-Gomet-Gustafson[5]$ found large (depending on $p$ and
n) collections of pairwise almost conjugate, nonconjugate subgroups of the fi-
nite groups $\mathfrak{N}_{3}(F_{q})$ by ”twisting” the horizontal subgroup $H(F_{q})$ by certain maps
$f:F_{q}arrow F_{q}$ . Recall that $F_{q}$ is simultaneously an $n$-dimensional $F_{p}$-vector space
and a l-dimensional $F_{q}$-vector space. The set of $F_{p}$-linear endomorphisms is a
$F_{p}$-vector space with the $F_{q}$-linear endomorphisms sitting as an $F_{p}$-linear sub-
space. Upon selecting an $F_{p}$-basis, the former may be identified with $M(n;F_{p})$

and the latter with $F_{q}$ . The quotient $F_{p}$-vector space $AL(F_{q})$ of $M(n;F_{p})$ by $F_{q}$

will be called the space of twist maps. For simplicity in what follows, we flx a
splitting

$M(n;F_{q})=F_{q}\oplus AL(F_{q})$

which exists by elementary linear algebra.
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Given a $F_{p}$-linear endomorphism $f$ of $F_{q}$ , we define the f-twisted horizontal sub-
group $f_{H(F_{q})}$ to be

$f_{H(F_{q})=}\{(\begin{array}{lll}1 x f(x)0 1 00 0 1\end{array})$ : $x\in \mathbb{F}_{q}\}$ .

The following lemma is due to $Brooks-Gomet-Gustafson[5]$ .
Lemma 3.1. For anypair of$F_{p}$-linear endomorphism $f,g$, the subgroups $f_{H(F_{q})}$

and $gH(F_{q})$ are almost conjugate in $\mathfrak{N}_{3}(F_{q})$ and conjugate in $\mathfrak{N}_{3}(F_{q})$ ifand only
$lff-g\in \mathbb{F}_{q}$ .
An immediate consequence of Lemma 3.1 is the existence of $p^{n(n-1)}$ pairwise al-
most conjugate, nonconjugate subgroups { $f_{H(F_{q})\}_{f\in AL(F_{q})}}$ of $\mathfrak{N}_{3}(F_{q})$ .

Step Two The resolution of Step 2 is on the one hand a formal matter, appealing
to well known results Rom number theory and the sffucmre theory of algebraic
groups. On the other hand, it is the most technical step in our approach. For this
reason, we have opted to omit a lengthy discussion of how this is achieved. The
main points are:

$\bullet$ The Strong Approximation Theorem (see [40] and [58]).

$\bullet$ Existence of algebraic $F$-forms $G$ of the complexification ofmodel semisim-
ple group $G$ with certain properties; for instance $G$ is an inner form and $F$

has certain desired properties.

$\bullet$ Ensuring that the groups $G$ contain Heisenberg groups.

Step Three The resolution of Step 3 splits naturally into two cases. Having
achieved Steps 1 and 2 for a manifold $M$, we split our considerations into two
cases depending on whether or not $M$ is arithmetic. In the case $M$ is nonanithmetic,
extremely good bounds on the number of ways finite covers of $M$ can be isometric
are obtained from deep work of Margulis [28]. In the case $M$ is arithmetic, we
appeal to work of Belolipetsky-Lubotzky [2].

4 What do the multiplicities see?

Though the $isome\alpha y$ type of a manifold is not preserved under isospectrality, cer-
tain quantities like volume and dimension are when passing between isospectral
manifolds. One basic question that can be asked is:
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Question. How much geometric information is encoded in the mulriplicities? For
example, is volume an invanant of the spectral set without multiplicities?

In [52], Schmutz produced infinitely many pairs of finite covers of the modular
quotient $II_{R}^{2}/PSL(2;Z)$ with identical geodesic length sets but with different vol-
ume (thus producing a negative answer to the second part of the above question).
The proof utilized the structure of $PSL(2;Z)$ , using some elementary matrix calcu-
lations; in particular, it is not a method which appears to be easy to generalize to
other settings or even other lattices in $PSL(2;R)$ . Recently, with Leininger, Neu-
mann, and Reid [23], we investigated this question and specifically the question of
how abundant such examples are. Here are some of our results:

Theorem 4.1 ([23]). Let $M$ be a closed X-hyperbolic n-manifold. Then there
exists an infinite family offinite covers $(M_{j},N_{j})$ of$M$ such that

(1) $L_{p}(M_{j})=L_{p}(N_{j})$ ,

(2) $vol(M_{j})/vol(N_{j})$ is unbounded as afiznction of $j$.
Theorem 4.2 ([23]). Let $M$ be a closed X-hyperbolic n-manifold. Then there
exists an infinite family offinite covers $(M_{j},N_{j})$ of$M$ such that

(1) $E(M_{j})=E(N_{j})$ ,

(2) $vol(M_{j})/vol(N_{j})$ is unbounded as afimction of $j$.

These results are achieved with variations of Sunada’s method. Below, we briefly
describe the group theoretic conditions.

It is not too difficult to show that two Riemannian manifolds with identical geodesic
length spectra do indeed have identical primitive geodesic length spectra. More-
over, for compact locally symmetric manifolds, the eigenvalue spectrum is known
to determine the primitive geodesic length spectrum, at least up to multiplication
by rational numbers (see [46]). For negatively curved manifolds, there is a even
stronger relations between the eigenvalue and primitive geodesic length spectra
(see [13]), and for Riemannian surfaces, one can recover each from the other (see
[19], [20], [6]). It might then come as a surprise that these implications typically
fail upon forgetting the multiplicities. Specifically, in [23], we construct examples
(typically Riemann surfaces) with the following properties:

$\bullet$ $L(M_{1})=L(M_{2})$ but $L_{p}(M_{1})\neq L_{p}(M_{2})$ .
$\bullet$ $L(M_{1})=L(M_{2})$ but $E(M_{1})\neq E(M_{2})$ .
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$\bullet$ $E(M_{1})=E(M_{2})$ but $L_{p}(M_{1})\neq L_{p}(M_{2})$ .
$\bullet$ $E(M_{1})=E(M_{2})$ but $L(M_{1})\neq L(M_{2})$ .

Of course, one always has the implication that when $L_{p}(M_{1})=L_{p}(M_{2})$ , then
$L(M_{1})=L(M_{2})$ . Thus the only remaining relation is whether or not the equality
$L_{p}(M_{1})=L_{p}(M_{2})$ implies the equality $E(M_{1})=E(M_{2})$ . There seems to be no
reason to expect this to either hold or fail.

Using examples constructed in [8], one can produce examples of closed hyper-
bolic 3-manifolds $M_{1},M_{2}$ with $L_{s}(M_{1})=L_{s}(M_{2})$ with arbitrarily large volume gap.
However, this does not address how much geometric content is encoded in the sim-
ple length set as the manifolds $M_{j},$ $j=1,2$, have the remarkable property that any
manifold commensurable to $M_{j}$ possesses only simple closed geodesics. Heuristi-
cally, one expects closed geodesics on an $X$-hyperbolic $n$-manifolds to be simple
generically, so long as the manifold is not a Riemannian surface.2 This leads us to
a pair of questions which we view as fundamental:

Question. Do there exist distinct Riemann suffaces $X_{1},X_{2}$ such that
$L_{s}(X_{1})=L_{s}(X_{2})$ ?

Question. Do there exist distinct Riemann surfaces $X_{1},X_{2}$ such that
$L_{s}(X_{1})=\mathcal{L}_{s}(X_{2})$ ?

In the latter case, it is not immediately obvious that $X_{1},X_{2}$ are homeomorphic.
However, using known asymptotic upper and lower bounds on the number of sim-
ple closed geodesics on a Riemann surface ([34], [35]), it follows that $X_{1}\cong X_{2}$ ,
topologically. One reason to perhaps expect more geometric content in the simple
length spectrum is the fact that one can determine the Riemann surface knowing
only the length of a special finite collection of closed curves on the surface. Never-
theless, it seems too early to conjecture simple length spectral rigidity for Riemann
surfaces.

To the author’s knowledge, equality of simple geodesic length sets is not known to
imply that the surfaces are topologically equivalent. Rivin [50] has conjectured that
the multiplicities in the simple geodesic length spectrum are bounded (indepen-
dent of the hyperbolic structure); the multiplicity is known to be one for a generic
surface by a straightforward Baire category argument (see for instance [32]). If
Rivin’s conjecture holds, then the simple geodesic length set would detemine the
topological type by again appealing to the asymptotic growth rate of simple closed

2At present it is unknown whether or not every finite volume hyperbolic $n$-manifold possesses
infinitely many simple closed geodesics up to free homotopy.
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geodesics. Indeed, we only require that the multiplicities in the spectrum be rela-
tively small in comparison to the number of simple closed curves.

Remark. For flat tori, despite the fact that simple multiplicity need not be bounded
(see [32]), one can find linear bounds on the simple multiplicities as a function of
length. Indeed, one can make a coarse geometric argument using the isoparametric
inequality for $R^{2}$ to see this. It seems plausible that even if Rivin’s conjecture is
false that one might be able to produce polynomial bounds on the simple multiplic-
ity as a function of length.

Finally, for length, primitive, and simple geodesic length sets, the number of pair-
wise distinct surfaces of genus $g$ which can be pairwise length, primitive, or simple
geodesic length equivalent is finite. Indeed, by continuity of length such a set is
discrete in the moduli space of genus $g$ curves and contained in a compact set of
$M_{g}$ by Mumford’s compactness criterion.

5 Using symmetry in spectral constructions: Sunada’s method
and some variants

In the next three subsections, the associated Sunada-type group theoretic condition
will be given for length, eigenvalue, and primitive length set equivalence.

5.1 Elementwise $co\iota\dot{u}ugate$

Our first definition is motivated from Definition 1.

Definition 2. Given a group $G$ (not necessarily finite) and a pair of subgroups
$H,K<G$, we say $H,K$ are elementwise conjugate if

$\bigcup_{\epsilon\in G}g^{-1}Hg=\bigcup_{g\in G}g^{-1}Kg$
.

If $G$ isfinite, this is equivalent to:

$(*)$ for all -conjugacy classes $[g]$ ,

$H\cap[g]\neq\emptyset\iota f$ and only $\iota fK\cap[g]\neq\emptyset$ .

The following is one of the main examples used in [23] to produce manifolds with
equal geodesic length sets (for instance examples ofclosed hyperbolic $n$-manifolds
in every dimension).

75



Arithmetic lattices and weak spectral geometry

Example. Let $p$ be an odd prime, $F_{p}$ the (unique) finite field with $p$ elements,
$G=F_{p}^{n}\rtimes SL(n;F_{p}),$ $H=W$, and $K=V$, where $W,V\subset F_{p}^{n}$ are non-trivial $F_{p}-$

subspaces. The inclusion of $F_{p}^{n}$ into $G$ provides us with a pair of subgroups $H,K$ in
$G$. The transitivity of the action of $SL(n;F_{p})$ on the set of $F_{p}$-lines in $F_{p}^{n}$ is enough
to imply that $H,K$ are elementwise conjugate in $G$.

5.2 Fixed point equivalent

Our next definition is motivated by $(l)$ .
Definition 3. We say subgroups $H$ and $K$ ofafinite group $G$ arefixedpoint equiv-
alent iffor any finite dimensional complex representation $\rho$ of $G$, the restnction
$\rho|_{H}$ has a nontrivialfixed vector $\iota f$ and only $\iota f\rho|\kappa$ does.
It is not true that Definitions 2 and 3 are equivalent unlike the equivalence of Def-
inition 1 and $(l)$ . This is the first indication that relationships upon forgetting
multiplicities could be more subtle.

The elementwise conjugate examples above also produce fixed point equivalent
pairs with a slightly different condition on the subspaces $V,W$ .
Example. With $G=F_{p}^{n}\rtimes SL(n;F_{p})$ , if $H=W$, and $K=V$, where $W,V\subset F_{p}^{n}$

are proper $F_{p}$-subspaces, then $H,K$ are fixed point equivalent subspaces of $G$.
The proof of this uses standard results Rom character theory in tandem with an
elementary counting argument.

5.3 Primmitive pairs

Our final group theoretic concept does not fit into the general pattem taken with
the previous two. Nevertheless, this condition does produce manifolds with equal
primitive geodesic length sets.

Definition 4 (Primitive). We shall call a subgroup $H$ of $G$ primuive in $G\iota f$ the
following holds:

$(a)$ All non-tnvial cyclic subgroups of $H$ have the same order $p$ (necessarily
prime).

$(b) \bigcap_{g\in G}g^{-1}Hg=\{1\}$ .
As before, primitive pairs can be found in $F_{p}^{n}\rtimes SL(n;F_{p})$ .
Example. Setting $G$ as before to be the affine group $F_{p}^{n}\rtimes SL(n;F_{p})$ , if $H=W$,
and $K=V$ , where $W,V\subset F_{p}^{n}$ are proper, nontrivial $F_{p}$-subspaces, then $H,K$ are
primitive and elementwise conjugate; (a) is trivial to verify while (b) again follows
Rom the transitivity of the action of $SL(n;F_{p})$ on the set of $F_{p}$-lines.
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5.4 A variant of Sunada’s theorem

One of the main results of [23] is the following variation on Sunada’s theorem.

Theorem 5.1. Let $M$ be a Riemannian manzfold, $G$ a group, and $H$ and $K$ elemen-
ハ\mbox{\boldmath $\nu$}iSe conjugate subgmups of $G$.

(1) If $\pi_{1}(M)$ admits a homomorphism onto $G$, then $L(M_{H})=L(M_{K})$ for the
covers $M_{H}$ and $M_{K}$ associated to the pullback subgroups $ofH$ and $K$.

(2) If, in addition, $H$ and $K$ are primitive in $G$ and $\pi_{1}(M)$ has the property that
any pair of distinct maximal cyclic subgroups of $\Gamma$ intersect tnvially, then
$L_{p}(M_{H})=L_{p}(M_{K})$ .

(3) If instead $H$ and $K$ arefixedpoint equivalent, then $E(M_{H})=E(M_{K})$ .

The reader will note that on top of being less natural in regard to the associated
group theoretic condition, the production of primitive geodesic length equivalent
manifolds also requires conditions on the fundamental group $\pi_{1}(M)$ of the Rie-
mannian manifold. The condition on maximal cyclic subgroups required in our
proof is likely not needed (that some condition is required is seen from examples
in [23]).

5.5 The existence of weak spectrally equivalent covers
To prove our results in the generality stated above (i.e., for any closed hyperbolic
$n$-manifold), one can typically work with the examples of pairs $H,K$ given above.
In dimensions 3,4 however, other examples are required. These pairs are similar
to those given above being subgroups $A_{1},A_{2}$ of a fixed abelian -group $A$ which in
tum is embedded in a semidirect product $A\rtimes\theta$ for some $\theta<Aut(A)$ . The virtual
surjection of $\pi_{1}(M)$ onto groups of this form follows Rom the Strong Approxima-
tion and Cebotarev Density Theorems. The lion’s share of the work is in showing
that these pairs $A_{1},A_{2}$ are primitive, elementwise conjugate, and eigenvalue equiv-
alent.

These methods also work to produce covers over any closed $X$-hyperbolic $n-$

manifold. In addition, one can also produce arbitrarily long towers of covers

$M_{r}arrow M_{r-1}arrow\ldots-M_{2}arrow M_{1}arrow M$

such that each pair $M_{j},M_{k}$ is length, pnimitive length, or eigenvalue equivalent.
These methods also work more generally for locally symmetric manifolds of non-
compact type.
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