
Twisting operations in Lyubich-Minsky laminations
associated with bifurcations of quadratic maps

Tomoki Kawahira (川平友規)
Graduate School of Mathematics

Nagoya University

Abstract

This note gives a brief introduction to Lyubich and Minsky’s hyperbolic 3-
laminations associated with hyperbolic and parabolic quadratic maps. We will
see that a twisting operation naturally appears when a quadratic map bifurcates.
This note is based on my talk at RIMS, Kyot$0$ , on 7 December 2006.

1 Introduction: Sullivan’s dictionary

1.1 Complex Dynamics

Iteration theory of rational functions. Let $f$ : $\overline{\mathbb{C}}arrow\overline{\mathbb{C}}$ be a rational map of
deg $f\geq 2$ . For $z_{0}\in\overline{\mathbb{C}}$ , we consider its orbit

$\overline{\mathbb{C}}\ni z_{0}z_{1}z_{2}\underline{f}\underline{f}\underline{f}\ldots$ .

When we perturb the initial value $z_{0}$ a little, the orbit may change slightly (stably), or
drastically (unstably). To distinguish the properties of orbits, we define the Fatou set:

$F_{f}:=$ (The maximal open set where $\{f^{n}\}_{n\in N}$ is normal);

which is the domain of stability. (Where $f^{n}$ is the $n$ times iteration of $f$). Indeed, we
can replace “normal” by “equicontinuous” in the definition. Thus the orbits starting
at the Fatou set are stable under perturbation. Its complement $J_{f}:=\overline{\mathbb{C}}-F_{f}$ gives
the unstable orbits. We call $J_{f}$ the Julia set, which is the chaotic locus. Note that $F_{f}$

and $J_{f}$ are invariant sets of $f^{\pm 1}$ .
Example. $f(z)=z^{2}$ $\Rightarrow$ $J_{f}=S^{1}$ and $F_{f}=\overline{\mathbb{C}}-S^{1}$ . In fact, $f^{n}arrow 0$ or $\infty$ compact
uniformly on $F_{f}$ as $narrow 0$ . By taking a semiconjugacy of $f$ by $w=\phi(z)=z+z^{-1}$ ,
one can check that $g(w)=w^{2}-2$ has [-2, 2] as its Julia set.
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1.2 Sullivan’s Dictionary

In early $80’ s$ , D.Sullivan introduced a dictionary between (finitely generated) Kleinian
groups and complex dynamics (iteration theory of rational maps). Here are some of
the entries:

f.g. Kleinian gr. $\tau_{t}\sim \mathbb{C}$ Rational map $f\cap \mathbb{C}$

Domain of disconti. $\Omega_{\Gamma}$ Fatou set $F_{f}$

Limit set $\Lambda_{\Gamma}$ Julia set $J_{f}$

Fixed points dense in $\Lambda_{\Gamma}$ Periodic points dense in $J_{f}$

Ahlfors finiteness thm. No wandering $doma\dot{i}$ thm.

Sullivan gave proofs of the two theorems below in the table by using a similar method
of the quasiconformal Teichm\"uller theory. Now our slogan is: Share methods in both
theories! However, there still are missing entries:

Structurally stable $\Rightarrow$ expanding 7 ($\Leftarrow is$ known.)
No invariant line field on $\Lambda_{I^{\backslash }}’$ ?

Poincar\’e ext. $\Gamma r\backslash \mathbb{H}^{3}$ No
$conforma1ext???$

. $f\cap \mathbb{H}^{3}$

Hvperbolic 3-manifold $M_{\Gamma}$

The ffist two ? $s$ are affirmatively conjectured and they imply abig result on density
of hyperbolic rational maps. To get anew $ins$ight for these conjecturae, it would be
nice for complex dynamics to have ageometric realization like $M_{\Gamma}$ of aKleinian group
$\Gamma$ . So far, the only ctdidate for “???” below is Lyubich and Minsky’s hyperbolic S-
lamination $\mathcal{M}_{f}$ introduced in [LM]. They proved arigidity thmrem of acertain class
of rational maps by an analogous argument to Mostow’s rigidity theorem $\bm{t}d$ Marden’s
isomorphism theorem.

Outline of this note. In Section 2, we roughly summerize properties of quadratic
maps with connected Julia sets. Section 3is devoted for arough sketch of the con-
struction of Lyubich-Minsky laminations. Section 4gives aworked out example of the
Lyubii-Minsky hyperbolic 3-laminations and their degeneration. This note is based
on some hmdamental facts on complex dynamics. Readers may refer [Mi].

Acknowledgement. This research is partially supported by Inamori Foundation
and JSPS.

2 Dynamics of quadratic maps

2.1 Quadratic dynamics and the Mandelbrot set

Let us consider quadratic maps of the form $f(z)=f_{c}(z)=z^{2}+c$ $(c\in \mathbb{C})$ . This is
enough general, since any quadratic function is affinely conjugate to one of such $f_{c}’ s$ .
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Basin at infinity. Since $f(z)=z^{2}(1+c/z^{2})\approx z^{2}$ near $\infty,$ $\infty$ attracts nearby points.
We define the basin at infinity by

$B_{f}$ $;=\{z\in\overline{\mathbb{C}} : f^{n}(z)arrow\infty\}\subset F_{f}$

which is an open neighborhood of $\infty$ . Note that $B_{j}$ is completely invariant, i.e.,
$f^{\pm 1}(B_{f})=B_{f}$ . Here is a classical result on $B_{f}$ and $J_{f}$ :

Theorem 2.1 (Fatou, Julia) For any $f=f_{c}$ , the boundary of $B_{f}$ coincide utth $J_{f}$ .
Moreover, either

1. $B_{f}\cong D\Leftrightarrow J_{f}$ is connected; $or$

2. $B_{f}\not\cong D\Leftrightarrow J_{f}$ is a Cantor set.

We define the Mandelbrot set by

$M$ $:=\{c\in \mathbb{C} : B_{f}\cong D\}$ .
Now suppose that $B_{f}\cong D$ $\Leftrightarrow$ $c\in$ M. Then it is known that there exist$s$ a

Figure 1: The Mandelbrot set with its boundary emphasized.

unique conformal conjugacy $\Phi_{f}$ : $B_{f_{0}}arrow B_{f}$ between the actions $f_{0}r\sim B_{f_{0}}$ and $fr\vee B_{f}$

satisfying $\Phi_{f}(z)/zarrow 1(zarrow\infty)$ (Figure 2). In other words, the dynan ‘cs $f \bigcap_{-}B_{f}$ we
observe is the image of the dynamics of $f_{0}$ : $zrightarrow z^{2}$ acting on $B_{fo}=\overline{\mathbb{C}}-D$ through
a $co$nformal lens” $\Phi_{f}$ . This is a conformal deformation of the dynamics $f_{0}\cap B_{fo}$ ,
which gives a quite similar situation to Bers’ simultaneous uniformization.

Here is another entry of the dictionary:

Where $Q\mathcal{F}$ is the quasi-Fuchsian space, a deformation space of a hyperbolic surface
group.
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Figure 2: Conformal deformation of the dynamics in $B_{f_{0}}$ .

2.2 Degeneration v.s. Bifurcation
Let us change the parameter $c$ of $f=f_{c}$ : $z\mapsto z^{2}+c$ from $c=0$ (small white circle
below) as in the curve of Figure 3. It is convenient to define the filled Julia set by

Figure 3: Rabbits

$K_{f}$ $:=\overline{\mathbb{C}}-B_{f}$ . Note that $\partial K_{f}=J_{f}$ . In Figure 3, the three triangles indicate the
parameter $c$ with their filled Julia sets (with some “equipotential curves”) drawn on
the right. The first one from below, say $f_{1}:=f_{c_{1}}$ , has an attracting fixed point and its
Julia set $J_{f\iota}$ is a Jordan curve. The interior of the filled Julia set $K_{f_{1}}$ is colored in gray.
The next one, say $g=f_{\sigma)}$ has a fixed point $\beta$ with multiplicity in the following sense:
It is a simple root of the equation $g(z)=z$ , but it is a multiple root of $g^{3}(z)=z$ (in
general this equation gives periodic points of period 3) with multiplicity 4. Hence any
perturbation of this $g$ causes a bifurcation of this multiple periodic points. The Julia
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set $J_{g}$ is no more a Jordan curve, and $K_{\mathring{g}}$ has countably many connected components.
The third one, say $f_{2}=f_{c_{2}}$ , has periodic points of period three that attract nearby
points (the attracting cycle). It is known that $J_{f_{2}}$ is homeomorphic to $J_{g}$ .

The key to describe the difference between $f_{1}^{3},$ $g^{3},$ $f_{2}^{3}$ is the degeneration and
bifurcation process with respect to $\beta$ . $f_{1}$ has periodic points of period 3 that repel
nearby points (a repelling cycle). As the parameter $c$ moves &om $c_{1}$ to $\sigma$ , the repelling
cycle and the attracting cycle of $f_{1}$ merge into one point, $\beta$ . As the parameter moves
from $\sigma$ to $c_{2}$ , the degenerated periodic points bifurcate again to be the attracting cycle
and the repelling fixed point. Figure 4 shows this process with their nearby dynamics.

$\backslash _{\backslash }\subset A^{X}\supset\swarrow o_{\dagger}^{\dagger_{\nwarrow)}\backslash }o\dagger o_{\nearrow}$

$C_{r\backslash }^{\backslash _{\bullet\supset}}\backslash \},\swarrow C^{\downarrow}\nwarrow$

$\subset\nearrow C_{\dagger}^{\backslash }\backslash \{\prime Y_{q\backslash }^{\supset}$

$\bullet$ attracting $\bullet$ parabo 1 ic $O$ repal I ing

Figure 4: Dynamics of $f_{1}^{3},$ $g^{3},$ $f_{2}^{3}$

Let us make the terninoloy more precise: For aperiodic point $z$ of period $l$ , we
say $(f^{l})’(z)$ is the multiplier of $z$ . We $ako$ say that $z$ is auracting if $|(f^{t})’(z)|<1$ ,
repelling if $|(f^{l})’(z)|>1$ , and indifferent if $|(f^{l})’(z)|=1$ . In particular, we say $z$ is
parabolic if $(f^{l})’(z)$ is aroot of unity, or equivalently, $z$ is amultiple root of $f^{n}(z)=z$

for some $n$ . The map $f_{c}(z)=z^{2}+c$ (or the parameter c)is called $hyperbolic/parabolic$
(parameter) if $f_{c}$ has $\bm{t}attracting/parabolic$ cycle.

By the Douady-Hubbard theory [DH], hyperbolic parameters are deternined by
the (combinatorics of the attracting cycles and its multiplier valued in D. Indeed,
each connected component of the set of hyperbolic parameters $H\subset M^{o}$ is isomorphic
to D. The boundaries of two of such components may share at most one parabolic
parameter. When $c$ moves $hom$ one component of $H$ to tother, apair of degeneration
$\bm{t}d$ biMcation process as in Figure 3happens with wrious multiplicity of periodic
points depending on the parabolic parameter between the two components.

In the following, we try to observe this hyperbolic-to-parabolic degenemtion prooess
and $parabolicarrow to$-hyperbolic bifurcation process in tems of Lyubich-Minsky laminations.
Now let us go to the definition of the Lyubich-Minsky laninations.
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3 Lyubich-Minsky laminations
Here we roughly sketch the construction of the Lyubich-Minsky laminations associated
with hyperbolic and quadratic maps. Assume: $f=f_{c}$ : $z\mapsto z^{2}+c$, hyperbolic or
parabolic. The construction breaks into four steps:

Stepl. To get an invertible dynamics, we construct the inverse limmit $\mathcal{N}_{f}=\lim_{arrow}(f,\overline{\mathbb{C}})$ of
$f\cap\overline{\mathbb{C}}$ with lifted action $f\cap \mathcal{N}_{f}$ .

Step2. Take an analytically well behaved part $\mathcal{A}_{f}\subset \mathcal{N}_{f}$ which is a Riemann surface
$(\mathbb{C}-)lamination$.

Step3. Take an $\mathbb{R}+$-bundle $\mathcal{H}_{f}$ of $\mathcal{A}_{f},$ the $\mathbb{H}^{3}$-lamination. Then the action $\hat{f}c\backslash \mathcal{A}_{f}$

extends to $f’\backslash \mathcal{H}_{f}$ .

Step4. The extended action $\hat{f}^{Z}r\backslash \mathcal{H}_{f}$ is properly discontinuous. Take $\mathcal{M}_{f}:=\mathcal{H}_{f}/\hat{f}$ .

Here is the dictionary:

FA $\mathbb{C}$ $f\cap A_{f}$

$\Gamma r^{-}\vee \mathbb{H}^{3}$ prop. distonti. $\hat{f}\cap \mathcal{H}_{f}$ prop. distonti.
$M_{\Gamma}=\mathbb{H}^{3}/\Gamma$ $\mathcal{M}_{f}=\mathcal{H}^{3}/\hat{f}$

3.1 Construction of laminations
Interested readers may refer [LM], [L], and [Ka3, \S 2]
Stepl: Natural extension. First we consider all possible backward orbits in our
dynamics. That is, take a point $z_{0}\in\overline{\mathbb{C}}$, then choose one of its preimage $z_{-1}$ , and
choose one of its preimage $z_{-2}$ , and so on:

$\overline{\mathbb{C}}\ni z_{0}\underline{f}z_{-1}\underline{f}z_{-2}\underline{f}z_{-3}rightarrow^{f}$ ...

We gather all of such backward orbits and consider it a subset of $\overline{\mathbb{C}}\cross\overline{\mathbb{C}}\cross\overline{\mathbb{C}}\cross\cdots$ . The
natural extension of $f$ is

$\mathcal{N}_{f}$ $:=\{\hat{z}=(z_{0}, z_{-1}, \ldots)\in\overline{\mathbb{C}}^{N}$ : $z_{0}\in\overline{\mathbb{C}},$ $z_{-n}rightarrow^{f}z_{-n-1}\}$

There is a big merit to consider the inverse limit: We get an invertible dynamics like
Kleninan groups. We define $f$ : $\mathcal{N}_{f}arrow \mathcal{N}_{f}$ as foUows:

$\hat{f}:(z_{0}, z_{-1}, z_{-2}, \ldots)\mapsto(f(z_{0}), f(z_{-1}),$ $f(z_{-2}),$ $\ldots$ )
$=(f(z_{0}), z_{0}, z_{-1}, \ldots)$

$\hat{f}^{-1}$ : $(z_{0}, z_{-1}, z_{-2}, \ldots)\mapsto(z_{-1}, z_{-2}, z_{-3}, \ldots)$
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One can easily check that $f;\mathcal{N}_{f}arrow \mathcal{N}_{f}$ is a homeomorphism. Note that the projection
$\pi_{f}(\hat{z}):=z_{0}$ semiconjugates $\hat{f}$ and $f$ :

$arrow^{f^{\hat}}\mathcal{N}_{f}$ $arrow^{f^{\hat}}\mathcal{N}_{f}$ $arrow^{f^{\hat}}$ . . .
$\downarrow$ $\downarrow\pi_{f}$ $\downarrow\pi_{f}$ $\downarrow$

$arrow^{f}$ $\overline{\mathbb{C}}$
$arrow^{j}$

$\overline{\mathbb{C}}$ $arrow^{f}$

Examples.

$\bullet$ $f(z)=z^{2}+c$ fixes $\infty$ . Thus $\infty\wedge$ $:=(\infty, \infty, \infty, \ldots)\in \mathcal{N}_{f}$ satisfies $\hat{f}^{\pm 1}(\wedge\infty)=\infty\wedge$.
$\bullet$ Let $\{\alpha_{1}, \ldots, \alpha_{l}\}$ be the attracting or parabolic cycle of $f$ , with $f(\alpha_{k})=\alpha_{k+1}$

taking subscript modulo $l$ . Then $\hat{\alpha}_{k}$ $:=(\alpha_{k}, \alpha_{k-1}, \ldots)\in \mathcal{N}_{f}$ satisfies $\hat{f}^{\pm 1}(\alpha_{k})=$

$\hat{\alpha}_{k\pm 1}$ .
$\bullet$ If $\hat{z}=(z_{0}, z_{-1}, \ldots)\in \mathcal{N}_{f}-\{\wedge\infty,\hat{\alpha}_{1}, \ldots,\hat{\alpha}_{l}\}$ then $z_{-n}$ accumulates on $J_{f}$ . For ex-

ample, for any point $z_{0}\not\in\{0, \infty\}$ , any backward orbit by $f_{0}(z)=z^{2}$ accumulates
on $J_{fo}=S^{1}$ .

Remark on H\’enon maps. Though it seems the natural extension is an abstract
object, it naturally appears in 2-dimensional settings. In [HO], Hubbard and Oberste-
Vorth proved that for hyperbolic $f(z)=z^{2}+c$ , the action $f\cap \mathcal{N}_{f}-\{\wedge\infty\}$ is topologically
conjugate to $F_{b,c}\cap J^{-}$ , where $F_{b,c}$ : $(z, w)rightarrow(z^{2}+c-bw, z)$ is a complex H\’enon map
on $\mathbb{C}^{2}$ with $|b|\ll 1$ , and $J^{-}$ is the badkward Julia set of $F_{b,c}$ .
Step 2: Affine lamination. Set $\mathcal{A}_{f}$ $:=\mathcal{N}_{f}-\{\wedge\infty,\hat{\alpha}_{1}, \ldots,\hat{\alpha}_{l}\}$ . Note that $\mathcal{A}_{f}$ is an
$f$-invariant set. Moreover, the following properties are known:

1. $\mathcal{A}_{f}$ is a Riemann surface lamination with leaves isomorphic to C.

2. The action $\hat{f}c\backslash \mathcal{A}_{f}$ is a leafwise (complex affine) isomorphism.

3. Every leaf of $\mathcal{A}_{f}$ is dense in $\mathcal{N}_{f}$ .

We call $\mathcal{A}_{f}$ the affine lamination of $f$ .
Step 3: $\mathbb{H}^{3}$-lamination. Since each leaf $L$ of $\mathcal{A}_{f}$ has an complex affine structure
isomorphic to $\mathbb{C}$ , one can consider a hyperbolic space $\mathbb{H}_{L}^{3}$ attached on $L$ . In fact, there
exists a natural $\mathbb{R}+$-bundle $\mathcal{H}_{f}$ of $A_{f}$ , which is a 3-1amination with leaves isomorphic
to $\mathbb{H}^{3}$ . (See Figure 5.) The construction is one of the most technical part. Roughly
put, $\mathcal{H}_{f}$ is given as a quotient space of the tangent bundle of $\mathcal{A}_{f}$ (up to rotation of
tangent vectors). Here we omit the details.

Step 4: Quotient lamination with boundary. An important fact is: The leafvise
isomorphic (complex affine) action $\hat{f}r\vee A_{f}$ extends to a $leaf\omega ise$ isometry $f\cap \mathcal{H}_{f}$ .
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Figure 5: A l-dimension down caricature of $\mathcal{H}_{f}$ and $\mathcal{A}_{f}$

This corresponds to the Poincar\’e extention. Moreover, the cyclic group $\hat{f}^{n}\cap \mathcal{H}_{f}$ acts
properly discontinuovsly. Thus $\mathcal{M}_{f}$ $:=\mathcal{H}_{f}/f$ is a Hausdorff space which inherits the
hyperbolic 3-1aminar structure of $\mathcal{H}_{f}$ . We call $\mathcal{M}_{f}$ the quotient lamination which corre-
sponds to $M_{\Gamma}$ of Kleinian group $\Gamma$ . As hyperbolic 3-manifolds, the quotient laminations
may have “conformal boundary” in the following sense: Set $\mathcal{F}_{f}$ $:=(\pi_{f}|_{A_{f}})^{-1}(F_{f})$ and
$\mathcal{J}_{f}$ $;=(\pi_{f}|_{A_{f}})(J_{f})$ . These sets give a natural Fatou-Julia decomposition $\mathcal{A}_{f}=\mathcal{F}_{f}u\mathcal{J}_{f}$:

$\mathcal{A}_{f}$ $=$ $\mathcal{F}_{f}$ 目 $\mathcal{J}_{f}$

$\frac{\downarrow}{\mathbb{C}}\pi_{f}$

$=$

$F_{f}\downarrow\pi_{f}$

火
$J_{f}\downarrow\pi_{f}$

It is known that $\hat{f}$ acts on $\mathcal{F}_{f}$ properly discontinuously and $\mathcal{F}_{f}/\hat{f}$ is a Riemann surface
lamination. Set $\partial \mathcal{M}_{f}:=\mathcal{F}_{f}/f$ , the conformal boundary of $\mathcal{M}_{f}$ .

Here are additional entries to the dictionary:

$\Gamma$ (} $\Omega_{\Gamma}$ prop. distonti. $f$ rv $\mathcal{F}_{f}$ prop. distonti.
$\partial M_{\Gamma}=\Omega_{\Gamma}/\Gamma$ $\partial \mathcal{M}=\mathcal{F}_{f}/f$

Example. Actually $f(z)=f_{0}(z)=z^{2}$ (and it$s$ perturbation) had been the only
well-investigated example(s). In this case $F_{f}$ is divided into two parts, the basin at
infinity $B_{f}=\overline{\mathbb{C}}-\overline{D}$ and the basin at zero, D. $\mathcal{B}_{f}$ $:=(\pi_{f}|_{A_{f}})^{-1}(B_{f})$ is invariant under
the action of $\hat{f}$ , and $S_{0}$ $:=\mathcal{B}_{f}/\hat{f}$ is called Sullivan’s solenoidal lamination. There is
a mirror image $\overline{S}_{0}$ of $S_{0}$ corresponding to $(\pi_{f}|_{A_{f}})^{-1}(D)$ . Indeed, $\mathcal{M}_{f}$ has a product
$structure\approx S_{0}\cross(0,1)$ that extends to the conformal boundaries. That is, we have
$\mathcal{M}_{f}\cup\partial \mathcal{M}_{f}\approx S_{0}\cross[0,1]$ . In [LM] Lyubich and Minsky showed the following:

Proposition 3.1 If $f_{c}(z)=z^{2}+c$ has an attracting cycle (thus $c$ is contained in the
largest cardioid of M) then $\mathcal{M}_{f_{C}}\cup\partial \mathcal{M}_{f_{e}}\approx S_{0}\cross[0,1]$ .
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$0$

Figure 6: The case of $f=f_{0}$ .

Deformation of $f_{0}$ . Let us return to a general $f=f_{c}$ with hyperbolic or parabolic
parameter $c\in$ M. Set $D_{f}$ $:=K_{\mathring{f}}=\overline{\mathbb{C}}-B_{f}\cup J_{f}$ so that $F_{f}=B_{f}uD_{f}$ . Set
$\mathcal{B}_{f}$ $:=(\pi_{f}|_{A_{f}})^{-1}(B_{f})$ and $D_{f}$ $:=(\pi_{f}|_{A_{f}})^{-1}(D_{f})$ . Then we have the corresponding
decomposition $\mathcal{F}_{f}$ $=$ $\mathcal{B}_{f}u\mathcal{D}_{f}$ . Note that via $\Phi_{f}$ : $B_{f_{0}}arrow B_{f},$ $\mathcal{B}_{f_{0}}$ and $\mathcal{B}_{f}$ are
conformally identified and so are $S_{0}=\mathcal{B}_{f_{0}}/\hat{f}_{0}$ and $\mathcal{B}_{f}’/\hat{f}$. This means that if $c$ of $f=f_{c}$

moves within $M$ , the structure of $\mathcal{B}_{f}/$; is conformally preserved. Hence we also denote
$\mathcal{B}_{f}/\hat{f}$ by $S_{0}$ , and call it the upper end of $\mathcal{M}_{f}=\mathcal{H}_{f}/\hat{f}$ .

On the other hand, the dynamics $f\cap D_{f}$ is not preserved by the motion of $c$ ; even
the topology of $D_{f}$ changes. In fact, the orbits in $D_{f}$ are attracted by the attracting or
parabolic cycles and the topology of $D_{f}$ reflects the location and multipliers of these
cycles. See Figure 3. The quotient space $S_{f}$ $:=\mathcal{D}_{f}/\hat{f}$ upstairs forms a Riemann surface
$lam\dot{i}$ation which may have different topology from $S_{0}$ . We call this end the lower end
of $\mathcal{M}_{f}=\mathcal{H}_{f}/;$.

Now we have some more entries :

FUchsian group $\Gamma$ of $S=\mathbb{H}/\Gamma$ $f_{0}(z)=z$
$M_{\Gamma}\cup(\Omega_{\Gamma}/\Gamma)\approx S\cross[0,1]$ $\mathcal{M}_{f}\cup\partial \mathcal{M}_{f}\approx S_{0}\cross[0,1]$

Deformation of $\Gamma$ Deformation of $f_{0}(z)=z^{2}$

4 A worked out example (Douady’s rabbit)
In this section we mainly deal with $f_{1},$ $g,$ $f_{2}$ in Section 2 to describe a typical change of
the laminations associated with degenerations and bifurcations of hyperbolic quadratic
maps. Let us recall the parameters indicated by the two white dots and the three
triangles in Figure 3. Flrom bottom to top,

$\bullet$ $f_{0}(z)=z^{2}$ , hyperbolic with $f_{0}(0)=0$ .
1In general a family of rational maps caUed Blashcke product corresponds to the family of Fuchsian

group.
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$\bullet$ $f_{1}(z)=z^{2}+c_{1}$ , hyperbolic with an attracting fixed point of multiplier $r_{1}e^{2\pi i/3}$

for some $0<r_{1}<1$ .
$\bullet$ $9(z)=z^{2}+\sigma$ , parabolic with parabolic fixed point of multiplier $e^{2\pi i/3}$ .
$\bullet$ $f_{2}(z)=z^{2}+c_{2}$ , hyperbolic with an attracting cycle of period three whose multi-

plier is $0<r_{2}<1$ .
$\bullet$ $f_{3}(z)=z^{2}+c_{rab}$ , hyperbolic with $f_{3}^{3}(0)=0$ . (Its Julia set is called “Douady’s

rabbit”.)

One may expect some topological difference between $\mathcal{M}_{fo}$ and $\mathcal{M}_{f_{S}}$ but there had
been no investigations before the author’s work [Ka2] and [Ka3]. Here we describe the
difference along the arguments of these papers.

Stability of hyperbolics. First we consider the difference between the laminations
of $f_{0}$ and $f_{1}$ (or $f_{2}$ and $f_{3}$ ). It is known that they have quasi-conformally the same
dynamics near the Julia sets but the whole dynamics are different. The Lyubich-Minsky
laminations have a similar property to the Julia sets. We have:

Theorem 4.1 ([Ka3]) The dynamics $f_{0}\cap \mathcal{A}_{f_{0}}\cup \mathcal{H}_{f_{0}}$ and $f_{1}c\sim \mathcal{A}_{f_{1}}\cup \mathcal{H}_{f_{1}}$ are
conjugate. Indeed, we can take a conjugacy which is leafivise quasiconformal on the
affine laminations and leafwise quasi-isometry on the hyperbolic laminations. More-
over, $\mathcal{M}_{f_{0}}\cup\partial \mathcal{M}_{f_{0}}$ is homeomorphic to $\mathcal{M}_{f_{1}}\cup\partial \mathcal{M}_{f_{1}}$ . The same holds for $f_{2}$ and
$f_{3}$ .

So it is enough to compare $f_{1},$ $g$ , and $f_{2}$ .

4.1 Degeneration of rabbits
First we describe the difference between the dynanics downstairs. If $r_{1}$ and $r_{2}$ tend to
1, $f_{1}$ and $f_{2}$ tends to $g$ . They are two distinct process of degeneration. It is convenient
to use extemal rays to describe these process. Since the dynamics of $B_{f}1’ B_{9}$ , and $B_{f}2$

(the basins at infinity) are conformally the same as $B_{fo}$ , we can pull-back the foliation
on $B_{f_{0}}$ by the radial rays (which is invariant under the dynamics of $f_{0}$) to each basin at
infinity. In general, when $K_{f}$ is connected, we define the extemd ray of angle $\theta\in \mathbb{R}/\mathbb{Z}$

by
$R_{f}(\theta):=\Phi_{f}(\{re^{2\pi i\theta} : r>1\})$ .

Then we have $f(R_{f}(\theta))=R_{f}(2\theta)$ .
From $f_{1}$ to $g$ . It is known that the parabolic fixed point $\beta$ of $g$ is the landing point of
the external rays of angles 1/7, 2/7 and 4/7. For $f_{1}$ , the landing points of the external
rays of angle angles 1/7, 2/7 and 4/7 $are$ all distinct and form a repemg periodic cycle.
As $f_{1}$ tends to g) the attracting fixed point of $f_{1}$ and the repelling cycle degenerate
into one parabolic fixed point $\beta$ . See Figure 4, from the left to the middle.
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In this case, we can find an $f_{1}$-invariant graph that joins the central attracting fixed
point and the repelling cycle. we denote it by $I_{1}$ (Figure 7).

From $f_{2}$ to $g$ . In the case of $f_{2}$ , the external rays of angles 1/7, 2/7 and 4/7 land
at the same repelling fixed point. As $f_{2}$ tends to $g$ , the repelling fixed point and three
attracting periodic point degenerate into one parabolic fixed point $\beta$ . See Figure 4,
from the right to the middle.

We can aJso find an $f_{2}$-invariant graph that joins the central repelling fixed point
and the attracting cycle. we denote it by $I_{2}$ (Figure 7).

$f_{1}(A_{I_{1}}^{\gamma}\vee$
$g_{Q_{\bullet}}\beta$

$f_{2}(\hat{\gamma}_{y_{I_{2}}}$

Figure 7: The invariant arcs $I_{1}$ and $I_{2}$ .

Now we set $I_{f:}$ $:=\cup f_{i}^{-n}(I_{i})$ for $i=1,2$ , and $I_{g}$ $:=\cup g^{-n}(\{\beta\})$ . Figure 8 shows the
filled Julia sets of $K_{f_{i}}$ with $I_{f_{l}}$ drawn in. As we will justify in Theorem 4.3, we may
consider that the dynanics of $g$ is given by just pinching $I_{f_{l}}$ to $I_{g}$ .
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Figure 8: The external rays of angles {1/7, 2/7, 1/7} and {1/28, 23/28, 25/28} are also
drawn in.

Tessellation. The dynamics on $B_{f}$ (the basin at infinity, “outside” the Julia sets)
is perfectly organized by the external rays and their relation $f(R_{f}(\theta))=R_{f}(2\theta)$ . On
the other hand, dynamics on $D_{f}$ (inside’ the Julia sets) are or perfectly organized by
tiles.

Theorem 4.2 ([Ka2]) For $i=1,2,$ $D_{fi}-I_{f_{1}}$ and $D_{g}=D_{9}-I_{g}$ are tessellated by
tiles of the ffom $T_{o}(\theta,m, *)$ with $0=f_{i}$ or $g,$ $\theta\in \mathbb{Q}/\mathbb{Z},$ $m\in \mathbb{Z},$ $*=+or-satishing$
the following.
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$\bullet$ Each tile has a topological disk as its interior.

$\bullet$ $f_{i}$ maps $T_{f_{i}}(\theta, m, \pm)$ to $T_{f_{i}}(2\theta, m+1, \pm)$ homeomorphically.

$\bullet$ $g$ maps $T_{g}(\theta, m, \pm)$ to $T_{g}(2\theta, m+1, \pm)$ homeomorphically.

$\bullet$ $T_{f}i(\theta, m, *)$ and $T_{f*}(\theta’, m’, *’)$ share their boundary points iff so do $T_{g}(\theta, m, *)$ and
$T_{g}(\theta’, m’, *’)$ .

Figure 9 shows the tessellations for $f_{1}$ and $f_{2}$ . It is difficult to draw a nioe picture
of the tessellation for $g$ because moire appears. But one can imagine it by pinching $I_{f:}$ .

$2\Pi$ $t/\gamma$ $y$’ $f/\gamma$

/
$4\Pi$

$\theta 7$

Figure 9: The tessellations for $f_{1}$ and $f_{2}$ .

Actually the parameters $\theta$ of tiles are closely related to the angles of external rays
but here we omit the details. Interested readers may refer [Ka2].

Pinching semiconjugacies. By using tessellations, we have:

Theorem 4.3 ([Ka2]) For $i=1,2$ , there $e$ tists a continuous and $su7jective$ map
$h_{i}$ : $\overline{\mathbb{C}}arrow\overline{\mathbb{C}}$ such that:

1. $h_{i}$ is a semiconjugacy. That is, $f_{i}\circ h_{i}=h_{i}og$ .

2. $h_{i}$ sends $I_{f}l$ onto $I_{g}$ . In paritcular, if card $h_{i}^{-1}(y)\geq 2$ then $y\in I_{g}$ .

S. $h_{i}$ sends $T_{f_{2}}(\theta, m, \pm)$ to $T_{g}(\theta,m, \pm)$ homeomorphically.

4. $h_{i}|_{B_{f_{1}}}=\Phi_{g}0\Phi_{f:}^{-1}$ and it conformally conjugates $f_{i}\cap B_{f_{l}}$ to $g\cap B_{g}$ .
5. $h_{i}$ sends $J_{f}l$ onto $J_{g}$ . Moreover, it is a conjugacy when $i=2$ .
6. $h_{i}arrow id$ as $f_{1}arrow g$ .

So we can describe the dynamics of $g$ downstairs by that of $f_{i}$ by means of the
semiconjugacies. We can lift the semiconjugacies to the objects (laminations) upstairs.
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4.2 Degeneration of laminations
First we roughly describe the degeneration of the affine laminations. By lifting the
semiconjugacy $\hat{h}_{i}(i=1,2)$ to the affine laminations $\mathcal{A}_{f:}$ and $\mathcal{A}_{9}$ , we can precisely
describe the difference. The lift is explicitly given by:

$\hat{h}_{i}$ : $(z_{0}, z_{-1}, \ldots)rightarrow(h_{i}(z_{0}), h_{i}(z_{-1}),$
$\ldots$ ).

It is convenient to consider the principal and $non- p\dot{n}ncipal$ part of the affine lami-
nations. The principd part $\Lambda_{f_{i}}$ and $\Lambda_{9}$ of $A_{f}$ and $A_{9}$ are the sets of backward orbits
accumulating on $f_{i}$-invariant arc $I_{i}$ and the parabolic fixed point $\beta$ respectively. The
rest is called the non-principal part.

AMne laminations: Non-principal part. The lifted semiconjugacy $\hat{h}_{i}(i=1,2)$

sends the non-principal part of $\mathcal{A}_{f}$. to the non-principal part of $\mathcal{A}_{g}$ . Since $h_{i}$ just
pinches $I_{f_{i}}$ to $I_{g}$ , its natural lift $\hat{h}_{i}$ on the non-principal parts pinches the backward
orbits within $I_{f:}$ to those within $I_{g}$ . As in Figure 10, such a pinching does not change
the structure of leaves so the non-principal part have no significant difference.

Figure 10: Pinching map in the $non- pr\dot{i}$cipal part

Affine laminations: Principal part. In the principal parts we have a difference
of topologies. Figure 11 shows the dynamics near $I_{i}(i=1,2)$ and $\beta$ , and their
corresponding principal parts.

The principal part $\Lambda_{f}1$ consists of the three cyclic leaves corresponding to the re-
pelling periodic points of period three. One can regard the action on these leaves as
hyperbolic affine maps by takiUg suitable uniformizations of leaves.

The principal part $\Lambda_{g}$ also consists of the three cyclic leaves corresponding to the
repelling directions of the parabolic fixed point. One can regard the action on these
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$\backslash _{\backslash }\subset A_{t}’\supset\nearrow 0_{t^{Q^{\backslash }}}\Im\dagger\eta_{\nearrow}$

$\bullet$ attract $i$ ng

$\subset^{\theta_{\dagger}^{t}O_{\swarrow}}\backslash _{\backslash \wedge}\swarrow 0_{t^{Q^{\searrow}}}^{\iota^{\backslash }}’\bullet\supset$

$\bullet$ parabol ic

$C,\swarrow o_{t}^{\backslash }Y_{q\backslash }^{\supset}\backslash \}$

$O$ repel 1 $i$ ng

$\Lambda_{f_{2}}$

Figure 11: The principal part and corresponding dynantics downstairs.

leaves as parabolic affine maps (translations) by taking suitable uniformizations of
leaves. Recall that the backward orbit $\hat{\beta}=(\beta, \beta, \beta, \ldots)$ is irregular so we can not find
it in the affine lamination.

The principal part $\Lambda_{f_{2}}$ consists of one invariant leaf corresponding to the repelling
fixed point. One can aiso regard the action on this leaf as a hyperbolic affine map by
taking a suitable uniformization.

The thickened curves in the leaves shows the lift of $f_{i}$-invariant graph $I_{i}$ . By the
lift $\hat{h}_{i}$ of the pinching map $h_{i}$ , the thickend curves are pinched to the irregular point
$\hat{\beta}$ . (Observers in the affine laminations may say that the curves are just pushed away
to infinity.) This causes the topological or dynamical difference between the principal
parts of the affine laminations. See Section 5 of [Ka3] for more details.
$\mathbb{H}^{3}$-laminations. Next we consider the $\mathbb{H}^{3}$-laminations. Since the $\mathbb{H}^{3_{-}}1am\dot{m}$ation is
an $\mathbb{R}_{+}$-bundle of the affine laminations, we can extend the pinching map $\hat{h}_{1}$ .

As in the affine laminations, the 3-dimensional extension of the non-principal parts
have no significant difference. The difference of the 3-dimensional extension of the
principal parts are described in a similar way (Figure 12). See Section 6 of [Ka3] for
more details. Here we just note that the action of $f_{i}$ (resp. $\hat{g}$ ) on the 3-dimensional
extension $\Lambda_{f}^{h}i$ (resp. $\Lambda_{g}^{h}$ ) of $\Lambda_{f:}$ (resp. $\Lambda_{g}$ ) is loxodromic (resp. parabolic).

Quotient laminations. Finally let us consider the quotient laminations. For
$\mathcal{M}_{f}(i=1,2)$ and $\mathcal{M}_{9}$ , we define their principal parts by the quotient of 3-dimensional
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Figure 12: Pinching $\mathbb{H}^{3}$-leaves.

extensions of the principal parts by the dynamics. Then we have solid tori $\ell_{f}i\subset \mathcal{M}_{f}l$

associated with $\hat{f}_{i}\cap\Lambda_{f:}^{h}$ $(i=1,2)$ and a rank one cusp $\ell_{g}\subset \mathcal{M}_{g}$ associated with
$\hat{g}\cap\Lambda_{g}^{h}$ as the principal parts (leaves) of the quotient laminations.

Since $\hat{h}_{i}$ on the 3-dimensional extensions of the non-principal parts is a semiconju-
gacy, we have:

Theorem 4.4 (Non-principal part) $\mathcal{M}_{f_{1}}-\ell_{f_{1}},$ $\mathcal{M}_{g}-\ell_{g}$ , and $\mathcal{M}_{f_{2}}-\ell_{f_{2}}$ are all
homeomorphic.

Figure 13: Non-principal parts of the quotient laminations

So the main difference may appear in the principal part. Note that a solid torus
and a rank one cusp have topologically the same interior. Moreover, the upper ends of
the principal leaves come from conformally the same dynamics in the basins at infinity.
Thus the topological difference is given by the lower ends in the principal leaves.

By investigating the structures of the lower ends by lifting tiles downstairs, we can
describe the difference of the lower ends as follows (Figure 14.):
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$\bullet$ The lower end of $\ell_{f_{1}}$ is an annulus with the lift of $I_{f_{1}}$ . There is a simple closed
curve that corresponds to the backward orbits remained on $I_{1}$ .

$\bullet$ As $I_{f_{i}}$ is pinched to $I_{g}$ , the lower end changes its topology. The lower end of $\ell_{g}$

has countably many components with only two cuspidal parts.

$\bullet$ The lower end of $\ell_{f_{1}}$ also has countably many components with only one annular
component. There is also the lift of $I_{j_{2}}$ . There is a simple closed curve on the
annular component that corresponds to the backward orbits remained on $I_{2}$ .

$\bullet$ In particular, compared with the lower end of $\ell_{f_{1}}$ , that of $\ell_{f_{2}}$ is (combinatorially)
1/3-twisted along the simple closed curve corresponding to $I_{1}$ . Here 1/-twisted”
means that there are three tiles along the curve and the connection of tiles are
twisted by the amount of one tile.

Figure 14: Principal parts of the quotient laminations

Remarks.

1. The case we dealt with is the case when the parameter $c$ of $f=f_{c}$ moves $hom$

$0$ to the center of the 1/3-limb of the Mandelbrot set. More generally, when it
moves into $p/q$ -limb, the lower end is (combinatorially) $\tilde{p}/q$-twisted with $\tilde{p}p\equiv 1$

mod $q$ .
2. By sinilax observations, when the parameter $c$ continuously moves from $0$ to

other components of $M^{o}$ via parabolic parameters, the interior of the quotient
lamination is topologically preserved. After infinitely many degenerations and
bifurcations, the parameter will converges to a parameter that gives so-called
an infinitely renormalizable quadratic map. It seems natural to expect that the
quotient lamination of such a map has topologically the same interior as that
of $f_{0}$ , but its lower end is totally degenerate. Here is an interesting question:
Can one define the “end invariants” to distinguish the quotient laminations of
infinitely renormalizable maps?
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