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Abstract

A new method is proposed for designing Galerkin schemes that retain the energy
dissipation or conservation properties of nonlinear partial differential equations such
as the Cahn-Hilliard equation or the nonlinear Schr\"odinger equation. In particular,
as a special case, dissipative or conservative finite-element schemes can be derived.
The method is obtained by extending the existing “discrete variational derivative
method,” which was originally constructed on the finite-difference method. As ex-
amples of the application of the present method, it is shown that several dissipa-
$tive/cooervative$ Galerkin schemes in the literature can be systematically derived.

1 Introduction
In this paper, the numerical integration of partial differential equations (PDEs for short)
which have some “energy” conservation or dissipation properties is considered. For exam-
ple, the Cahn-Hilliard (CH) equation

$\frac{\partial u}{\partial t}=\frac{\partial^{2}}{\partial x^{2}}$ ($pu+ru^{3}$ 十 $q \frac{\partial^{2}u}{\partial x^{2}}$ ), $0<x<L,$ $t>0$ , (1)

where $p<0,$ $q<0,$ $r>0$ , has the “energy” dissipation property

$\frac{d}{dt}\int_{0}^{L}(\frac{p}{2}u^{2}+\frac{r}{4}u^{4}-\frac{q}{2}(\frac{\partial u}{\partial x})^{2})dx\leq 0$ , $t>0$ ,

when appropriate boundary conditions are imposed. The nonlinear Schr\"odinger (NLS)
equation,

$i\frac{\partial u}{\partial t}=-\frac{\partial^{2}u}{\partial x}-\gamma|u|^{p-1}$, $0<x<L,$ $t>0$ , (2)

where $i=\sqrt{-1},$ $p=3,4,$ $\ldots$ , and $\gamma\in R$ , has the “energy” conservation property

$\frac{d}{dt}\int_{0}^{L}(-|\frac{\partial u}{\partial x}|^{2}+\frac{2\gamma}{p+1}|u|^{p+1})dx=0$ , $t>0$ ,

again, when appropriate boundary conditions are imposed.
It is widely accepted that numerical schemes which retain the dissipation or conserva-

tion properties of the PDEs are advantageous in that they often yield physically correct re-
sults and numerical stability [3]. We call such schemes $dissipative/conservative$ schemes”
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in this paper. In the literature, this area was first approached by the development of a
number of specific schemes corresponding to specific problems; the interested reader may
refer to [1, 2, 4, 6, 11] among others (see also references in [5, 8]).

A more unified method was then given in [5, 7, 8, 9], by which dissipative or conservative

finite-difference schemes can be constructed automatically for certain classes of dissipa-
$tive/conservative$ PDEs. More specifically, this method targets $dissipative/conservative$

PDEs which are defined using a variational derivative. In Furihata [5], real-valued equa-
tions of the form

$\frac{\partial u}{\partial t}=(-1)^{s+1}(\frac{\partial}{\partial x})^{2s}\frac{\delta G}{\delta u}$ , $s=0,1,2,$ $\ldots$ (3)

were considered, where $\delta G/\delta u$ is the variational derivative of $G(u, u_{x})$ with respect to
$u(x, t)$ . Under appropriate boundary conditions, these PDEs becomes dissipative. For
example, the CH equation belongs to this class with $s=1$ and $G(u, u_{x})=pu^{2}/2+ru^{4}/4-$

$qu_{x}^{2}/2$ (where $u_{x}=\partial u/\partial x$). Furihata also targeted real-valued conservative PDEs of the
form $u_{t}=(\partial/\partial x)^{2s+1}\delta G/\delta u(s=0,1,2, \ldots.)$ . Later, Matsuo and Furihata [8] considered
complex-valued conservative equations of the form

$i\frac{\partial u}{\partial t}=-\frac{\delta G}{\delta\overline{u}}$ , (4)

where $\delta G/\delta\overline{u}$ is a complex variational derivative, and $\overline{u}$ is the complex conjugate of $u$ . An
example of this class is the NLS equation. Dissipative PDEs of the form $\partial u/\partial t=-\delta G/\delta\overline{u}$ ,
were also treated. The key step for the above studies was the introduction of the “discrete
variational derivative,” which is a rigorous discretization of the variational derivative.
Using the discrete variational derivative, a finite-difference scheme is defined analogously
to the original equation, so that the $dissipation/conservation$ property is automatically
retained. Due to this underlying idea, the method is now called the “discrete variational
derivative method” (DVDM). The method does, however, suffer from drawbacks due to
being based on the finite-difference method. Specifically, the use of non-uniform grids and
application to two- or three-dimensional problems with complex domain structures are
not straightforward. One natural way to circumvent this difficulty is to use instead the
Galerkin approach, in particular the finite-element framework, which is more flexible at
handling complex spatial structures.

The aim of this paper is to present a Galerkin $dissipative/conservative$ method by
extending the finite-difference DVDM. We limit ourselves to spatially one-dimensional
cases for brevity. First, a natural Galerkin translation of the finite-difference DVDM is
introduced, which unfortunately turns out to be impractical because it requires sufficiently
smooth, i.e. expensive, basis functions. An improved method is then presented, which
can be fully implemented by using only cheap $H^{1}$ elements. In this improvement, two key
devices are important: The first device is the introduction of the concept of a “discrete
partial derivative,” which replaces the discrete variational derivative. The second device
is the appropriate use of intermediate variables. This is necessary in order to treat the
higher-order derivatives that appear due to the $(\partial/\partial x)^{2s}$ operator in equation (3).
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This paper is organized as follows: In Section 2 the target equations are defined,
while in Section 3 the natural Galerkin translation of the finite-difference DVDM is pre-
sented and its limitations are discussed. Section 4 is devoted to the improved, practical
Galerkin method, while in Section 5 it is shown that several novel $dissipative/conservative$
finite-element schemes in the literature can be derived by the proposed method. Finally,
Section 6 offers some concluding remarks.

2 Target equations

In this paper, two classes of PDEs are considered. The first class is that given by all
real-valued PDEs of the form of equation (3):

$\frac{\partial u}{\partial t}=(-1)^{s+1}(\frac{\partial}{\partial x})^{2\epsilon}\frac{\delta G}{\delta u}$ $s=0,1,2,$ $\ldots$ . (3)

As mentioned above, these PDEs are dissipative.

Proposition 2.1 (Dissipation property of (3)). Let us assume that boundary conditions
satisfy

$[ \frac{\partial G}{\partial u_{x}}\frac{\partial u}{\partial t}]_{0}^{L}=0$ , $t>0$ , (5)

and
$[( \frac{\dot{\theta}^{-1}\delta G}{\partial x^{j-1}\delta u})(\frac{\partial^{2s-j}\delta G}{\partial x^{2s-j}\delta u})]_{0}^{L}=0$ , $t>0,$ $j=1,$ $\ldots,$

$s$ . (6)

Then solutions to the PDEs (3) satisfy

. $\frac{d}{dt}\int_{0}^{L}G(u, u_{x})dx\leq 0$, $t>0$ .

That is, the PDEs are dissipative.

A proof can be found in [5]. Throughout this paper we call $G(u, u_{x})$ the “local energy,”
and $\int_{0}^{L}G(u, u_{x})dx$ the “global energy.” As stated above, the CH equation (1) is a member
of this class with $s=1$ and $G(u, u_{x})=pu^{2}/2+ru^{4}/4-qu_{x}^{2}/2$ .

The second class of PDEs considered in this study are the complex-valued PDEs (4):

.
$\frac{\partial u}{\partial t}=-\frac{\delta G}{\delta\overline{u}}$ . (4)

Proposition 2.2 (Conservation property of (4)). Let us assume that boundary conditions
satisfy

$[ \frac{\partial G}{\partial u_{x}}\frac{\partial u}{\partial t}+\frac{\partial G}{\theta\overline{u_{x}}}\frac{\partial\overline{u}}{\partial t}]_{0}^{L}=0$. (7)

Then solutions to the PDEs (4) satisfy

$\frac{d}{dt}\int_{0}^{L}G(u, u_{x})dx=0$ , $t\geq 0$ .

That is, these PDEs are conservative.
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A proof is given in [8]. Upon setting $G(u, u_{x})=-|u_{x}|^{2}+2\gamma|u|^{p+1}/(p+1)$ , it can be
seen that the NLS equation (2) is an example of this class of equations.

3 A Galerkin translation of the finite-difference DVDM
To facilitate an understanding of what follows, first, the essential idea of the DVDM
is summarized. A natural Galerkin translation of the finite-difference DVDM is then
presented and discussed.

3.1 Outline of the finite difference DVDM

Let us consider the PDEs (3) with $s=0$,

$\frac{\partial u}{\partial t}=-\frac{\delta G}{\delta u}$ . (8)

Simply differentiating the global energy $\int_{0}^{L}Gdx$ , we get

$\frac{d}{dt}\int_{0}^{L}G(u, u_{x})dx=\int_{0}^{L}\frac{\delta G}{\delta u}u_{t}dx+[\frac{\partial G}{\partial u_{x}}u_{t}]_{0}^{L}=-\int_{0}^{L}u_{t^{2}}dx+[\frac{\partial G}{\partial u_{x}}u_{t}]_{0}^{L}$ . (9)

Thus if boundary conditions are imposed on the target equation such that the boundary
term $[\cdot]_{0}^{L}$ is eliminated (for example, the Dirichlet condition $u_{t}=0$ or periodic boundary
conditions), the PDE is dissipative. Notice that the variational derivative plays a central
role in the above calculation, and the concrete form of the local energy $G(u, u_{x})$ is not
required.

The DVDM takes full advantage of this observation. It supposes the following finite-
difference analogue of (9):

$\frac{1}{\Delta t}\sum_{k=0}^{N}\prime\prime(G_{d,k}(U^{(m+1)})-G_{d,k}(U^{(m)}))\Delta x=$

$\sum_{k=0}^{N}\prime\prime\frac{\delta G_{d}}{\delta(U^{(m+1)},U^{(m)})_{k}}(\frac{U_{k}^{(m+1)}-U_{k}^{(m)}}{\triangle t}$

ノ

$\Delta x+B_{1}(U_{k}^{(m+1)}, U_{k}^{(m)})$ , (10)

where $\sum_{k=0}^{N\prime\prime}$ is the trapezoidal rule, $U_{k}^{(m)}\simeq u(k\Delta x, m\Delta t)$ (and its vector notation $U^{(m)}$ )
is the finite-difference solution, $G_{d,k}$ is discrete local energy, and $B_{1}(\cdot, \cdot)$ is the discrete

boundary term corresponding to $[ \frac{\theta G}{\partial u_{l}}u_{t}]_{0}^{L}$ in (9). Further details may be found in $[5, 8]$ .
The symbol $\delta G_{d}/\delta(U^{(m+1)}, U^{(m)})_{k}$ is the discrete quantity which corresponds to the contin-
uous variational derivative $\delta G/\delta u$ , and thus is called the “discrete variational derivative.”
Under certain assumptions regarding the local energy, we can find the discrete variational
derivative that satisfies the discrete variation identity (10). A finite-difference scheme can
then be defined using this derivative,

$\frac{U_{k}^{(m+1)}-U_{k}^{(m)}}{\Delta t}=-\frac{\delta G_{d}}{\delta(U^{(m+1)},U^{(m)})_{k}}$ , (11)
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analogously to the continuous equation (8). With this approach, the discrete dissipation
property is guaranteed as follows:

$\frac{1}{\Delta t}\sum_{k=0}^{N}\prime\prime(G_{d,k}(U^{(m+1)})-G_{d,k}(U^{(m)}))\Delta x$

$=$ $\sum_{k=0}^{N}\prime\prime\frac{\delta G_{d}}{\delta(U^{(m+1)},U^{(m)})_{k}}\frac{U_{k}^{(m+1)}-U_{k}^{(m)}}{\Delta t}\Delta x+B_{1}(U_{k}^{(m+1)}, U_{k}^{(m)})$

$- \sum_{k=0}^{N}\prime\prime(\frac{U_{k}^{(m+1)}-U_{k}^{(m)}}{\Delta t})^{2}\Delta x+B_{1}(U_{k}^{(m+1)}, U_{k}^{(m)})$ . (12)

The first equality holds by applying equation (10), and the second one by applying equation
(11). If the boundary term $B_{1}(\cdot, \cdot)$ vanishes in light of the discrete boundary condition,
the right-hand side is non-positive, which ensures the desired dissipativity. Notice that
equation (12) is completely analogous to the continuous case given in equation (9).

3.2 A natural Galerkin translation

Let us try to exactly follow the above procedure within a Galerkin framework. In order
to give rigorous definitions, suppose that local energy is of the form

$G(u, u_{x})= \sum_{l=1}^{M}f_{l}(u)g_{l}(u_{x})$ , (13)

where $M\in\{1,2, \ldots\}$ , and $f_{l},$ $g_{l}$ are real-valued functions. For example, the local energy
of the CH equation can be expressed in this form with $M=3,$ $f_{1}(u)=pu^{2}/2,$ $g_{1}(u_{x})=$

$1,$ $f_{2}(u)=ru^{4}/4,$ $g_{2}(u_{x})=1,$ $f_{3}(u)=1,$ $g_{3}(u_{x})=-qu_{x}^{2}/2$ . Let us denote the Galerkin
approximate solution by $u^{(m)}\simeq u(x, m\Delta t)$ , and its first derivative by $u_{x}^{(m)}=(\partial/\partial x)u^{(m)}$ .
Then the Galerkin version of the discrete variational derivative is defined as follows:

Deflnition 3.1 (Galerkin version of discrete variational derivative). We call the discrete
quantity

$\frac{\delta G_{d}}{\delta(u^{(m+1)},u^{(m)})}$ $: \equiv\frac{\partial G_{d}}{\partial(u^{(m+1)},u^{(m)})}-\frac{\partial}{\partial x}(\frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})})$ (14)

the $t(Galerkin)$ discrete variational derivative, “ where

$\frac{\partial G_{d}}{\partial(u^{(m+1)},u^{(m)})}$ $:\equiv$ $\sum_{l=1}^{M}(\frac{f_{l}(u^{(m+1)})-f_{l}(u^{(m)})}{u^{(m+1)}-u^{(m)}})(\frac{g_{l}(u_{x}^{(m+1)})+g_{l}(u_{x}^{(m)})}{2})$ , (15)

$\frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})}$
$:\equiv$ $\sum_{l=1}^{M}(\frac{f_{l}(u^{(m+1)})+f_{l}(u^{(m)})}{2})(\frac{g_{l}(u_{x}^{(m+1)})-g_{l}(u_{x}^{(m)})}{u_{x}^{(m+1)}-u_{x}^{(m)}}I$ (16)

are discrete partial derivatives corresponding to $\partial G/\partial u$ and $\partial G/\partial u_{x}$ , respectively2.
$\overline{2Expressions}$similar to $(f(a)-f(b))/(a-b)$ should be interpreted as $f’(a)$ when $a=b$.
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The following (Galerkin) discrete variation identity holds (hereafter $G(u^{(m)}, u_{x}^{(m)})$ is
abbreviated as $G(u^{(m)})$ to save space).

Theorem 3.1 (Galerkin discrete variation identity).

$\frac{1}{\Delta t}\int_{0}^{L}(G(u^{(m+1)})-G(u^{(m)}))dx$ $=$ $\int_{0}^{L}\frac{\delta G_{d}}{\delta(u^{(m+1)},u^{(m)})}(\frac{u^{(m+1)}-u^{(m)}}{\Delta t}I^{dx}$

$+[ \frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})}(\frac{u^{(m+1)}-u^{(m)}}{\Delta t})]_{0}^{L}$ . (17)

Proof. It is straightforward to check

$\frac{1}{\Delta t}\int_{0}^{L}(G(u^{(m+1)})-G(u^{(m)}))$ ddx $=$

$\int_{0}^{L}\{\frac{\partial G_{d}}{\partial(u^{(m+1)},u^{(m)})}(\frac{u^{(m+1)}-u^{(m)}}{\Delta t})+\frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})}(\frac{u_{x}^{(m+1)}-u_{x}^{(m)}}{\Delta t}I\}dx$ ,

for $G(u, u_{x})$ of the form given in equation (13). It is then straightforward to prove the
theorem by applying integration by parts. $\square$

For the discrete variational derivative, a dissipative Galerkin scheme is given below.
Let us denote the trial space by $S_{d}$ , and the test space by $W_{d}$ . We also use the notation
$(f, g)= \int_{0}^{L}fgdx$ , and $\Vert$ . I12 is the associated norm.

Scheme 1 (Galerkin scheme with discrete variational derivative). Suppose that $u^{(0)}(x)$ is
given in $S_{d}$ . Find $u^{(m)}\in S_{d}(m=1,2, \ldots)$ such that, for any $v\in W_{d}$ ,

$( \frac{u^{(m+1)}-u^{(m)}}{\Delta t},$ $v)=-( \frac{\delta G_{d}}{\delta(u^{(m+1)},u^{(m)})},$ $v)$ . (18)

Theorem 3.2 (Dissipation property of Scheme 1). Assume that boundary conditions are
imposed so that

$[ \frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})}(\frac{u^{(m+1)}-u^{(m)}}{\Delta t})]_{0}^{L}=0$, (19)

and that $(u^{(m+1)}-u^{(m)})/\Delta t\in W_{d}$ . Then Scheme 1 is dissipative in the sense that

$\frac{1}{\Delta t}\int_{0}^{L}(G(u^{(m+1)})-G(u^{(m)}))dx\leq 0$, $m=0,1,2,$ $\ldots$ .

Proof.

$\backslash \frac{1}{\Delta t}\int_{0}^{L}(G(u^{(m+1)})-G(u^{(m)}))$ ddx
$>$

$=$ $\int_{0}^{L}\frac{\delta G_{d}}{\delta(u^{(m+1)},u^{(m)})}(\frac{u^{(m+1)}-u^{(m)}}{\Delta t})dx+[\frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})}(\frac{u^{(m+1)}-u^{(m)}}{\Delta t}I]_{0}^{L}$

$=$ 一 $\int_{0}^{L}(\frac{u^{(m+1)}-u^{(m)}}{\Delta t})^{2}dx\leq 0$ . (20)
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Notice that in the second equality, the Galerkin scheme form (18) is used with $v=(u^{(m+1)}-$

$u^{(m)})/\triangle t\in W_{d}$ . The boundary term vanishes as a result of the assumption. $\square$

The assumption $(u^{(m+1)}-u^{(m)})/\triangle t\in W_{d}$ can be satisfied with natural choices of $S_{d}$ and
$W_{d}$ . For example, when the Dirichlet boundary conditions $u(O)=a,$ $u(L)=b$ are imposed,
it is natural to take $S_{d}=\{u|u(0)=a, u(L)=b\}$ and $W_{d}=\{v|v(0)=0, v(L)=0\}$ . In
this setting the assumption is satisfied.

Thus it appears that we have succeeded in rewriting the DVDM in a Galerkin frame-
work. However, there is a serious problem in that the scheme would require the use of
expensive $C^{1}$ elements due to the discrete variational derivative $\delta G_{d}/\delta(u^{(m+1)}, u^{(m)})$ , which
generally includes second derivatives. For example, when $G(u)=u_{x}^{2}/2$ ,

$\frac{\delta G_{d}}{\delta(u^{(m+1)},u^{(m)})}=-\frac{u_{xx}^{(m+1)}+u_{xx}^{(m)}}{2}$ ,

according to definition (14). Furthermore, the situation clearly gets worse if we take into
account the “additional” differentiation $(\partial/\partial x)^{2\epsilon}$ in equation (3), which leads to fourth-
or higher-order derivatives that demand still smoother basis functions.

4 A Practical Galerkin discrete derivative method
Fortunately, there is an way to get around the difficulty described in the previous section.
The essential ideas are that, in order to avoid the possible second derivatives in the discrete
variational derivative $\delta G_{d}/\delta(u^{(m+1)}, u^{(m)})$ , we abandon the concept of variational deriva-
tive, and instead fully utilize partial derivatives, while, in order to cope with higher-order
differentiation $(\partial/\partial x)^{28}$ , we propose to introduce appropriate intermediate variables and
employ the so-called “mixed” formulation.

4.1 Real-valued PDEs (3)

The simplest case $s=0$ and general cases $s=1,2,$ $\ldots$ are treated separately.

Scheme 2 (Galerkin scheme for $s=0$). Suppose $u^{(0)}(x)$ is given in $S_{d}$ . Find $u^{(m)}\in S_{d}$

$(m=1,2, \ldots)$ such that, for any $v\in tV_{d}$ ,

$( \frac{u^{(m+1)}-u^{(m)}}{\Delta t},$ $v)$ $=$ $-( \frac{\partial G_{d}}{\partial(u^{(m+1)},u^{(m)})},$ $v)-( \frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})},$ $v_{x})$

$+[ \frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})}v]_{0}^{L}$ . (21)

The discrete partial derivatives (15) and (16) do not include second derivatives. Thus
the scheme can be implemented using only $H^{1}$ elements, such as the standard piecewise
linear function space. Furthermore, curiously enough, this form is still sufficient to prove
the discrete dissipation property:
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Theorem 4.1 (Dissipation property of Scheme 2). Assume that boundary conditions are
imposed so that equation (19) is satisfied, and that $(u^{(m+1)}-u^{(m)})/\Delta t\in W_{d}$ . Then
Scheme 2 is dissipative in the sense that

$\frac{1}{\Delta t}\int_{0}^{L}(G(u^{(m+1)})-G(u^{(m)}))$ ddx $\leq 0$ , $m=0,1,2,$ $\ldots$ .

Proof.

$\frac{1}{\Delta t}\int_{0}^{L}(G(u^{(m+1)})-G(u^{(m)}))dx$

$=$ $( \frac{\partial G_{d}}{\partial(u^{(m+1)},u^{(m)})}\frac{u^{(m+1)}-u^{(m)}}{\Delta t})+(\frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})}\frac{u_{x}^{(m+1)}-u_{x}^{(m)}}{\Delta t})$

$=$ $- \Vert\frac{u^{(m+1)}-u^{(m)}}{\triangle t}\Vert_{2}^{2}+[\frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})}(\frac{u^{(m+1)}-u^{(m)}}{\Delta t})]_{0}^{L}\leq 0$. (22)

The first equality is shown in the proof of Theorem 3.1. The second one is shown by making
use of expression (21) and the assumption $(u^{(m+1)}-u^{(m)})/\Delta t\in W_{d}$ . The inequality is
shown by the assumption regarding the boundary conditions. $\square$

To handle the additional differentiation $(\partial/\partial x)^{2s}$ , intermediate variables are intro-
duced. Accordingly, multiple trial spaces $S_{1},$

$\ldots$ , $S_{s+1}$ , and test spaces $W_{1},$
$\ldots,$

$W_{s+1}$ , some
of which can coincide, are assumed.

Scheme 3 (Galerkin scheme for $s\geq 1$ ). Suppose that $u^{(0)}(x)$ is given in $S_{d}$ . Find $u^{(m+1)}\in$

$S_{s+1},$
$p_{1}^{(m+\frac{1}{2})}\in S_{1},$

$\ldots$ , $p_{s}^{(m+\frac{1}{2})}\in S_{s}(m=0,1, \ldots)$ such that, for any $v_{1}\in W_{1},$
$\ldots,$ $v_{\theta+1}\in$

$W_{\epsilon+1}$ ,

$( \frac{u^{(m+1)}-.u^{(m)}}{\Delta t},$ $v_{1})$ $=$ $-((p_{1}^{(m+\frac{1}{2})})_{x},$ $(v_{1})_{x})+[(p_{1}^{(m+\int)})_{x}v_{1}]_{0}^{L}$ , (23)

$(p_{j-1}^{(m+\frac{1}{2})},$ $v_{j})$ $=$ $((p_{j}^{(m+)}1F)_{x},$ $(v_{j})_{x})-[(p_{j}^{(m+\frac{1}{2})})_{x}v_{j}]_{0}^{L}$ , (24)

$(p_{\delta}^{(m+\frac{1}{2})},$ $v_{s+1})$ $=$ $( \frac{\partial G_{d}}{\partial(u^{(m+1)},u^{(m)})},$ $v_{s+1})+$

ノ

$\frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})},$ $(v_{\epsilon+1})_{x})$

$-[ \frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})}v_{s+1}]_{0}^{L}$ , (25)

where in equation (24) $j=2,3,$ $\ldots,$
$s$ .

Theorem 4.2 (Dissipation property of Scheme 3). Assume that boundary conditions are
imposed so that equation (19) is satisfied and $[(p_{s-j+2}^{(m+\frac{1}{2})})_{x}\cdot p_{j-1}^{(m+\frac{1}{2})}]_{0}^{L}=0(j=2,3, \ldots, s+1)$ .
Also assume that boundary conditions and the trial and test spaces are chosen such that
$(u^{(m+1)}-u^{(m)})/\Delta t\in W_{\epsilon+1}$ and $S_{\epsilon-j+2}\subseteq W_{j-1}(j=2,3, \ldots,j+1)$ . Then Scheme 3 is
dissipative in the sense that

$\frac{1}{\Delta t}\int_{0}^{L}(G(u^{(m+1)})-G(u^{(m)}))dx\leq 0$ , $m=0,1,2,$ $\ldots$ .
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Proof.

$\frac{1}{\Delta t}\int_{0}^{L}(G(u^{(m+1)})-G(u^{(m)}))dx$

$=$ $( \frac{\partial G_{d}}{\partial(u^{(m+1)},u^{(m)})},$ $\frac{u^{(m+1)}-u^{(m)}}{\Delta t})+(\frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})}\frac{u_{x}^{(m+1)}-u_{x}^{(m)}}{\Delta t}I$

$=$ $(p_{s}^{(m+\frac{1}{2})},$ $\frac{u^{(m+1)}-u^{(m)}}{\Delta t})-[\frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})}(\frac{u^{(m+1)}-u^{(m)}}{\Delta t})]_{0}^{L}$

$=$ $-((p_{1}^{(m+\frac{1}{2})})_{x},$ $(p_{s}^{(m+\frac{1}{2})})_{x})+[(p_{1}^{(m+\frac{1}{2})})_{x}p_{s}^{(m+\frac{1}{2})}]_{0}^{L}$. (26)

The second equality is shown by using equation (25) with $v_{s+1}=(u^{(m+1)}-u^{(m)})/\Delta t$ .
The third equality is given by using equation (23) with $v_{i}=p_{s}^{(m+\frac{1}{2})}$ and the assumption
$S_{\epsilon}\subseteq W_{1}$ . By repeatedly making use of equation (24), it can be seen that the right-
hand side is equal to $-\Vert(p_{(s+1/2}^{(m+\frac{1}{)2})})_{x}\Vert_{2}^{2}$ when $s$ is odd, $or-\Vert p_{s/2}^{(m+\frac{1}{2})}\Vert_{2}^{2}$ otherwise, and so the
proof is complete. All the boundary terms vanish as a result of the boundary-condition
assumptions. $\square$

Schemes 2 and 3 may appear alittle unusual at first glance since the boundary terms $[\cdot]_{0}^{L}$

are included as parts of the schemes. In practice, however, these terms can be eliminated
by applying the boundary conditions, and the conditions on the trial and test spaces. This
may be seen in practice in the application examples in Section 5.

4.2 Complex-valued PDEs (4)

Suppose that the local energy is again of the form of equation (13), but that $f_{l}$ and $g_{l}$ are
real-valued functions of a complex-valued function $u(x, t)$ , which satisfy $f_{l}(u)=f_{l}(\overline{u})$ , and
$g_{l}(u_{x})=g_{l}(\overline{u}_{x})$ . Throughout this section, we use the notation $(f, g)= \int_{0}^{L}\overline{f}gdx$ . Complex
discrete partial derivatives are defined as follows:

Definition 4.1 (complex discrete partial derivatives). We call the discrete quantities

$\frac{\partial G_{d}}{\partial(u^{(m+1)},u^{(m)})}$ $.\equiv$ $\sum_{l=1}^{M}(\frac{f_{l}(u^{(m+1)})-f_{l}(u^{(m)})}{|u^{(m+1)}|^{2}-|u^{(m)}|^{2}})(\overline{\frac{u^{(m+1)}+u^{(m)}}{2}})$

$\cross(\frac{g_{l}(u_{x}^{(m+1)})+g_{l}(u_{x}^{(m)})}{2}I,$ (27)

$\frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})}$ $:\equiv$ $\sum_{l=1}^{M}(\frac{f_{l}(u^{(m+1)})+f_{l}(u^{(m)})}{2})(\frac{g_{l}(u_{x}^{(m+1)})-g_{l}(u_{x}^{(m)})}{|u_{x}^{(m+1)}|^{2}-|u_{x}^{(m)}|^{2}}I$

$\cross(\overline{\frac{u_{x}^{(m+1)}+u_{x}^{(m)}}{2}}I$ , (28)

87



which correspond to $\partial G/\partial u$ and $\partial G/\partial u_{x}$ respectively, “complex discrete partial deriva-
tives. “

Note that the complex discrete partial derivatives satisfy

$\overline{(\frac{\partial G_{d}}{\partial(u^{(m+1)},u^{(m)})})}=\frac{\partial G_{d}}{\partial(\overline{u^{(m+1)}},\overline{u^{(m)}})}$, and $\overline{(\frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})})}=\frac{\partial G_{d}}{\partial(\overline{u_{x}^{(m+1)}},\overline{u_{x}^{(m)}})}$ .

(29)
The following identity holds concerning the complex partial derivatives.
Theorem 4.3 (Complex Galerkin discrete variation identity).

$\frac{1}{\Delta t}\int_{0}^{L}(G(u^{(m+1)})-G(u^{(m)}))dx=\int_{0}^{L}\frac{\partial G_{d}}{\partial(u^{(m+1)},u^{(m)})}(\frac{u^{(m+1)}-u^{(m)}}{\Delta t})dx$

$+ \int_{0}^{L}\frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})}(\frac{u_{x}^{(m+1)}-u_{x}^{(m)}}{\Delta t})dx+(c.c.)$ , (30)

where (c.c.) denotes the complex conjugates of the preceding tems.

Making use of the complex discrete partial derivatives, a conservative scheme for the
PDEs (4) is proposed as follows:
Scheme 4 (Galerkin scheme for the PDEs (4)). Suppose that $u^{(0)}(x)$ is given in $S_{d}$ . Find
$u^{(m)}\in S_{d}(m=1,2, \ldots)$ such that, for any $v\in W_{d}$ ,

$i(\frac{u^{(m+1)}-u^{(m)}}{\Delta t},$ $v)$ $=$ $-( \frac{\partial G_{d}}{\partial(\overline{u^{(m+1)}},\overline{u^{(m)}})},$ $v)-( \frac{\partial G_{d}}{\partial(\overline{u_{x}^{(m+1)}},\overline{u_{x}^{(m)}})},$ $v_{x})$

$+[ \frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})}v]_{0}^{L}$ . (31)

Theorem 4.4 (Conservation property of Scheme 4). Assume that boundary conditions
are imposed so that

$[( \frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})})(\frac{u^{(m+1)}-u^{(m)}}{\triangle t})+(c.c.)]_{0}^{L}=0$,

and $(u^{(m+1)}-u^{(m)})/\Delta t\in W_{d}$ . Then Scheme 4 is conservative in the sense that

$\frac{1}{\Delta t}\int_{0}^{L}(G(u^{(m+1)})-G(u^{(m)}))dx=0$ , $m=0,1,2,$ $\ldots$ .
Proof.

$\frac{1}{\Delta t}\int_{0}^{L}(G(u^{(m+1)})-G(u^{(m)}))dx$

$=$ $( \frac{\partial G_{d}}{\partial(\overline{u^{(m+1)}},\overline{u^{(m)}})}\frac{u^{(m+1)}-u^{(m)}}{\Delta t}I+(\frac{\partial G_{d}}{\partial(\overline{u_{x}^{(m+1)}},\overline{u_{x}^{(m)}})}\frac{u_{x}^{(m+1)}-u_{x}^{(m)}}{\Delta t})+(c.c.)$

$=$ $- i\Vert\frac{u^{(m+1)}-u^{(m)}}{\Delta t}\Vert_{2}^{2}+[\frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})}(\frac{u^{(m+1)}-u^{(m)}}{\Delta t})]_{0}^{L}+(c.c.)$

$=$ $0$ . (32)
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5 Application examples

Examples of the application of the proposed method are described in this section. Due
to the restriction of space, we only show that two prominent $dissipative/conservative$
Galerkin schemes in the literature can be derived from, i.e. regarded as examples of, the
proposed method. Suppose that the interval $[0, L]$ is partitioned appropriately, and let
$S_{h}\in H^{1}(0, L)$ be, for example, the piecewise linear function space over the grid.

5.1 The Cahn-Hilliard equation
The CH equation (1) is an example of equation (3) with $s=1$ and $G(u, u_{x})=pu^{2}/2+$

$ru^{4}/4-qu_{x}^{2}/2$ , which is usually solved subject to the boundary conditions

$u_{x}=0$ and $\frac{\partial}{\partial x}(\frac{\delta G}{\delta u})=0$ at $x=0$ , L. (33)

Motivated by nature of the boundary conditions, let us set the trial spaces as $S_{1},$ $S_{2}=$

$\{v|v\in S_{h}, v_{x}(0)=v_{x}(L)=0\}$ , and the test spaces as $W_{1},$ $W_{2}=S_{h}$ . Then Scheme 3
reads as follows: find $u^{(m)}\in S_{2}$ and $p_{1}^{(m+\frac{1}{2})}\in S_{1}$ such that, for all $v_{1}\in W_{1}$ and $v_{2}\in W_{2}$ ,

$(p_{1}^{(m+\frac{1}{2})},$

$v_{2})=( \frac{(\frac{u^{(m+1)}-u^{(m)}}{\partial G_{d}\Delta tv}}{\partial(u^{(m+1)},u^{(m)})},2)+v_{1})(\frac{-((p_{1}^{(m+\frac{1}{2})})_{x}\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})},(v_{2})_{x})=,(v_{1})_{x})$

,
$(35)(34)$

hold, where the terms

$\frac{\partial G_{d}}{\partial(u^{(m+1)},u^{(m)})}$ $=p( \frac{u^{(m+1)}+u^{(m)}}{2})+$

$r( \frac{(u^{(m+1)})^{2}+(u^{(m)})^{2}}{2})(\frac{u^{(m+1)}+u^{(m)}}{2})$ , (36)

$\frac{\partial G_{d}}{\partial(u_{x}^{(m+1)},u_{x}^{(m)})}$ $=q( \frac{u_{x}^{(m+1)}+u_{x}^{(m)}}{2})$ , (37)

are obtained from definitions (15) and (16). Note that the boundary term $[2\iota$

which should appear in equation (34) and also the $[ \frac{\partial G_{d}}{\partial(u_{a}^{(m+1)},u_{\varpi}^{(m)})}v_{2}]_{0}^{L}$ term in (35) vanish,

because $(p_{1}^{(m+\frac{1}{2})})_{x}=u_{x}^{(m+1)}=u_{x}^{(m)}=0$ at $x=0,$ $L$ . It is easily checked that all the
assumptions in Theorem 4.2 are satisfied, and thus the scheme is dissipative. This scheme
coincides with the Du-Nicolaides scheme [4], except in the fact that Du and Nicolaides
discussed this scheme only with zero Dirichlet boundary conditions.
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Remark 5.1. In practice, the trial spaces can be taken as $S_{1}=S_{2}=S_{h}$ as in the standard
elliptic problems. Then the boundary conditions (33) are automatically recovered as the
natural boundary conditions.

5.2 The nonliear Schr\"odinger equation

Let us consider the NLS equation (2) under the periodic boundary conditions:

$u(O, t)=u(L, t)$ , and $u_{x}(0, t)=u_{x}(L, t)$ , $t>0$ . (38)

This is an example of equation (4) with $G(u, u_{x})=-|u_{x}|^{2}+2\gamma|u|^{p+1}/(p+1)$ . Let us select
the trial and test spaces $S_{d}=W_{d}=\{v|v\in S_{h}, v(O)=v(L)\}$ . Then Scheme 4 becomes:
find $u\in S_{d}$ such that, for all $v\in W_{d}$ ,

$i(\frac{u^{(m+1)}-u^{(m)}}{\triangle t},$ $v)=-( \frac{\partial G_{d}}{\partial(\overline{u^{(m+1)}},\overline{u^{(m)}})},$ $v)-( \frac{\partial G_{d}}{\partial(\overline{u_{x}^{(m+1)}},\overline{u_{x}^{(m)}})},$

$v_{x_{\text{ノ}}}$

,

where the terms

$\frac{\partial G_{d}}{\partial(\overline{u^{(m+1)}},\overline{u^{(m)}})}$ $= \gamma(\frac{|u^{(m+1)}|^{p+1}-|u^{(m)}|^{p+1}}{|u^{(m+1)}|^{2}-|u^{(m)}|^{2}})(\frac{u^{(m+1)}+u^{(m)}}{2})$ , (39)

$\frac{\partial G_{d}}{\partial(\overline{u_{x}^{(m+1)}},\overline{u_{x}^{(m)}})}$
$=$

$- \frac{u_{x}^{(m+1)}+u_{x}^{(m)}}{2}$ , (40)

are obtained from definitions (27) and (28). The boundary term appearing in equation (31)
vanishes due to the periodicity of $S_{d}$ and $W_{d}$ . The periodicity also implies that condition
(19) is satisfied, and thus the conservation property follows from Theorem 4.4. It may be
noted that this scheme is simply the Akrivis-Dougalis-Karakashian scheme [1].

6 Concluding remarks
In this paper a new method for the automatic design of $dissipative/conservative$ Galerkin
schemes is proposed. It is then shown that two novel schemes in the literature can be
regarded as special cases of the present method.

Finally, we would like to emphasize the following issues, which could not have been
covered in this article due to the restriction of space.

$\bullet$ New schemes by the present method: Several new $dissipative/conservative$
Galerkin schemes can be derived by the present method. For example, a new con-
servative Galerkin scheme for the Korteweg-de Vries equation has been discovered
[10]. We are now investigating the scheme both experimentally and theoretically.

$\bullet$ Extension to two- or three-dimensional cases: The essential idea is also valid
in two- or three-dimensional cases, whereas more careful considerations on boundary
and spatial integrations are required in such circumstances.

These issues will be discussed elsewhere in the near future.
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