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1 Introduction

Dynamical systems such as electric circuits, mechanical systems, and chemical plants are often
described by differential-algebraic equations (DAEs), which consist of algebraic equations and
differential operations. DAEs present numerical and a.nalytlca.l difficulties which do not occur
with ordinary differential equations (ODEs).

Several numerical methods have been developed for solving DAEs. For example, Gear [6]
proposed the backward difference formulae (BDF'), which were implemented in the DASSL code
by Petzold (cf. [2]). Hairer and Wanner [9] implemented an implicit Runge-Kutta method in
their RADAUS code. |

The index concept plays an important role in the analysis of DAEs. The index is a measure
of the degree of difficulty in the numerical solution. In general, the higher the index is, the
more difficult it is to solve the DAE. While many different concepts exist to assign an index to
a DAE such-as the differentiation index (2, 4, 9], the perturbation index [3], and the tractability
indez [20], we focus on the nilpotency indez in this paper. In the case of linear DAEs with
constant coefficients, all these indices are equal [3, 19].
~ In order to transform a DAE into an alternative form easier to solve, some index reduction
methods have been developed [7, 15, 16]. These methods introduce additional variables, which
leads to a drawback that the resulting DAE is a larger system than the original one.

 This paper focuses on linear DAEs with constant coefficients

Aoz(t) + 42D = 5, )
where Ap and A, are constant matrices, to propose two index reduction methods.

The first one [21], based on the substitution method, always reduces by one the index of
DAEs in the form of (1) such that A; has at most one nonzero entry in each row. This
class of DAEs includes the semi-explicit form and most circuit equations (which consist of
Kirchhoff’s conservation laws and constitutive equations). The substitution method eliminates
some variables by replacement to obtain a smaller system than the original one. In contrast to
other existing methods [7, 15, 16], it does not introduce any additional variables.

~ The other one [13] is applicable to DAEs in circuit simulation. The most commonly used
analysis method is the modified nodal analysis (MNA). However, the index of the DAE arising

- from MNA is determined uniquely by the structure of the circuit [20]. Hence there is no room
to reduce the index in MNA. Instead, we consider a broader class of analysis method called the
hybrid analysis. It is famous for the theory of minimizing the size of the hybrid equations, i.e.,
the system of equations to be solved numerically [10, 14, 18]. For linear time-invariant electric
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_circuits, we devise an algorithm for finding an optimal hybrid analysis in which the index of
the hybrid equations attains the minimum. The optimal hybrid analysis often results in a DAE
with lower index than MNA.

The organization of this paper is as follows. In Section 2, we explain matrix pencils and
the definition of the nilpotency index. In Section 3, we propose the index reduction method
by the substitution method. Section 4 presents an algorithm for minimizing the index of the
hybrid equations. Numerical examples are given in Section 5.

2 DAEs and Matrix Pencils

For a polynomial a(s), we denote the degree of a(s) by dega, where deg 0 = —oo by convention.
A polynomial matrix A(s) = (ax(s)) with degag < 1 for all (k,1) is called a matriz pencil.
Obviously, a matrix pencil A(s) can be represented as A(s) = Ag + sA4; in terms of a pair of
constant matrices Ag and A;. A matrix pencil A(s) is said to be regular if A(s) is square and
det A(s) is a nonvanishing polynomial.

 With the use of the Laplace transformation, the DAE in the form of (1) is expressed by
the matrix pencil A(s) = Ag + sA; as A(s)&(s) = f(s), where s is the variable for the Laplace
transform that corresponds to d/d¢, the differentiation with respect to time.

Theorem 2.1 ([2, Theorem 2.3.1)). The linear DAFE with constant coefficients (1) is solvable
if and only if A(s) is a regular matriz pencil.

, The reader is referred to [2, Definition 2.2.1] for the precise definition of solvability. By

Theorem 2.1, we assume that A(s) is a regular matrix pencil throughout this paper. A regular
matrix pencil is known to have the Kronecker canonical form, which determmes the nilpotency
index. Let N, denote a u x p matrix pencll defined by

1 s 0 --- 0
01 s . i
Nuy=1l0 0 ™~ . 0
.. .. 1 s
\0 .- 0 0 1

A matrix pencil A(s) is said to be strictly equivalent to A(s) if A(s) can be brought into A(s)
by an equivalence transformation with nonsingular constant matrices.

Theorem 2.2 ([5, Chapter XII, Theorem 3]). An n x n regular matriz pencil A(s) is strictly
equivalent to its Kronecker canonical form:

sl,+J O O o)
O N, O o)
0 O N, " : |,
: o 0o
o) O - O N,

where - .
H1 2 p2 20 2 Py, Mo+ p1t+ 2t gy =,

and J i3 a pg X pg constant matriz.
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The matrices N,, (i = 1,...,b) are called the nilpotent blocks. The maximum size pj of
them is the nilpotency indexz, denoted by v(4). It is obv10us that ODEs have index zero, and
algebraic equations have index one.

We denote by A[K, L] the submatrix of A(s) with row set K C R and column set L C C,
where R and C are the row set and the column set of A(s), respectively. Furthermore, we
denote w(K,L) = degdet A[K, L], where w(@,0) = 0 by convention. Then w enjoys the
following property. '

Lemma 2.3 ([17, pp. 287-289]). Let A(s) be a matriz pencil with row set R and column set
C. For any (K,L) € A and (K',L') € A, where A= {(K,L) | |K|=|L|,K € R,L C C}, both
(VB-1) and (VB-2) below hold: : :

(VB-1) For any k € K\ K', at least one of the following two assertions holds:
(1a) A e L\ L' : w(K, L) +w(K',L') S w(K \ {k}, L\ {I}) + w(K' U {k},L'U{l}), -
(1b) 3h e K'\ K : w(K,L) + w(K',L') < w(K \ {k} U {k}, L) +w(X'\ {h} U {k}, L').
(VB-2) For anyl e L\ L, at least one of the followz‘ng two assertions holds:

(2a) 3k € K\ K’ : w(K, L) + w(K', L") < w(K \:{k}, L\ {I}) + w(K' U {k}, L' U {1}),
(2b) Jj e '\ L: w(K,L)+w(K',L') L w(K,L\{1}U {3}) + w(K', L'\ {7} {1}).

Let 6,(A) denote the highest degree of a minor of order r in A(s):

:(A) = max{w(K, L) | [K| = |L| =, K C R,L € C}.

The index v(A) is determined from 4, (A) as follows.

Theo.rem 2.4 ([17, Theorem 5.1.8]). Let A(8) be an nxn regular matriz pencil. The nilpotency
index v(A) is given by
v(A) =6n-1(4) — ‘Sn(_A) + 1.

3 Index Reduction for DAEs by Substitution Method

This section presents our first method of index reduction. In Section 3.1, we introduce the
substitution method. Then, in Section 3.2, we show that the method reduces the index exactly
by one if A; has at most one nonzero entry in each row.

3.1 Substitution Method

In this section, we introduce the substitution method for solving linear DAEs w1th consta.nt
coefficients.

Let A(s) be an n x n regular matrix pencil with row set R and column set C, and B be a
nonsingular constant submatrix of A with row set P C R and column set Q C C. We transform
A into A by row operations:

(@ )5 (e DE DG adon) @
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where F = A[P,C\ Q],G = A[R\ P,Q], and H = A[R\P C\ Q]. We denote H — GB~'F by
D, which is not necessa.nly a matrix pencil.

Let B, ', G, H, and D denote the matrices obtained by replacing s with d/dt in B, F, G,
H, and D, respectively. Consider the DAE

Bz (t) + Fza(t) = f1(t), | : (3

@ml(t) + ﬂwz(t) = fo(t). (4)

By applying the transformation shown in (2), we obtain |
Bw1(t) = f1(t) — Faa(), | (5)

Das(t) = fo(t) - GB™ fu2)- | - (8)

Note that B is a constant matrix. The ouf:lihe of the substitution method is as follows.
Phase 1: Solve the DAE (6) for x2(t).
Phase 2: Solve the system of linear equations (5) for z;(2).

In the substitution method, the numerical difficulty is determined by the index v(D) of the
DAE (6). We show that #(D) can be expressed in terms of the degrees of minors in A. '
For each k € R and [ € C, let dy; denote the degree of det A[R\ {k}, C'\ {{}]. Then we have

du = degdet A[R\ {k},C\ {l}], Vke R\ P, Vi€C, - 7)

because we can transform A[R\ {k},C \ {{}] into A[R\ {k},C\ {{}] by row operations for each
k€ R\ P and ! € C. The index v(D) can be rewritten as follows.

Theorem 3.1. For an n X n regular matrix pencil A(s), the index of D is given by

u-(D)=nial‘x{dkl | k‘GR\P,lEC\Q}"“Jn(A)'i‘l- (8)

Proof. We denote the size of D by m. By Theorem 2.4, we have v(D) = 6p,—1(D) — (D) +1.

Recall that A = (g IF)) and that B is a constant matrix. It follows from det A = det A that

6m(D) = degdet D = degdet A — degdet B = deg det A.
Moreover, we have | | |
Om-1(D) = r}l%?gc{degdetD[K, L] | |K|=|L]=m—1} .
= zln('?.zc{degdet AK,L) | |K|=|L|=n—-1,K D P,L 2 Q} — degdet B
=1233{dk1 |ke R\PleC\Q},

where the last step is due to (7). Thus we obtain (8). . ' -0
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3.2 Index Reduction

Let A(s) = Ap + sA; be an n X n regular matrix pencil such that A; has at most one nonzero
entry in each row. We denote the row set of A(s) by R, and the column set by C. Moreover, we
assume that v(A) is positive. Let Q C C be the set of indices such that their column vectors
in A; are zero vectors. Since A[R, Q] has full column rank by the regularity of A(s), we can
find P C R such that A[P, Q)] is regular. Note that because B = A[P,Q)] and G = A[R\ P, Q)]
are constant matrices, D = A[R\ P,C \ Q] is a matrix pencil. We prove that the index of D
-is one lower than that of A.

Lemma 3.2. For each k € R and eachl € C \ Q, we have dig <6, _1(A).

Proof. Suppose to the contrary that there exist £ € R and ! € C\ @ such that dy; = 6,-1(A4).
Let h be a row such that the (h,l) entry of A; is nonzero. We put (K,L) = ({h},{l}) and
(K',L') = (R\ {k},C \ {i}). By (VB-2) in Lemma 2.3, at least one of the following two
assertions holds: '

(2a) h =k, w({h},{I}) + w(R\ {k},C\{I}) < w(ﬁ 0) +w(R,0),
(2b) 3j € C\ (1} : w({h}, {1}) + w(R\ {k},C\ {I}) < w({h}, {7]) +w(R\ (k},C\ {h-

Note that w({h},{l}) =1 and w(R\ {k},C \ {l}) = dr1 = 0n—1(4).

If (2a) holds, then it follows from w(@, #) = 0 and w(R, C) = 6,(A) that 1+6,-1(A) < 6,(4),
which implies (A) < 0 by Theorem 2.4. This contradicts ¥(4) > 0. -

On the other hand, if (2b) holds, we have 1+ d,-1(A4) < w({h}, {j}) +dk;. Since A; has at
most one nonzero entry in each row, we have w({h}, {}) = 0. Thus we obtain 1+6,_1(A) < d&;,
which contradicts the definition of 6,—1(A). O

Theorem 3.3. The indez of D = A[R\ P,C\ Q) is ezactly one lower than that of A.
Proof. By Theorems 2.4 and 3.1 and Lemma 3. 2,

(A) — (D) = bn_1(A) — max{dkz |keR\P,ie C’\Q} >0.

' We now prove v(D) > v(A) — 1. 1t follows from Lemma 3.2 tha.t there exist k€ Randl €@
such that di; = n-—I(A)

Suppose that there exist k € R\ P and [ € Q such that dy; = 6n_1(A). By applying (VB-2)
in Lemma 2.3 to (P,Q) and (R\ {k},C \ {I}), we have -

3j € C\Q: w(P,Q) +w(R\ {k},C\ {I}) < w(P,Q\ {I}u {5}) + w(B\ {k},C\ {7}).

Note that w(P, Q) = 0, because A[R, Q)] is a constant matrix. Since A is a matrix pencil and
A[P, Q] is a constant matrix, w(P,Q \ {{} U {j}) < 1. Therefore, we have djy; < di; + 1, which
implies ¥(D) > dgj — 6n(A) + 1 > diy — 6n(A) = v(A) — 1 by Theorems 2.4 and 3.1.

We now consider the other case, which means that there exist K € P and l € @ such that
dr = 0n—1(A), and dpg < Op—1(A) for any p € R\ P and ¢ € Q. By applying (VB-1) in
Lemma 2.3 to (P,Q) and (R \ {k},C \ {l}), at least one of the following assertions holds:

(1a) w(P,Q) +w(R\ {k},C\{i}) < w(P\{k}, R\ {I}) +w(R,C),
(1b) 3h € R\ P: w(P,Q) +w(R\ {k},C\ {1}) < w(P\ {k}U {h}, Q) + w(R\ {h},C\ {1}).
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Since A[R, Q] is a constant matrix, we have w(P, Q) = w(P\{k}, Q\{I}) = w(P\{k}U{r},Q) =
0. ‘

If (1a) holds, then we have diy < 6,(A). Therefore, v(A) = d — 6n(4) +1 < 1 by
Theorem 2.4. It follows from the nonnegativity of (D) that v(D) > v(4) — 1.

On the other hand, if (1b) holds, we have di; < dp;. This contradicts the assumption that
dpg < 0n-1(A) for any pe R\ P and q € Q. a

Theorem 3.3 implies that the index of D is the same for any P with A[P,Q] being a
nonsingular constant matrix.

4 Hybrid Analysis

For linear time-invariant electric circuits, we propose a combinatorial algorithm for finding an
optimal hybrid analysis in which the index of the DAE to be solved attains the minimum. Our
method first finds a degree matriz, which is defined by cofactors in the associated polynomial
matrix. Then, it makes use of the satisfiability problem for 2-CNF (2SAT). The time complexity
of this algorithm is O(n®), where n is the number of elements in an electric circuit. We can
improve the time complexity to O(n3) under the assumption that the set of nonzero entries
. coming from the physical parameters is algebraically independent. '

We describe the procedure of the hybrid analysis in Section 4.1. Section 4.2 is devoted to
a characterization of the index of the DAE to be solved in the hybrid. a.na.lysns Section 4.3
presents an index mlmmlza.tlon algorithm.

4.1 Hybrid Analysis

In this section, we describe the procedure of the hybrid analysis. We focus on linear time-
invariant electric circuits which are composed of resistances, capacitances, inductances, inde-
pendent/dependent voltage sources, and independent/dependent current sources. For more
complicated devices like transistors, there exist equivalent circuits which consist of the previ- -
ously mentioned devices.

Let I' = (W, E) be a network graph with vertex set W and edge set E. An edge in I’
corresponds to a branch that contains one element in the circuit. We denote the set of edges
corresponding to independent voltage sources and independent current sources by Eg and Ej,
respectively. We split E, := E\ (E,U Ey) into Ey and E,, i.e., E,UE, = E, and EyNE, = 0.
Since the previous works [10, 14, 18] deal with circuits in the frequency domain, the hybrid
analysis described therein can choose any partition (Ey, E,). In order to deal with DAEs in
" the time domain, however, we need to consider a restricted class of partitions. A partition
(Ey, E,) is called an admissible partition, if E, includes all the capacitances and dependent
current sources, and F, includes all the inductances and dependent voltage sources.

We now explain circuit equations for a linear time-invariant electric circuit. Let & denote
the vector of currents through all branches of the circuit, and ) the vector of voltages across
all branches. We denote the reduced cutset matriz by ¥ and the reduced loop matrix by ®.
~ Using Kirchhoff’s current law (KCL), which states that the sum of currents entering each
node is equal to zero, we have W¢ = 0. Similarly, using Kirchhoff’s voltage law (KVL), which
states that the sum of voltages in each loop of the network is equal to zero, we have &n = 0.
The physical characteristics of elements determine constitutive equations. Given an admissible
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partition (Ey, E;), we split £ and n into

Eg Ty
&y Ny
= d n= ,
¢ & an K Nz
&/ M

where the subscripts correspond to the partition of E. Circuit équations, which consist of KCL,
KVL, and constitutive equations, are described by :

' [ €\

¥ 0 &) /o

0 3 &l [ o
0 T oollal | o |
0 0| Z@W|YE) |1 ol |=] o ©)
00007 000]|n| |96
000 1|0000/|n h(s)

‘ ' Nn

after the Laplace transformation. The coefficient matrix A(s) of the circuit equations is a
matrix pencil. The row set and the column set of A(s) are denoted by R and C, respectively.

We call a spanning tree T of I" a reference tree if T' contains all edges in E,, no edges in Ep,
" and as many edges in E, as possible. Note that 7" may contain some edges in E,. The cotree
- of T is denoted by T = E\ T. .

Given an admissible partition (Ey, E.), we denote the column sets of A(s) corresponding to
the current variables and the voltage variables for elements in Ey, Ey, E;, E, by Iy, I, I, I,
and Vg, Vy, V., Vi, respectively. Moreover, given a reference tree T, we denote the column sets
of A(s) corresponding to the current variables and the voltage variables for elements in E,NT
and E,NT by I7, I}, and V7, V', respectively. The superscripts 7 and X designate the tree T
and the cotree T. We define I7, I, and V7, V;} similarly. We also use I = I, UI7 U I and
VA = Vv'\ U V2 UV}, for convenience. The row sets of A(s) corresponding to KCL, KVL, and
constitutive equations are denoted by R, Rv, and S, respectively. "

Given an admissible partition (E;, E.) and a reference tree T', we transform A(s) into Ar(s)
such that Ap[Ry,I7] = I and Ar[Ry,V?] = I by row operations in R U Ry. This is possible
because A[Rz,I7] and A[Ry,V?*] are nonsingular. Note that R; and I” as well as Ry and V*
have one-to-one correspondence. The row sets of Ar(s) corresponding to Iy, Iy, I7, and Vy",
V), V}, are denoted by Ry, Ry, R}, and R;‘, R}, Ry, where we have Ar[K,L] =Iif K C R and
L C C have the same superscript and subscript. Similarly, the row sets corresponding to Iy, Vs,
Vg, and I, are denoted by Sy, Sz, Sg, and Sh. Let i, and v, denote the column corresponding to
. the current variable and the voltage variable for an element e. By the definition of a reference

tree, Ar(s) has the following property. : -
Lemma 4.1. For a reference tree T, we have Ar[RE,I)] = O and Ar[R), V] =O.
Proof. Suppose to the contrary that there exists e € Ey \ T such that A7[R], {i}] # 0. Then
the unique cycle in T'U {e} is not contained in E, U E,;. Hence, there exists an edge f € E,NT
such that 7\ {f} U {e} is a tree, which contradicts the assumption that T is a reference tree.

Therefore, we have Ap[R7, I;‘] = 0. Similarly, we also have AT[RQ, vi]=0. O
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Thus Az(s) is in the form of

I, I I I; I In Vg V] VP VT V)W

R, (I O » O x = O O O O O O)
RpJO I = O x = O O O O O O
RRloO O O I  x O O O O O O
RRlO O 0 O O O =« * I O O O
RS O 0 O O O O . -0 x I O
RO O O O O O x x O x O I

Ar(s) = Sh O I O *x » *x »»* x»* xx O O OV (10)

VIO O I #x xx *x x xx xx 0 O O
S O O O *x %x *x *xx *x *x I O O
Z10O O O ** *x »xx *x x* » 0O I O
SS{lo o o o o o1 0O 06 O O O

ss\O 0 0o o oI 0 0 0 0 0 0)

where * means a constant matrix and ** means a matrix pencil. We can determine Ar(s) only
- after being given both an admissible partition (E,, E;) and a reference tree T.

We now consider the transformation shown in (2) for P = R\(RJUR}) and Q = C\(IJUV}]).
We call the resulting DAE (6) the hybrid equations. Let us denote the vectors of currents
corresponding to Iy, IT, I}, I7, I}, In by &, &), &), €I, &2, &k, and the vectors of voltages
~ corresponding to Vg, V7, V), V], V), Vi by ng, ug, my, m7, 13, . The procedure of the
hybrid analysis is as follows: : '

1. The values of §;, and n_;, are obvious from the equations corresponding to Sy, and S,.
2. Find the values of ¢} and 7y by solving the hybﬁd equations (6). '

3. Compute the values of £] and n;} by substituting the values obtained in Steps 1-2 into
the equations corresponding to R and Rg

4. Compute the values of &/, £;), n7, and 7)) by substituting the values obtained in Steps 1-3
into Sy and S,.

5. Compute the values of €, and 7, by substituting the values obtained in Steps 1-4 into
R, and Rj,. :

In the case of E, = @, the above procedure is called the loop analysis or the tieset analysis.

In the case of E, = {), the procedure is called the cutset analysis, which is essentially equivalent
to MNA. . ‘

In order to ensure that the hybrid equations are a DAE, we requirée D = H — GBle to

be a matrix pencil, which is not obviously satisfied because B = Ar[P, Q)] is a matrix pencil.

~ Moreover, B needs to be an upper triangular matrix with diagonal ones so that we can compute

“ the values in Steps 3-5 by only substituting the obtained values. The following lemma ensures
this for admissible partitions. '

Lemma 4.2 ({13, Lemma 3]). If (Ey, E,) is an admissible partition, then we can transform B
into an upper triangular matriz with diagonal ones by permutations, and D is a matriz pencil.

Since we only substitute the obtained values in Steps 3-5, the numerical difficulty is deter-
mined by the index of the hybrid equations (6).
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4.2 Index of Hybrid Equations

In this section, we give a characterization of the index of the hybrid equations. Given an
admissible partition (E,, E,) and a reference tree T, consider the transformation shown in (2).
We now show that v(D) can be expressed in terms of the degrees of minors in Ar(s). For each
ke Rand!l e C,let dkl denote the degreq of det A7[R\ {k},C \ {l}]. Then we have

di; = degdet AT[R\ {x},C\{l})], VkeR\P, VI€C, (11)

because we can transform Ar[R\ {k}, C\ {1}] into AT[R\ {k}, C’\ {t}] by row opera.tmns The
index v(D) can be rewritten as follows, similarly to Theorem 3.1.

Lemma 4.3. Given an admissible partition (Ey, E,) and a reference tree T, the zndez of Dis

given by
. ‘u(D) = n]lcalx{dkz |ke R\ P,le C\Q} —6,(Ar) + 1.

The index of the hybrid e(juations has the following property.

Theorem 4.4 ([13, Theorem 7]). Given an admissible partition (Ey, E,), the index v(D) is
the same for any reference tree.

Theorem 4.4 implies that the index of the hybrid equations is determined only by an admis-
sible partition (Ey, E;). By Lemma 4.3, the index v(D) is determined by the maximum of dj,
such that k € R\ P and ! € C'\ Q. However, all the values of dy; are not invariant under row
operations on the coefficient matrix A(s) of the circuit equations, while we have to transform
A(s) into Ap(s) with respect to an admissible partition (Ey, E,) and a reference tree T. We
now introduce a degree matriz, which consists of some invariants under row operations. Let us
denote by I, and V, the sets corresponding to current and voltage variables for E,, respectively.

‘Definition 4.5 (degree matrix). For each pair of k € I, UV, and | € I, UV, define

O = degdet (A[RI EJS‘RC",\,\?I}]{I}] A[RI UORV’ {k}])

Then the degree matriz is the matriz © = (sz) whose row and column sets are both identical
with I, UV,. '

Note that the degree matrix is uniquely determined by the circuit, despite A(s) is not
unique. By Theorem 4.4, the index of the hybrid equations is expressed in terms of the degree
‘matrix 6. : :

Theorem 4.6 ‘([13, Theorem 11]). Given an admissible partition (Ey, E;), we have

v(D) = max{fi | k € L, UV;, 1 € LUV} = 6a(4) +1, (12)

where A is a coefficient matriz of the circuit equations.



101

4.3 Index Minimization of Hybrid Equations

Let © = (0x1) be a degree matrix, where the row set and the column set are identical with
I, UV,, and A(s) be a coefficient matrix of the circuit equations. By Theorem 4.6, minimizing
the index of the hybrid equations is equivalent to minimizing max{6x | k € I,UV,,l € ,UV,}.
In this section, we describe how to find an admissible partition (E,, E,) which minimizes this
maximum value.

Theorem 4.7. We have V(D) < a — 0,(A4) + 1 if and only if an admissible partition (Ey, E,)
satisfies (1)-(iv) for any pair of k and | with O > o.

(i) If 6 > o for k = i, andl =iz, thene € E, or f € E.
(ii) If Ot > o for k=1, and l = vy, thene € E, or f € E,.
(iii) If O 2 @ for k = ve and l =iy, then e € Ey or f € E,,.
(iv) If0r1 > a for k = ve and | = vy, thene € Ey or f € E,.

Finding an admissible partition satisfying (i)—(iv) reduces to 2S_AT as follows, using the
boolean variable u. to represent e € E,. First, in order to ensure that (E,, E,) is an admissible
partition, we impose u. = 0 if the element e is a capacitance or a dependent current source,
and we impose u. = 1 if e is an inducta.nce or a dependent voltage source. Next, we rewrite (i)

into ue V Uy = 1, (ii) into ue V uy = 1, (iii) into W, V Uy = 1, and (iv) into %, Vuf = 1. Thus
we obta.m the following problem:

2SAT(c) Find u, for any element e satisfying (1)—(6).

(1) I e is a capacitance or a dependent current sdurce, then u. = 0.
(2) If e is an inductance or a dependent voltage source, then u, = 1.
(8) If Ox; > o for k = i and I = iy, thén Ue V'ﬁf =1.

(4) If 6 > o for k = i, and | = vy, then ue Vuy = 1.

(5) If Oy > @ for k = v, and | = iy, then %, VT; = 1.

(6) If Ot > @ for k = v, and | = vy, then T Vug = 1.

We can solve 28AT in linear time in the size of literals and clauses [1].
We describe the algorithm for finding an admissible partition which minimizes the index of
the hybrid equations.

A.lgorithm’ for minimum index hybrid analysis
 Step 1: Compute the degree matrix 6 = (fy).

Step 2: Set E, « {e | e: capacitance or dependent current source}, E, « E, \ Ey, and

Step 3: Solve 2SAT(c) to obtain a feasible assignment u, for e € E,. If 2SAT(a) is infeasible,
then go to Step 5.

Step 4: Set Ey « {e|ue =0}, E, «— {e | ue =1}, and a@ — a — 1. Go back to Step 3.
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C:: V@L N\ |

Figure 1: Linear circuit described by circuit equations with index three.

Step 5: Return (E,, E.) and a.

Algorithm for minimum index hybrid' analysis finds an optimal admissible partition (Ey, E;) to-
gether with the maximum value of o such that 2SAT(a) is infeasible. Therefore, Theorem 4.7
implies that the index of the resulting hybrid equations is a — d,(A) + 1 for any reference tree
with respect to (Ey, E;). Instead of the above decrementa.l method, we may adopt the binary
search on a.

Finally, we discuss the comple:uty of our algorithm. Let n be the size of the coefﬁcxent
matrix of the circuit equations, i.e., the number of elements in the electric circuit is n/2. We
can compute the degree of the detenmna.nt of a v X  matrix pencil in O(~*) time [11]. By
using this algorithm for n2 times, a degree matrix can be found in O(n®) time. Since 28AT(a)
in Step 3 has O(n) literals and O(n?) clauses, we can solve it in O(n?) time. Thus the total
time complexity of the algorithm is O(nS).

If one can compute a degree matrix faster, the total time complexity of the algorithm will
be better. In [12], we discuss how to compute a degree matrix in O(n?) time under a genericity
assumption that the set of nonzero entries coming from the physical parameters like resistances
is algebraically independent, which implies that A(s) is a mixed polynomial matrix [17]. Thus,
we improve the time complexity of Algorithm for minimum index hybrid analysis to O(nd).

If the genericity assumption is not valid, the degree matrix obtained by the improved algo-
rithm may have larger entries than the true values because of unlucky numerical cancellations.
‘Relying on this degree matrix, we may fail to find the minimum index of hybrid equations.

5 N umerical Examples

In this section, we demonstrate the proposed methods in numerical examples. Example 5.1
presents an example of using the substitution method, and Example 5.2 presents an example
of applying the hybrid analysis. We use RADAUS5 [9] in Matlab as the DAE solver. RADAUS
is an implementation of a fifth order implicit Runge-Kutta method with three stages (RADAU
ITA). This is applicable to ODEs and DAEs w1th mdex at most three.

Example 5.1 (Electric circuit with index three [8]). Consider a circuit deplcted in Flgure 1,
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current through L [mA]

error in current through L [mA]

1] 0.1 0.2 . 0.3 0 0.1 0.2 0.3
) t [s] t [s]

Figure 2: The current through the induc-  Figure 3: The error in the current through the
tance: numerical solutions of the original inductance: the original DAE (dash-dotted
DAE (dash-dotted line), the substitution line) and the substitution method (solid line).
method (solid ‘line), and the exact solu-

tion (dotted line).

which'is described by the circuit equations with index three:

€cp Cc2 €3 Cc4 C Cg Cr Cg _
nfl 1 0 0 0 0 0 0Y CANNER
{0 0 1 1 0 0 0 0]]|é 0
rsl0 0 0 0 1 =1 0 0 [(]|& 0
ral]0 0 0 0 0 0 1 —-1])}&|_1|_0 (13)
s] 0 0 0 0 1 0 0 O {lam]| |VE]
sl 0 -1 0 0 0 sC 0 O fic 0
ml0 0 0 sL 0 0 0 -1]|# 0
rs\a 0 1 0 0 0 0 0/ \ #iL. / \ 0 /

The modified nodal analysis results in a DAE with index three [8]. However, our method finds

X = {r1,re,rs,76,77,78} and Y = {c1,¢2,¢3,¢5, cr,C8}

1 saC
p=(; 7).

which has index two. ’

~ Setting C = 5[uF], L = 8[mH],a = 0.99, and V(?) = 10sin(200t)[V], we numerically solve
both the original and the resulting DAEs. Figure 2 presents these two numerical solutions
and the exact solution, which can be obtained analytically. In Figure 2, the exact solution
coincides with the solution of the substitution method. Figure 3 shows the discrepancy of
the two numerical solutions from the exact solution. It is observed that the index reduction
effectively improves the accuracy of the numerical solution.

and we obtain
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Figure 4: The current through the induc-  Figure 5: The error in the current through
tance in Example 5.2: numerical solutions of  the inductance in Example 5.2: MNA. (dash-
MNA (dash-dotted line), the hybrid analy- dotted line) and the hybrid analysis (solid
sis (solid line), and the exact solution (dotted  line).

line).

Example 5.2 (Electric circuit with index three [8]). Consider the circuit depicted in Figure 1
again, which is described by the circuit equations (13) with index three. In this example, an
admissible partition is uniquely determined and we have

E;,={V}, En=9, E,={C,I}, E,={L}. (14)
By applying the hybrid analysis with respect to the partition (14) and the reference.tree

T = {V, I}, we obtain
b1 0
" \—-sL 1)’

which has index two. The hybrid equations are {1, = —sa.Cf/(s) and —sLér, + 7y = 0.

Setting the values of C, L, a; and V as given in Example 5.1, we numerically solve both
DAEs arising from MNA and the hybrid analysis. Figure 4 presents these two numerical
solutions and the exact solution, which can be obtained analytically. In Figure 4, the exact
solution coincides with the solution of the hybrid analysis. Figure 5 shows the discrepancy of
the two numerical solutions from the exact solution. It is observed that the index reduction
effectively improves the accuracy of the numerical solution.
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