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Abstract

Convergence theorems are established with mathematical rigour for two algo-
rithms for the computation of singular values of bidiogonal matrices: the differential
quotient difference with shift (dqds) and the modified discrete Lotka-Volterra with
shift (mdLVs). For the dqds algorithm, global convergence is guaranteed under a
fairly general assumption on the shift, and the asymptotic rate of convergence is
1.5 for the Johnson bound shift. Also for the mdLVs algorithm, global convergence
is guaranteed in a realistic assumption, a substantial improvement of the conver-
gence analysis by Iwasaki and Nakamura. The asymptotic rate of convergence of
the mdLVs algorithm is 1.5 when the Johnson bound shift is employed. Numerical
examples support these theoretical results.

1 Introduction

Every n x m real matrix A (with rank(A) = r) can be decomposed into
A=UzvT

by suitable orthogonal matrices U € R**" and V' € R™*™, where

D Or,m——r o
= ( On—»r,r On-r,m—r ) ' D= dlag(al’ Tt O’,-).

The values 0, > --- > o, > 0 are the singular values of A.

In the computation of matrix singular values, a matrix is often transformed first to an
upper bidiagonal matrix by appropriate orthogonal matrices, and then its singular values
are calculated by some iterative algorithm. A common iterative algorithm for bidiagonal
matrices is the differential quotient difference with shift (dqds) algorithm [7]. The dqds is
now implemented as DLASQ in LAPACK [3, 10, 13] and widely used by many practitioners
because of its high accuracy, speed, and numerical stability. The dqds is integrated into
Multiple Relatively Robust Representations (MR?) algorithm [4, 5, 6]. On the other hand,
quite recently a new iterative algorithm, called the modified discrete Lotka-Volterra with
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shift (mdLVs) algorithm, was proposed [11], and has been rapidly expanding its influence
due to its high efficiency comparable to the dqds.

The aim of this report is to investigate the theoretical aspects of the two iterative
algorithms. So far, the convergence for the dqds has been proved only under the condition
that the shift is off. Independently of that, the rate of convergence has been shown to be
locally quadratic or cubic when the shift satisfies some stringent assumptions [7]. In this
report, we first prove that the dqds always converges as far as the shift satisfies a certain
natural condition. Then we show that, if the shift is determined by the Johnson bound [9],
the asymptotic rate of convergence is 1.5. For the mdLVs, a convergence theorem is known
under a certain condition on the shift, and the local rate of convergence has been shown
to be quadratic or cubic under certain conditions. In this report we establish a stronger
convergence theorem for a wider class of shift choices, and also show that, with the shift
by the Johnson bound, the asymptotic rate of convergence is also 1.5.

2 Problem setting

We assume that the given real matrix A has already been transformed to a bidiagonal
matrix

B= K , (1)
) b2m—2
b2m—1
to which the dqds or the mdLVs algorithm is applied.
Following (7], we assume

Assumption (A) The bidiagonal elements of B are positive, i.e., by > 0 for
k=12,...,.2m—1.

This assumption guarantees (see [12]) that the singular values of B are all distinct: o; >
e > 0om > 0. ,

Assumption (A) is not restrictive, in theory or in practice. In fact, if a subdiagonal
element is zero, i.e., by, = 0 for some k, then the problem reduces to two independent
problems on matrices of smaller sizes, k X k and (m — k) x (m — k). If there is a zero
element on the diagonal, several iterations of the dqd algorithm (i.e., the dqds algorithm
without shifts) suffice to remove the diagonal zero, and the problem is again separated
into a set of smaller problems (see [7] for details). Finally it is easy to see that the singular
values are invariant if b is replaced by |by|.

In our problem setting we have assumed real matrices, whereas the singular value
decomposition is also defined for complex matrices. Our restriction to real matrices is
justified by the fact that any complex matrix can be transformed to a real bidiagonal
matrix by, say, (complex) Householder transformations, while keeping its singular values

7).
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3 Convergence of the dqds Algorithm

In this section, convergence results for the dqds algorithm are established with mathemat-
ical rigour. See [1] for the proofs.

- 3.1 The dqds algorithm

The dqds algorithm can be described in computer program form as follows.

Algorithm 3.1 The dqds algorithm

Initialization: ¢ = (b_1)2 (k=1,2,...,m); €O = (by)? (k=1,2,...,m —1)
1: forn:=0,1,--- do
2:  choose shift s(™(> 0)

3 "M = g™ s
4 fork:=1,- —1do
5 q(n+1) d(n+1) +e (n)
6 ?n+11) _ ekn)q{(cn)l( / ’Zn+(1) .
T: di = gt g 7gimtD) _ g
8: end for
9 q$3+1) o= do+)
10: end for

The outermost loop is terminated when some suitable convergence criterion, say,
lle(") 1/l < € for some prescribed constant ¢ > 0, is satisfied. At the termination we
have

n—1 .
o 2 gl + 3 60 @
=0

and hence 0,, can be approximated by \/ ™ 4 Yo ! s(. Then by the deflation process
the problem is shrunk to an (m—1) x (m—1) problem, and the same procedure is repeated
until 6,51, ..., 0, are obtained in turn.

It turns out to be convenient to introduce additional notations e((,") and ely) with
“boundary conditions”:

eV =0, eM=0 (n=0,1,...)

to simplify the expression of the algorithm. Put

b(ln) bgn)

(n) by
B = (n) ] (3)
b2m-—2
b(")

2m—-1
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b = b (k=1,2,...,2m — 1), and

@ o= ) (k=1,2,...,m; n=0,1,...), (4)
e = ) (k=1,2...,m-1;n=0,1,..). (5)

Then Algorithm 3.1 can be rewritten in terms of the Cholesky decomposition (with shifts):
(BT Bntl) = gli)(B(NT _ sy (6)

where B(®) = B. From (6) it follows that

n—1 '
(B(n))TB(n) =W ((B(O))TB(O) - Z s(l)I) (W(n))—l, (7)
=0

where W™ = (B(»-1... BO)-T i5 4 nonsingular matrix. Therefore the eigenvalues of
(B™)TB™ are the same as those of (B(®)TB©® — =150,

If 5™ < (6)? in each iteration n, where o™ is the smallest singular value of B™,
the variables in the dqds algorithm are always positive so that the algorithm does not

break down as follows.

Lemma 3.1 (Positivity of the variables in the dqds algorithm). Suppose the dqds algorithm
is applied to the matriz B satisfying Assumption (A). If s < (a,(,ﬁz,)"’ (n=0,1,2,...),

then (B™)TB®™ are positive definite, and hence ¢ > 0 (k= 1,...,m), & > 0 (k =
1,...,m—1), anddfc") >0(k=1,...,m) forn=0,1,2,.... [

3.2 Global convergence of the dqds algorithm

The next theorem establishes the convergence of the dqds algorithm. Moreover, the theo-
rem states that the variables q,(c") converge to the square of the singular values minus the
sum of the shifts, and that they are placed in the descending order.

Theorem 3.1 (Convergence of the dqds algorithm). Suppose the matriz B satisfies As-
sumption (A), and the shift in the dqds algorithm is taken so that 0 < s™ < (¢ )2 Rolds
for alln. Then

‘ Z s < o2 (8)
n=0
Moreover,
lime™ = 0 (k=1,2...,m—1), (9)
n—o00
o0
legoq,ﬁ"’ = o — ZOS(n) (k=1,2,...,m). | (10)
n=
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The next theorem states the asymptotic rate of convergence of the dqds algorithm. Let
us define

2 o0
Uk+1 - Zn:O S(n)

= k=1,...,m~1), 11

Pk Ok — Yooy 5™ ( Y "
n-1

O = @+ 0t (k=1m) 12)
1=0

In view of (2), r,(c") is the error in the approximated eigenvalue of BTB. Note that 0 <
pr<l(k=1..m=2),and0 < pp <1if 0,2 — 32 5™ > 0and pp_; = 0 if
Om2— Yo os™ =0.

Theorem 3.2 (Rate of convergence of the dqds algorithm). Under the same assumption
as in Theorem 3.1, we have

(n+1)
jm % = s (=loom-), 19
(n+1)
lim S = o 14
1
r(n+1)
hmm— = Pm-1- (15)

Furthermore, if pr—1 # pr (k=2,...,m — 1), then

r(n+1)
'}HIOIO _f;(;n_)_ = ma'x{pk—l,pk} (k =2,...,m— 1) (16)
Therefore, e (k=1,...,m—2) and r™ (k= 1,...,m — 1) are of linear convergence

as n — oo. The bottommost elements eﬁ::)_l and v are also of linear convergence when

pm_1 >0, i.e., 02, — 3 s > 0, and of superlinear convergence when p,_; = 0, i.e.,
- Zn—o s(n) = 0 .

Remark 3.1. When pi_; = pk, we have a weaker claim that

) l
T(n) - Zl—n+1 €k 1 (n+1) _ El—n () e(n)
k - (n+1) k-1 (n) k>
€r-1 €k ‘

~which implies that, for any small € > 0,
r™ <Oo((pe+6)®) (k=2,...,m—1).

That is, the convergence is at least linear, and can sometimes be better. ]
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3.3 Convergence rate of the dqds with the Johnson bound

In this section, we show that the asymptotic rate of convergence of the dqds algorithm
is 1.5 if the shift is determined by the Johnson bound [9]. Though the Johnson bound is
valid for a general matrix, we present here its version for a bidiagonal matrix B.

Lemma 3.2 (Johnson bound [9]). For a matriz B of the form (1), define

o | bok—z | + | b |
A= 1,lr.l.m {l bak—1 | 2 !

where by = bop, = 0 and let o,, denote the smallest singular value of B. Then o, > .
Moreover, if the subdiagonal elements (by, by, . ..,bam_2) are nonzero, then o, > . |

With reference to (3), (4) and (5) we define the shift by the Johnson bound as follows:

a0 = i £/a - 1 (Ve ) ), 7
=1,...,m
s™ = (max{A™, 0})°. (18)

This choice of the shift guarantees the condition 0 < s < (6{™))? in each iteration n,
and hence the dqds is convergent by Theorem 3.1. The precise rate of convergence can be
revealed through a scrutiny of the shift.

The following theorem shows that the rate of convergence of the dqds is 1.5. The theo-
rem refers only to the lower right two elements of B™, and the error in the approximation
of the smallest eigenvalue of BT B. This is sufficient from the practical point of view since
whenever the lower right elements converge to zero, the deflation is applied to reduce the
matrix size.

Theorem 3.3 (Rate of convergence of the dqds). Suppose the dqds algorithm with the
Johnson bound is applied to a matriz B that satisfies Assumption (A). Then we have

e(ﬂ+1) ’ 1
lim T")"—l— = —— (19)
nvoo (&M Y32 gm0 g2
(n+1)
lim 7 S (20)
neo (Q'm )3/2 VOm-1° — Om?
(n+1)
lim - = 1 ; (21)
n—0o0 (7’7(:))3/2 0m—12 - 0m2
That is, the rate of convergence is 1.5. n

4 Convergence of the mdLVs Algorithm

In this section, convergence results for the mdLVs algorithm are established with mathe-
matical rigour. See [2] for the proofs.
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4.1 The mdLVs algorithm
The mdLVs algorithm [8, 11} can be described as follows.

Algorithm 4.1 mdLVs algorithm

Initialization: w" =0; w{ =0; w,(co) = () (k=1,2,...,2m—1)
1: forn:=0,1,--- do
2. choose shift s((> 0) and parameter 6™ (> 0) based on w{™

fork:=1,---,2m —1do
v o= w1+ 6ul))

10 end for

1: wi™ =0, WiV i=0

12 if s®™ > 0 then

3 uM:=0; u:=0

¢ fork:=1,---,2m—1do
5w = w146y
6: end for

7: v((,") = 0; 'ug:z =0

8:

9:

13: fork:=1,---,m—1do

14: 'wg:ﬂ) = g:)—l + 'ng)—z - wg,:t;) — st
15 wlit? = o) o )

16: end for

17wt = v, — win) — s
18: else

19: fork:=1,---,2m —1do

20: w™Y = ("

21: end for

22: end if

23: end for

The outermost loop is terminated when some suitable convergence criterion, say,

[w .|l < € for some prescribed constant € > 0, is satisfied. At the termination we

have
n-1

om =W+ Z s (22)
=0

and hence o,, can be approximated by \/ wg;z_l + 37 s®. Then by the deflation process
the problem is shrunk to an (m~—1) x (m—1) problem, and the same procedure is repeated
until op,—1, ..., 0, are obtained in turn. In Algorithm 4.1, 6§ > 0 is a free parameter.

It turns out to be convenient to introduce

wM =wl =0, W =ull=0 oM=0l=0 (23)

forn=0,1,2,... as boundary conditions. '
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Similarly to the dgds, we use the notation (3) with bﬁo) =b (k=1,2,...,2m — 1),
and put

wil, = G2 (k=1,2,...,m; n=0,1,...),
wi = G2 (k=1,2,...,m—1; n=0,1,...).

Again we denote by o\ the smallest singular value of B™. The next lemma states that

the algorithm does not break down if s < (¢{))? in each iteration n.

Lemma 4.1 (Positivity of the variables in the mdLVs algorithm). Suppose the mdLVs
algorithm is applied to the matriz B satisfying Assumption (A). If s < (‘7:(;31)2 (n =

0,1,2,...), then (B™)TB®™ are positive definite, and hence ul™ > 0, v\ > 0, and
(")>0(k=.1,...,2m—1)forn=0,1,2,.... =

4.2 Global convergence of the mdLVs

A global convergence theorem for the mdLVs algorithm is available in [11]. The theorem,
however, assumes not only 0 < 5™ < (6%)2 but also 3%, s™ < o, for the chosen .
shift. It can easily be suspected from the convergence analysis for the dqds algorithm that
the latter assumption is not met when superlinear convergence is realized. As we see later,
this is in fact the case with the mdLVs algorithm with the Johnson bound shift. Thus we
are motivated to establish a stronger convergence theorem that works also in the case of
Yo 8™ = om?. ‘ '

The next theorem establishes the convergence of the mdLVs. Moreover, the theorem
states that the variables wéz)_l converge to the square of the singular values minus the
sum of the shifts, and that they are placed in the descending order.

Theorem 4.1 (Convergence of the mdLVs algorithm). Suppose the matriz B satisfies
"Assumption (A), and the shift in the mdLVs algorithm is taken so that 0 < s™ < (a("))
holds for all n, and the parameter is taken so that

1
A 5w = Do -2

for some nonnegative constant Dy > 0. Then we have

o0
> s <ot (25)

n=0

Moreover,
im wl = 0 (k=1,2,...,m—1), ~(26)
n—oo
(s,]

(n) 2 _ (n) = . ) 7
TELI&QU% 1 Ok gs (k=1,2,...,m) (27)



114

The next theorem states the asymptotic rate of convergence of the dqds algorithm.

Theorem 4.2 (Rate of convergence of the mdLVs algorithm). Under the same assumption
as in Theorem 4.1, we have

(n+1) o (n)

e okat® + Do — 32 s

lim k(n) == O = 0(n) <1 (k=1,...,m-1). (28)
n—oo g 0x2 + Dy — En:ﬂ 8 _

Therefore e(") (k=1,...,m—2) are of linear convergence as n — co. The bottommost el-
ement efn)_l is also of lznear convergence when om?+ Do~ 2 5™ > 0, and of superlinear
convergence when o2+ Do — 3.2 5™ =0, ]

n=0

4.3 Convergence rate of the mdLVs with the Johnson bound

For the mdLVs algorithm it is proposed in [8, 11] to use the shift 5™ determined from the
Johnson bound as follows:

. n 1 n n
AW = k=n11,¥1,m{ V wgk) 175 (\/wgkz.z + \/w( ))} ) '(29)

s™ = (max{A®, 0})°. (30)

The following theorem shows that the rate of convergence of the dqds is 1.5 if the
parameter 6™ satisfies

lim 6™ = 400 | (31)

n—0oc

as well as another natural condition. Note that the condition (31) is a special case of (24)
with Dy = 0. The theorem refers only to the lower right two elements of B™). This is
sufficient from the practical point of view since whenever the lower right elements converge
to zero, the deflation is applied to reduce the matrix size.

Theorem 4.3 (Rate of convergence of the mdLVs). Suppose the mdLVs algorithm with

the Johnson bound is applied to a matriz B that satisfies Assumption (A). If the parameter
6" satisfies (31) and
D < 6Mwyn ,  (n=1.2,.) (32)

for some positive constant D;, we have

(n+1) 1

2m—~2 —
nl-I&, (Wi _,)3/2 o

?

Om-1" — Om

(n+1) 1
im 2m~1 =
= (Wi )2 V/Om1® = Om

That is, the rate of convergence is 1.5. n
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5 Numerical experiments

In this section, simple numerical results are presented to illustrate the theory. We consider
an m X m symmetric tridiagonal matrix

a b 0
r=|% ¢ , (33)

b

0 b a

the eigenvalues of which are

wk
k=1,...,m).
a + 2bcos (m+1) ( m)

As a test matrix, the bidiagonal matrix B is obtained from the Cholesky decomposition
of T. The parameters are taken as m = 10, a = 1.0 and b = 0.2.
First we _show'the result with the dqds algorithm. In view of Theorem 3.3, we define

1 1 +1
ORI SN N U A
(el /2 ()2 (/2

which should converge to the constant 1/4/(0m-12 — 0m?) according to the theory. The
result is shown in Figure 1. The solid line (——) shows a&"), the chained line (------)
shows 4™ and the dashed-dotted line (-—) shows +{™. The dotted line (~-) shows
1/4/(0m-12 — 0m?) = 4.60. The solid line, the chained line and the dashed-dotted line all
approach the dotted line in Figure 1.

In Figure 2, es:)_ 1 q,(,'f) and 1"5,?) are plotted in the single logarithmic graph. The
solid line shows e,(,':)_l, the chained line shows g7 ) the dashed-dotted line shows . The
variables ef,':)*l, q,(,? ) and rﬁ,’.‘ ) converge to zero. By Figure 1 and Figure 2 we can say that

the rate of convergence is 1.5.

25 ,
ag")
20 i\ —
o 1
VZL: 7§ﬂ) e
3 157 \/(am—lz_amz)_l‘”“"‘ 1
Q.
ol
3
5 E e
0 M— . . . X
0 1 2 3 4 5 6 7 8 9 0 2 4 6 8 10
Iterations n Iterations n

Figure 1: dqds algorithm: o™, 8™ and 4. Figure 2: dqds algorithm: e{™ ,, ¢ and r$.
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Second we show the result with the mdLVs algorithm. In view of Theorem 4.3, we
define

+1 ' +1
o _ Wb () _ W

Qo s 2 —yTTT
(win_,)3/2 (Wi _)3/2

which should converge to the constant 1/4/(om-12 — om?) according to the theory. We
chose the parameter D; = 100 in Theorem 4.3. The result is shown in Figure 3. The solid
line (—) shows ™ and the chained line () shows 8{™. The dotted line () shows
1/4/(0m-12 — 0»2) = 4.60. The solid line and the chained line approach the dotted line
in Figure 3.

In Figure 4, wé',',z_z and wg’,{_l are plotted in the single logarithmic graph. The solid
line shows wé',',z_Q and the chained line shows wff,',',z_l. The variables wg,g_z and wg’:,z_l
converge to zero. By Figure 3 and Figure 4 we can say that the rate of convergence is 1.5.

25 —— 1e-00 ———r —
@2
20 B e 1 _1e04}|
= Viem-1? —om?)™t —— | < : .
15 1 551e-08 | 4
- 3
£510 zgle12}
5} | ¥ iets ) (’"
g e-16 Worm—2
i I )
2m-
0 - 1e-20 : : :
0 1 2 3 4 5 6 7 8 9 0 2 4 6 8 10
lterations n lterations n
Figure 3: mdLVs algorithm: a = 1, b = 0.2, Figure 4: mdLVs algorithm: a = 1, b = 0.2,
D; =100 , D, =100
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