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1 Introduction

Executive $and/or$ employee stock options (ESOs) have become increasingly popular and cur-
rently constitute a certain fraction of total compensation expense of many firms. ESOs are call
options that give the option holder the right to buy their firm’s stock for a fixed strike price
during a specified period of time. Clearly, the exercise of an ESO triggers a dilution of the claims
of the firm’s existing shareholders, since the firm issues new stocks to the ESO holders. Hence,
It is important to determine the fair value of ESOs from the view points both of accounting and
of corporate finance; see Smith and Zimmerman (1976) for early research on valuing ESOs.

ESOs have features different from traded stOck options (TSOs): While TSOs usually mature
within one year, ESOs have the maturity over many years, typically, it is set equal to ten years.
Also, ESOs are granted at-the-money to executives $and/or$ employees, namely, its strike price is
set equal to the current stock price. Usually, during the first portion of the option’s life (vesting
period), ESO holders cannot exercise their options and must forfeit the options on leaving the
firm. Typically, the vesting date is three (two) years after the grant date in U.S. (Japan). After
the vesting date, ESO holders can exercise the options at any time before the maturity date, $i.e.$ ,
ESOs are of American-style. The most significant difference between ESOs and TSOs is that
ESO holders cannot sell or otherwise transfer them. In the U.S., Section 16-c of the Securlties
Exchange Act prohibits insiders from selling their firm’s stock short. An ESO holder leaving the
firm is then forced to choose between forfeiting or exercising the options soon after his departure.
Thus, the following features have the dominant effects in the fair valuation of ESOs (Rubinstein,
1995):

$\bullet$ Early Exercise
$\bullet$ Delayed Vesting
$\bullet$ Forfeiture
$\bullet$ Lack of $n\cdot ansferability$

$\bullet$ Dilution

Among these features, Hull and Wliite (2004) have pointed out thrnt the dilution effects can be
safely ignored in many situations. The lack of transferability implies that ESO holders cannot
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hedge their positions, and so that their personal valuations depend on their risk preferences and
endowments. Thus, the non-transferability of ESOs may be realized in mathematical models by
maximizing a utility function of ESO holders; see Lambert et al. (1991); Kulatilaka and Murcus
(1994); Huddart (1994); Rubinstein (1995); Detemple and Sundaresan (1999); Hall and Murphy
(2002); Agliardi and Andergassen (2005); Bettis et al. (2005); Rogers and Scheinkman (2007).
Through an empirical analysis using data on ESO exercises from 40 firms, however, Carpenter
(1998) showed that a simple American option pricing model performs well as an elaborate utility-
maximizing model; see Aboody (1996); Huddart and Lang (1996); Murphy (1985) for further
empirical analysis. Thus, the first three features above play principal roles in the ESO valuation.

In order to incorporate the early exercise feature into mathematical models, there are two
different frameworks: European vs. American. No doubt, the American option model is a natural
choice for realizing the early exercise feature. However, even a vanilla American call written on
a dividend-paying stock has no closed-form valuation formula. Hence, ESO valuation with the
American framework is inevitably based on a binomial-tree ( $i.e.$ , discrete-time) model (Ammann
and Seiz, 2004). From the very nature of things, some artificial invention is required to realize
the early exercise feature in the Europ$e$an framework. A very primitive idea is to put forward
the maturity date, which was adopted in Statement of Financial Accounting Standards No. 123
(FAS 123). The Financial Accounting Standards Boards (FASB) published FAS 123 in 1995,
which was revised in 2004. In FAS 123, the modified maturlty is set to the ESO’s expected life
under the assumption that the ESO holder does not leave during the vesting period (Foster et
al., 1991; Ammann and Seiz, 2004; Hull and White, 2004). Another idea is to model the early
exercise behavior of ESO holders by assuming the exercise takes place whenever the stock price
reaches a certain upper barrier. The barrier option models have been developed by Raupach
(2003); Hull and White (2004). As an alternative idea, Carr and Linetsky (2000) introduced an
intensity-based framework for realizing the early exercise feature, which has been used to model
forfeiture due to voluntary or involuntary employment termination (Jennergren and Naslund,
1993, 1995; Hull and White, 2004).

In this paper, using a quadratic aPpronimation originally developed for valuing vanilla Amer-
ican options (MacMillan, 1986; Barone-Adesi and Whaley, 1987), we will provide a simple
continuous-time American option model in the Black-Scholes-Merton framework, which satisfies
the (first three above) principal ESO features.

The rest of this paper is organized as follows: In Section 2, we briefly introduce the quadratic
approximation for the value of an American call option, which approximates the target ESO
value after vesting. By the principle of risk-neutral valuation, we obtain the values of the ESO
$with/without$ forfeiture at the grant date. In Section 3, we show that the valuation formula
for the ESO with forfeiture gives exact values for two special cases either with no dividend or
infinite maturity. Section 4 concludes with some remarks.
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2 Approximate Valuation

2.1 A Quadratic Approximation

Suppose an economy with finite time period $[0, T]$ , a complete probability space $(\Omega, \mathcal{F}, P)$ and a
filtration $(\mathcal{F}_{t})_{t\in[0,T]}$ . A Brownian motion process $W\equiv(W_{t})_{t\in[0,T]}$ is defined on $(\Omega, \mathcal{F})$ and takes
values in $\mathbb{R}$ . The filtration is the natural filtration generated by $W$ and $\mathcal{F}_{T}=\mathcal{F}$ . Let $(S_{t})_{t\in[0,T]}$

the price process of the underlying stock. For $S_{0}$ given, assume that $(S_{t})_{t\in[0,T]}$ is a geometric
Brownian motion process

$dS_{t}=(r-\delta)S_{t}dt+\sigma S_{t}dW_{t}$ , $t\in[0,T]$ ,

where the coefficients $(r, \delta,\sigma)$ are constant. Here $r$ represents the risk-free rate of interest, $\delta$

the continuous dividend rate, and $\sigma$ the volatility of the stock price. The stock price process
$(S_{t})_{t\in[0,T]}$ is represented under the equivalent martingale measure $1P$ , which indicates that the
stock has mean rate of return $r$ , and the process $W$ is a $\mathbb{P}$-Brownian motion.

Let $T_{1}(\in(0, T))$ be the vesting date of ESO with strike price $K$ . Also, let $C(S_{u}, u)\equiv$

$C(S_{u}, u;T)$ and $c(S_{u},u)\equiv c(S_{u}, u;T)$ be the values of the American and European call options
with maturity date $T$ at time $u\in[T_{1}, T]$ , respectively. Then, the difference

$e(S_{u},u)=C(S_{u}, u)-c(S_{u}, u)$ , $u\in[T_{1}, T]$ (1)

represents the early exercise premium of the American option at time $u$ . MacMillan (1986)
and Barone-Adesi and Whaley (1987) have developed a simple approximation for the premium
$e(S_{u}, u)$ , which is given by

$e(S_{u}, u)= \{1-e^{-\delta(T-u)}\Phi(d_{+}(\overline{S}_{u}, K,T-u))\}\frac{\overline{S}_{u}}{\theta_{u}}(\frac{S_{u}}{\overline{S}_{u}})^{\theta_{u}}$ , (2)

for $S_{u}<\overline{S}_{u}(u\in[T_{1},T])$ , where $\Phi(x)$ denotes the standard normal cumulative distribution
function (cdf)

$\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{1}{2}u^{2}}du$ , $x\in \mathbb{R}$ ,

$d_{\pm}(x, y, \tau)=\frac{\log(x/y)+(r-\delta\pm\frac{1}{2}\sigma^{2})\tau}{\sigma\sqrt{\tau}}$ ,

$\overline{S}_{u}(>K)$ is a positive root of the equation

$\overline{S}_{u}-K=c(\overline{S}_{u}, u)+\{1-e^{-\delta(T-u)}\Phi(d_{+}(\overline{S}_{u}, K, T-u))\}\frac{\overline{S}_{u}}{\theta_{u}}$ , $u\in[T_{1}, T]$ (3)

and $\theta_{u}>1$ is a positive root of the quadratic equation

$z^{\sigma^{2}\theta_{u}^{2}+(r-\delta-\frac{1}{2}\sigma^{2})\theta_{u}-\nu(u)=0}1$ (4)

namely,

$\theta_{u}=\frac{2}{\sigma^{2}}\{-(r-\delta-\frac{1}{2}\sigma^{2})+\sqrt{}\overline{(r-\delta-\frac{1}{2}\sigma^{2})^{2}+2\sigma^{2}\nu(u)}\}$ , $u\in[T_{1}, T]$ ,
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for which $\nu(u)$ is defined by

$\nu(u)=\frac{r}{1-e^{-r(T-u)}}$ , $u\in[T_{1}, T]$ .

Thus, the American call value at the vesting date $T_{1}$ is approximately given by

$C(S_{T_{1}}, T_{1})=\{\begin{array}{ll}S_{T_{1}}-K, S_{T_{1}}\geq\overline{S}_{T_{1}}c(S_{T_{1}}, T_{1})+e(S_{T_{1}}, T_{1}), S_{T_{1}}<\overline{S}_{T_{1}},\end{array}$ (5)

which has been called a quadratic approximation ($Hull$ , 2000, Appendix $16A$). Clearly, the Eu-
ropean call value $c(S_{T_{1}}, T_{1} ; T)$ is given by the Black-Scholes formula

$c(S_{T_{1}},T_{1}; T)=S_{T_{1}}e^{-\delta(T-T_{1})}\Phi(d_{+}(S_{T_{1}}, K, T-T_{1}))-Ke^{-r(T-T_{1})}\Phi(d_{-}(S_{T_{1}}, K, T-T_{1}))$ . (6)

Remark 1 Let $\mathcal{D}_{0}=\{(S_{u}, u)\in \mathbb{R}+\cross[t, T]\}$ denote the whole domain and let

$\mathcal{D}=\{(S_{u}, u)\in \mathbb{R}+\cross[T_{1}, T]\}\subset \mathcal{D}_{0}$

denote the domain after the vesting date. Then, the curve $(\overline{S}_{u})_{u\in[T_{1},T]}$ in $\mathcal{D}$ is referred to as an
early exercise boundary, splitting the subdomain $\mathcal{D}$ into two disjoint regions

$C=\{(S_{u}, u)\in[0,\overline{S}_{u})\cross[T_{1}, T]\}$ and $\mathcal{E}=\{(S_{u}, u)\in[\overline{S}_{u}, \infty)x[T_{1}, T]\}$ ,

which are called the continuation region and exercise region, respectively. An ESO ls optimally
exercised at a first-passage time $\tau_{e}$ defined by

$\tau_{e}=\inf\{u\in[T_{1}, T]|(S_{u}, u)\in \mathcal{E}\}$ .

By optimal we mean that $\tau_{e}$ is a stopping time of the filtration $F$ , for which $C(S_{u}, u)(u\in[T_{1}, T])$

is a solution of the optimal stopping problem

$C(S_{u}, u)= ess\sup_{\tau,\in[u,T]}E[e^{-r(\tau,.-u)}(S_{\tau},$.
$-K)^{+}|\mathcal{F}_{u}]$ , (7)

where the conditional expectation is calculated under the risk-neutral probability measure P.

Remark 2 From (3), $S_{u}$ for a given $u\in[T_{1}, T]$ can be obtained by solving a functional equation
of the form $x=f(x)$ , where $f$ is an operator mapping defined by

$f(x) \equiv K+c(x, u)+\{1-e^{-\delta(T-u)}\Phi(d_{+}(x, K, T-u\})\}\frac{x}{\theta_{u}}$ . (8)

This equation can be solved by either Newton method or a recursive scheme such as

$x_{n}=f(x_{n-1})$ , $n\geq 1$ ,

for an appropriately selected initial value $x_{0},$ $e,g$ . $x_{0}=K$ . Figure 1 illustrates some curves of
early exercise boundaries $(\overline{S}_{u})_{u\in[T_{1},T]}$ of ESOs as functions of the elapsed time.
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Figure 1: Quadratic approximations for the early exercise boundary $(\overline{S}_{u})_{u\in[T_{1},T]}(t=0,$ $T_{1}=2$ ,
$T=10,$ $K=1OO,$ $r=0.03,$ $\delta=0.05,$ $\sigma=0.2,0.3,0.4$)

2.2 No Forfeiture

Let $V^{o}(S, t;T)$ be the ESO value at time $t<T_{1}$ with maturity date $T$ and initial asset price
$S\equiv S_{t}$ , assuming no forfeiture before maturity. Then, by the principle of the risk-neutral
valuation, we have

$V^{o}(S,t;T)=e^{-r(T_{1}-t)}E[C(S_{T_{1}} ,T_{1}; T)|\mathcal{F}_{t}]$

$= e^{-r(T_{1}-t)}\int_{0}^{\infty}C(S’,T_{1}; T)G(S’, T_{1}; S, t)dS’$, (9)

where for $S’>0$

$G(S’,T_{1}; S, t)$ $=$ $\frac{1}{\sqrt{2\pi(T_{1}-t)}\sigma S’}\exp[-\frac{\{\log(S’/S)-(r-\delta-\frac{1}{2}\sigma^{2})(T_{1}-t)\}^{2}}{2\sigma^{2}(T_{1}-t)}]$

$\frac{1}{\sqrt{2\pi(T_{1}-t)}\sigma S}$ exp $[- \frac{1}{2}\{d_{-}(S, S’,T_{1}-t)\}^{2}]$ (10)

is the lognormal probability density function (pdf) of $S_{T_{1}}$ starting from $S_{t}=S$ , which is often
referred to as Green’s function of the Black-Scholes PDE.

Lemma 1 For $\overline{S}>0$ ,

$\int_{\overline{S}}^{\infty}G(S’,T_{1}; S, t)dS’=\Phi(d_{-}(S,\overline{S}, T_{1}-t))$ (11)

and
$\int_{\overline{S}}^{\infty}S’G(S’, T_{1}; S, t)dS’=Se^{(r-\delta)(T_{1}-t)}\Phi(d_{+}(S,\overline{S}, T_{1}-t))$. (12)

Proof. The derivation of the two formulas (11) and (12) is straightforward. See Zhu et al. (2004,
Chapter 2) for details. $\square$
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Lemma 2 For $\overline{S}>0$ and $\theta\in \mathbb{R}$ ,

$\int_{0}^{\overline{S}}(S’)^{\theta}G(S’, T_{1}; S, t)dS’$

$=S^{\theta}e^{(\frac{1}{2}\sigma^{2}\theta(\theta-1)+(r-\delta)\theta)(T_{1}-t)}\Phi(-d_{-}(S,\overline{S}, T_{1}-t)-\theta\sigma\sqrt{T_{1}-t})$ . (13)

Proof. See also Zhu et al. (2004, Chapter 2) for the derivation. 口

Lemma 3 For $\overline{S}>0$ ,

$e^{-r(T_{1}-t)}\int_{0}^{\overline{S}}c(S’, T_{1}; T)G(S’, T_{1} ; S, t)dS’$

$=$ $Se^{-\delta(T-t)}\Phi_{2}(-d_{+}(S,\overline{S}, T_{1}-t), d_{+}(S, K, T-t);-\rho)$

$-Ke^{-r(T-t)}\Phi_{2}(-d_{-}(S,\overline{S}, T_{1}-t), d_{-}(S, K,T-t);-\rho)$ , (14)

where $\Phi_{2}(x, y;\gamma)$ denote the bivariate standard normal cdf with the corelation coefficient $\gamma$ given
by

$\Phi_{2}(x, y;\gamma)=\frac{1}{2\pi\sqrt{1-\gamma^{2}}}\int_{-\infty}^{x}\int_{-\infty}^{y}e^{-\frac{1}{2}(u^{2}-2\gamma uv+v^{2})/(1-\gamma^{2})}dvdu$ , $(x,y)\in \mathbb{R}^{2}$ ,

and
$\rho=\sqrt{\frac{T_{1}-t}{T-t}}$ .

Proof. The integral calculation similar to the left-hand-side of (14) can be found in the valuation
of a European compound option (Geske, 1979; Geske and Johnson, 1984), $i.e.$ , a European put
on a European call. Following Zhu et al. (2004, pp. 184-190), we obtain the desired result. $\square$

Theorem 1 For $t<T_{1}<T$ , let $V^{o}(S, t;T)$ be the value of ESO without forfeiture. Then, we
have

$V^{o}(S, t;T)=Se^{-\delta(T_{1}-t)}\Phi(d_{+}(S,\overline{S}_{T_{1}},T_{1}-t))-Ke^{-r(T_{1}-t)}\Phi(d_{-}(S,\overline{S}_{T_{1}},T_{1}-t))$

$+Se^{-\delta(T-t)}\Phi_{2}(-d_{+}(S,\overline{S}_{T_{1}}, T_{1}-t), d_{+}(S, K, T-t);-\rho)$

$-Ke^{-r(T-t)}\Phi_{2}(-d_{-}(S,\overline{S}_{T_{1}}, T_{1}-t), d_{-}(S, K, T-t);-\rho)$

$+e(S, T_{1})e^{-(r-\nu_{1})(T_{1}-t)}\Phi(-d_{-}(S,\overline{S}_{T_{1}}, T_{1}-t)-\theta_{T_{1}}\sigma\sqrt{T_{1}-t})$ (15)

where $\overline{S}_{T_{1}}$ is the positive root of the equation (3) for $u=T_{1}$ ,

$e(S, T_{1})= \{1-e^{-i(T-T_{1})}\Phi(d_{+}(\overline{S}_{T_{1}}, K, T-T_{1}))\}\frac{\overline{S}_{T_{1}}}{\theta_{T_{1}}}(\frac{S}{\overline{S}_{T_{1}}})^{\theta_{T_{1}}}$ . (16)

and
$\nu_{1}=\nu(T_{1})=\frac{r}{1-e^{-r(T-T_{1})}}$ . (17)
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Proof. For notational convenience, denote $S_{T_{1}}=S’$ and $\overline{S}_{T_{1}}=\overline{S}$ . Then, from (5) and (9), we
have

$V^{o}(S, t;T)=$

$e^{-r(T_{1}-t)}\{\int_{0}^{\overline{S}}(c(S’, T_{1})+e(S’, T_{1}))G(S’, T_{1} ; S, t)dS’+\int_{\overline{S}}^{\infty}(S’-K)G(S’, T_{1}; S, t)dS^{\prime\}}$ .

Hence, the result immediately follows from Lemmas 1 through 3 and the relation

$\frac{1}{2}\sigma^{2}\theta_{T_{1}}(\theta_{T_{1}}-1)+(r-\delta)\theta_{T_{1}}=\nu_{1}$.

口

2.3 Independent Forfeiture

Following Jennergren and Ntislund (1993), we assume that forfeiture occurs according to a
Poisson process wlth an exogenous constant rate $\lambda(>0)$ ; cf. Cuny and Jorion (1995); Carr and
Linetsky (2000) for more general point processes with rate dependent on the stock price. In
other words, there exists a stopping time $\tau_{f}$ , to be independent of the filtration $F$. For $\tau_{f}\leq\tau_{e}$

(a.s.), the ESO is immediately paid off if exercisable, or forfeited otherwise. For $u\in[t, T]$ , let

$\pi(u;T)=\{\begin{array}{ll}0, t\leq u<T_{1}(S_{u}-K)^{+}, T_{1}\leq u\leq T,\end{array}$ (18)

and define $\pi(\tau_{e}\wedge\tau_{f}; T)$ to be the ESO )
$s$ payoff with independent stopping. The payoff $\pi(\tau_{e}\wedge\tau_{f};T)$

for a fixed $\tau_{f}$ is the same as the non-forfeited payoff $\pi(\tau_{e};T\wedge\tau_{f})$ . Under the condition $\{\tau_{f}=\tau\}$

for a given $\tau>0$ , we have

$ess\sup_{\tau_{c}\in[t,\eta}\mathbb{E}[e^{-r(\tau_{C}\wedge\tau_{J}-t)}\pi$ ( $\tau_{e}$ A $\tau_{f};T$) $|\tau_{f}=\tau,$ $\mathcal{F}_{t}]$

$= ess\sup_{\tau_{c}\in[t,T]}E[e^{-r(\tau_{\epsilon}\wedge\tau-t)}\pi$( $\tau_{e};T$ A $\tau$ ) $|\mathcal{F}_{t}]=V(S, t;T\wedge\tau)$ . (19)

Unfortunately, the arbitrage prioe of such a contingent claim is not defined uniquely, be-
cause there exists no replicating $\mathbb{P}$-admissible trading strategy (Musiela and Rutkowski, 1997,
page 115). This is due to the fact that $\tau_{e}\wedge\tau_{f}$ is not a stopping time of $\mathcal{F}$. The same situation
also can be found in the valuation of Canadian options, which are contingent claims with the
exponentially random maturity (Carr, 1998). Raupach (2003) have recently showed that the
contingent claim with payoff $\pi(\tau_{e}\wedge\tau_{f};T)$ can be priced at its expected present value, just like
a perfectly hedgeable contingent claim. Unconditioning the result (19), we obtain

Theorem 2 For $t<T_{1}<T$ , let $V(S,t;T)$ be the value of ESO with forfeit rate $\lambda$ . Then, we
have

$V(S, t;T)= e^{-\lambda(T-t)}V^{O}(S, t;T)+\int_{T_{1}}^{T}\lambda e^{-\lambda(u-t)}V^{o}(S, t;u)du$ . (20)
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Proof. For notational convenience, set $t=0$ without loss of generality. With $\mathbb{P}\{\tau_{f}\geq u\}=e^{-\lambda u}$

for $u\geq 0$ , we have

$V(S, 0;T)$ $=$ $ess\sup_{\tau_{e}\in[0,T]}E[e^{-r(\tau_{e}\wedge\tau_{f})}\pi(\tau_{e}; T\wedge\tau_{f})|\mathcal{F}0]$

$=$ $ess\sup_{\in\tau[0,T]}E[e^{-r\tau,}\cdot\pi(\tau_{e}; T)1_{\{\tau_{f}\geq T\}}|\mathcal{F}_{0}]+E|\mathcal{F}_{0}]$

$=$ $e^{-\lambda T}V^{o}(S, 0;T)+\int_{T_{1}}^{T}\lambda e^{-\lambda u}V^{o}(S, 0;u)du$ ,

from which we obtain the desired result for $V(S, t;T)$ . 口

3 Exact Valuation for Two Special Cases

3.1 Non-Dividend Case

Consider the non-dividend case with $\delta=0$ , for which an American call option is always
worth more alive than dead, $i.e.$ , it is equivalent to the associated European call option with
the same contractual features (Karatzas and Shreve, 1998, Theorem 6.1). This implies that
$C(S_{T_{1}},T_{1}; T)=c(S_{T_{1}},T_{1}; T)$ instead of (5) and $\overline{S}_{T_{1}}=\infty$ , and hence that $V^{o}(S, t;T)=c(S, t;T)$

for $t<T_{1}<T$ (Huddart, 1994, Proposition 1), which also can be formally verified from Lemma 3
such that

$V^{o}(S, t;T)= e^{-r(T_{1}-t)}\int_{0}^{\infty}c(S’, T_{1}; T)G(S’,T_{1}; S, t)dS’$

$= \lim_{\overline{S}arrow\infty}\{S\Phi_{2}(-d_{+}(S,\overline{S},T_{1}-t), d_{+}(S, K,T-t);-\rho)$

$-Ke^{-r(T-t)}\Phi_{2}(-d_{-}(S,\overline{S},T_{1}-t), d_{-}(S, K, T-t);-\rho)\}$

$=S\Phi(d_{+}(S, K, T-t))-Ke^{-r(T-t)}\Phi(d_{-}(S, K,T-t))$

$=c(S, t;T)$ .

Hence, we have

Theorem 3 For $t<T_{1}<T$ , let $\tilde{V}(S, t;T)$ be the exact value of ESO with forfeit rate $\lambda$ , being
written on a non-dividend-paying asset. Then, we have

$\tilde{V}(S, t;T)=e^{-\lambda(T-t)}c(S, t;T)+\int_{T_{1}}^{T}\lambda e^{-\lambda(u-t)}c(S, t;u)du$, (21)

which can be used as an exact lower bound for the dividend-paying case, $i.e.,$ $V(S,t;T)\geq$

$\tilde{V}(S, t;T)$ for $\delta>0$ .

Proof. The result (21) is a direct consequence of Theorem 2. Since $c(S, t;T)\leq C(S, t;T)$ , the
non-dividend value in (21) gives a lower bound of the dividend-paying case. $\square$
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3.2 Perpetual Case

Consider the perpetual case with $T=\infty$ . Let $C_{\infty}(S’)$ be the value of the perpetual American
call option at the vesting date $T_{1}$ with strike price $K$ and initial asset price $S_{T_{1}}\equiv S’$ . Then, it
has been well known that

$C_{\infty}(S’)=\{\begin{array}{ll}\frac{\overline{S}}{\theta}(\frac{S’}{\overline{S}})^{\theta}, S’<\overline{S}S’-K, S’\geq\overline{S},\end{array}$ (22)

where $\theta>1$ is a positive root of the quadratic equation

$\frac{1}{2}\sigma^{2}\theta^{2}+(r-\delta-\frac{1}{2}\sigma^{2})\theta-r=0$ , (23)

namely,

$\theta=\frac{2}{\sigma^{2}}\{-(r-\delta-\frac{1}{2}\sigma^{2})+\sqrt{(r-\delta-\frac{1}{2}\sigma^{2})^{2}+2\sigma^{2}r}\}$ ,

and $\overline{S}(>K)$ is given by
$\overline{S}=\frac{\theta}{\theta-1}$ K. (24)

See McKean (1965) and Karatzas and Shreve (1998, Theorem 6.7).

Theorem 4 For $t<T_{1}$ , let $V_{\infty}(S, t)$ be the exact value of the perpetual ESO with forfeit rate
$\lambda$ . Then, we have

$V_{\infty}(S,t)=Se^{-(\lambda+\delta)(T_{1}-t)}\Phi(d_{+}(S,\overline{S},T_{1}-t))-Ke^{-(\lambda+r)(T_{1}-t)}\Phi(d_{-}(S,\overline{S},T_{1}-t))$

$+ \frac{\overline{S}}{\theta}(\frac{S}{\overline{S}})^{\theta}e^{-\lambda(T_{1}-t)}\Phi(-d_{-}(S,\overline{S}, T_{1}-t)-\theta\sigma\sqrt{T_{1}-t})$ , (25)

which gives an exact upper bound of the finite-lived value, $i.e.,$ $V(S, t;T)\leq V_{\infty}(S, t)$ for $T<\infty$ .

Proof. Let $V_{\infty}^{o}(S, t)$ be the value of the perpetual ESO without forfeiture at time $t<T_{1}$ . Then,
by the principle of the risk-neutral valuation, we have

$V_{\infty}^{O}(S, t)=e^{-r(T_{1}-t)}E[C_{\infty}(S_{T_{1}})|\mathcal{F}_{t}]$

$= e^{-r(T_{1}-t)}\{\int_{0}^{\overline{S}}\frac{\overline{S}}{\theta}(\frac{S’}{\overline{S}})^{\theta}G(S’,T_{1} ; S, t)dS’+\int_{\overline{S}}^{\infty}(S’-K)G(S’, T_{1}; S, t)dS^{\prime\}}$

$=Se^{-\delta(T_{1}-t)}\Phi(d_{+}(S,\overline{S},T_{1}-t))-Ke^{-r(T_{1}-t)}\Phi(d_{-}(S,\overline{S}, T_{1}-t))$

$+ \frac{\overline{S}}{\theta}(\frac{S}{\overline{S}})^{\theta}\Phi(-d_{-}(S,\overline{S},T_{1}-t)-\theta\sigma\sqrt{T_{1}-t})$.

Hence, from the relation

$V_{\infty}(S,t)= \int_{T_{1}}^{\infty}\lambda e^{-\lambda(u-t)}V_{\infty}^{o}(S, t)du=e^{-\lambda(T_{1}-t)}V_{\infty}^{o}(S, t)$,

we obtain (25). Since $C(S_{T_{1}}, T_{1})\leq C_{\infty}(S_{T_{1}})$ , the perpetual value in (25) gives an upper bound
of the finite-lived value. $\square$
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Remark 3 From Figure 1, we can observe that the early exercise boundaries are almost flat
during the initial and middle periods of the interval $[T_{1}, T]$ . This is due to the ESO feature of long
period up to maturity, which implies that the perpetual result can be used as an approximation
for the finite-lived case. To examine this expectation, extensive numerical comparisons should
be done.

4 Conclusion

In this paper, a simple continuous-time model for valuing ESOs with forfeiture is developed
by using the quadratic approximation for the American vanilla call option. This model is a
continuous-time version of a modified binomial model for the American call option adjusted for
the forfeiture rate and the vesting period (Ammann and Seiz, 2004). The valuation formula of
our model is consistent with the exact results for non-dividend and perpetual cases, which also
give exact lower and upper bounds for the dividend-paying and finite-lived caIes, respectively.
To see the quality of the quadratic approximation, we need numerical experiments comparing
the approximate value with a exact benchmark result computed, $e.g$ . by the associated binomial
model, being in progress.

The quadratic approximation method is so general that it can be applied to non-traditional
ESOs such as reload options, performance-vested options, indexed options, repriceable options
and so on (Brenner et al., 2000; Johnson and Tian, $2000a,b$ ; Rogers and Scheinkman, 2007).
Also, the quadratic approximation can be applied to the case that the underlying stock price
process has jumps. These extensions remain as future studies.
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