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1. INTRODUCTION

Let (X, || -]|) =: X be a complex Banach lattice with the real part Xg and the positive
convex cone X, (cf. [5, Chapter C]. [8]), and £(X) be the space of all bounded linear

operators on X. We consider an abstract Volterra integro-differential equation
t :
(t) = Az(t) + / B(t — s)2(s)ds 1)
0

on X, where A is the infinitesimal generator of a Co semigroup (T'(t))»0 C £(X) and
B(:) : Ry :=[0,00) = £(X) is continuous in ¢ with respect to the operator norm and

+00
(T(t))s»0 is a compact semigroup and /; [|B(t)||dt < +oo. (2)

In (3], Hino and Murakami characterized the uniform asymptotic stability of the zero
solution of Eq. (1) in connection with the the invertibility of the characteristic operator

. +o0
2d—A- /0 B(t)e=™dt  (I;the identity operator on X)

of Eq. (1) for z belonging to the closed right half plane, as well as the integrability of the
resolvent for Eq. (1). In case that the space X is finite dimensional, Pham H.A. Ngoc et al.
(6] studied the positivity of Eq. (1) and proved that the invertibility of the characteristic
operator reduces to that of the operator zI — A — [;F™ B(t)dt, where A + [} B(t)dt is
a Metzler matrix and consequently the uniform asymptotic stability of the zero solution
for positive equations is equivalent to the condition which is much easier than the one for
the characteristic operator in checking.
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In this paper, we will proceed with the investigation for the case that Eq. (1) is consid-
ered on a Banach lattice X, and extend several results obtained in [6] to positive systems
in infinite dimensional spaces.

To make the presentation self-contained, we give some basic facts on Banach lattices
which will be used in the sequel (see, e.g. [8]). Let Xgr # {0} be a real vector space
endowed with an order relation <. Then Xg is called an ordered vector space. Denote the
positive elements of Xg by X := {z € Xg : 0 < z}. If furthermore the lattice property

holds, that is, if z V y := sup{z,y} € Xg, for z,y € Xg, then Xg is called a vector lattice.
It is important to note that X, is generating, that is,

XR =X+ —X+.

Then, the modulus of z € Xg is defined by |z| := zV (—2). If || - || is 2 norm on the vector
- lattice Xg satisfying the lattice norm property, that is, if

lzl <yl = ll=ll < flwll, @,y € Xg, (3)

then Xg is called a normed vector lattice. If, in addition, (XR,]|| - ||) is a Banach space
then Xg is called a (real) Banach lattice. ‘ .

We now extend the notion of Banach lattices to the complex case. For this extension
all underlying vector lattices Xg are assumed to be relatively uniformly complete, that is,
if for every sequence (An)nen in R satisfying Y°22 ; |A\,| < +occ and for every z € Xg and
every sequence (Z,)neN in Xg it holds that

0<z, <Az = i) € Xg.
< p < Az i\ég(;z) R
Now let X be a relatively uniformly complete vector lattice. The complezification of Xg
is defined by X = Xgr + :Xr. The modulus of z = z + iy € X is defined by

lz| = ofrg" |(cos @)z + (sin ¢)y| € Xg. (4)

A complez vector lattice is defined as the complexification of a relatively uniformly com-
plete vector lattice equipped with the modulus (4). If Xg is normed then

el == lll=lll, =zeX . (5)

defines a norm on X satisfying the lattice norm property; in fact, the norm restricted to
Xr is equivalent to the original norm in Xg, and we use the same symbol || - || to denote
the (new) norm. If Xg is a Banach lattice, then X equipped with the modulus (4) and
the norm (5) is called a complex Banach lattice. :
Throughout this paper, X is assumed to be a complex Ba.nach lattice with the real part
Xr and the positive convex cone X, . Let T' € £(X). Then T is called realif T(Xg) C Xg.
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A real operator T is called positive and denoted by 7' > 0 if T(X,) C X,. By S < T we
mean T — § > 0, for T, S € £(X). We introduce the notation

Li(X)={TeL(X): T>0}. (6)
For T' € £,(X), we emphasize the simple but important fact
IT|| = sup . |Tz|, (7)
z€X 4 ||z||=1

see e.g. [8, p.230]. A Co semigroup (7'(t))ip0 C L(X) is called positive if T'(t) € L4(X)
for all t > 0.

2. CHARACTERIZATIONS OF POSITIVE LINEAR VOLTERRA INTEGRO-DIFFERENTIAL
EQUATIONS IN BANACH LATTICES

In this section, we will introduce the notion of positivity for Eq. (1), and give a chaz-
acterization of positivity of Eq. (1) in terms of positivity of the semigroup (T(%))ez0 and
of the kernel function B(-).

For any (0,4) € Ry xC([0, 0], X), there exists a unique continuous function z : Ry — X
such that z = ¢ on [0, 0] and the following relation holds:

z(t) =T(t — o)é(o) + /t T(t-s {f’ B(s — 7)z( T)dr}ds t> o,

see e.g. [2]. The function z is called a (mzld) solution of Eq. (1) through (o, ¢) on [o, o0),
and denoted by z(-, 0, ¢).

We say that Eq. (1) is positive if z(t,0,¢) € X, on [o, oc) whenever (o, ¢) € Ry x
C([0,0], X ).

Theorem 1. If A generates a positive semigroup (T(t))tgo on X and B(t) > 0 for any
t 2 0 then Eq. (1) is positive. Conversely, if Eq. (1) is positive and A is the infinitesimal
generator of a positive Co semigroup (T(t))s>0 on X then B(t) > 0 for each t > 0.

Proof. The former part of the theorem can be proved by the standard argument; so we
will omit the proof. In the following, we will prove the latter part of the proof. To do
this, we will firstly check that B(t) is real for each ¢ > 0. Let any ¢ > 0 and a € X, be
given. For each integer n such that 1/n < o, we consider a function ¢, € C([0,0], X} )
defined by ¢.(t) = aif t € [0,0 — 1/n], and ¢, (t) = n(0 —t)a if t € (o — 1/n,c]. By the
positivity of Eq. (1), we get z(t,0,#,) > 0 for any ¢t > o, and hence

(1/R)e(h + 0,0,4s) = %(T(h)cbn(a) +f b+ o — ) [ Bls = 7)a(r, o, gu)dr)ds

:ﬂ Th+o- s)(/oa B(s — T).’D(T? o, én)dr)ds

v
O > =

S—
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for any h > 0. Observe that

lim [-15 [ "I+ o - 8)( [ Bls — )a(r, 0, gn)dr)ds

h—+40

= ./o B(o — 1)z(7,0,¢,)dT = /(; B(o — 7)pn(7)dT.
Hence it follows that
/0 B(o — 1)¢n(1)dr > 0.
Letting n — oo in the above, we get [ B(c — 7)adr > 0 or J; B(s)ads > 0. Then

t+h t+h t
/ B(s)ads = /0 B(s)ads — / B(s)ads € X, — X, = Xg
t 0
for any ¢ > 0 and h > 0; consequently,

1 pt+h .
B(t)a = lim (—/ B(s)ads) € Xr, a€X,.

h=s+0 \ h J:

Therefore it follows that B(¢)Xg C Xr, which means that B(t) is real for each ¢ > 0.

Secondly, we will establish that B(t) > 0 for each ¢ > 0. Let (0, 4) € Ry x C([0,0], X,)
with ¢(c) = 0 be given. By the positivity of Eq. (1), we have y(t) := z(¢t + 0,0,¢) > 0
on [0,00). Observe that y satisfies the relation

y(t) = T()d(c) + / T+ o —s)] /0 " B(s - r)a(r)dr }ds

= /t T(t— u){ /”u B(o+u— 'r)a:('r)d'r}du e /t T(t — u)p(u)du
0 0 0 ’
for t > 0, where
(wi= [ Blo+u—r)s(r)ir
p = 0
Now, let us take a real number X sufficiently large such that sup,,, e("’\"'l)'HT(t)H) < oo,
Then A € p(A) (the resolvent set of A), and R(\, A) := (A — A)~! is given by
R(\, Az = /0 T e MT(t)zdt, z € X.
Therefore it follows that A € p(A*) and' R(), A*) = R(A,A)*. Let v} be an arbitrary

element in (X™)4, the space of all positive bounded linear functionals on X, and set
v* = R(A, A*)v}. Then v* € D(A*) and
t
(" y®) = (0", [ T(t - wp(u)du), 20,

where (-,-) denotes the canonical duality pairing of X* and X. Since y(t) > 0, the
positivity of (T(t))s»o implies that '

RO AW = [ e T(wy(t)du > 0,
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and hence (v*,y(t)) = (v}, R(\,A)y(t)) > 0 by the fact that v} > 0. Consequently,
(d*/dt)(v*,y(¢))|,=o > O by the fact that (v*,y(0)) = v*(0) = 0. Notice that AR(MA) =
—1 4 AR(), A). Therefore it follows that

(AR(X, A))" = —I" + AR(), A)* = —I" + AR(), A*) = A*R(), A%),

and hence

00 [T~ wpwd) = (03, B 4) [T - ()

= Jim 1/m) {3, RO, A) [ T+ b - wiptu)au — RO 4) [ 70 - el

= hl_ig}o {(v*, (1/h) /;H'h T(t+ h — u)p(u)du)
(05, RO, T (70— wpptuyin)
= (v",p()) + (v}, AR(A, 4) [ T~ u)p(u)d)
= (v",p(1)) + (AR, )03, (1))
= (v",p(1)) + (A"R(), A7)0}, y(t))
= (", p(8)) + (470", y(1)).
Then
d+ ' o :
T O ¥Eimo = (7, p(0)) + (A%, y(0) = (v, [ B(o — 7)a(r)dr)
= (R, A)'v3, [ B(o - 7)g(r)dr)

= (v}, R\ 4) [* B(o = r)g(r)dr),
and consequently
(v3, R(), A) fo B(o — 7)é(r)dr) > 0.
Rewriting ¢(s — ) as 9(7), we obtain

(vi, R(), A) /0 " B(w)p(u)du) > 0 (8)
for any v} € (X*); and any ¢ € C([O, o]; X4+) with 1(0) = 0. We claim that
' R()\,A)B(t)a >0 (Vte(0,0], a € Xy). (9)

Assume that the claim is false. Then there are t; € (0,0] and @ € X, such that
R(X, A)B(t1)a ¢ X,.. Notice that R(), A)B(t,)a € Xg by R(), A) > 0 and B(t)a € Xg.
Since X is a closed convex cone, the well known result in functional analysis (e.g., [4,
Chapter 3, Theorem 6]) yields that there exists a v} € X* with the property that v} >0
on X, and (v}, R(A, A)B(t;)a) < 0. Hence v} € (X*),, and moreover there exists an
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interval [c,d] C (0,0) satisfying (v}, R(A, A)B(t)a) < 0 for all ¢ € [c,d]. Then one can
choose a nonnegative scalar continuous function x so that x(0) = 0 and

(vl /0 e A)B(t)x(t)adt) = /0 ”<v;, R(), A)B(t)a)x(t)dt < 0;

which leads to a contradiction by considering x(t)a as ¥(t) in (8).
Finally, B(t) > 0 immediately follows from (9) and the fact that limy_,o AR(A, A)z = &
for any z € X. The proof is completed.

3. STABILITY OF POSITIVE LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
IN BANACH LATTICES

In this section, we continue to assume that (2) is valid, and investigate the uniform
asymptotic stability property of the zero solution of Eq. (1). Before stating the main
result of this section, we introduce some notations. For the Co-semigroup (T(t))tp0 with
the infinitesimal generator A, we consider the following quantities:

(i) The spectral bound,
s(A) := sup{RX X € o(A)},

where o(A) is spectrum of the linear operator A.
(ii) The growth bound w(A),

w(A) := inf{w € R : there exists M > 0 such that
IT@)| < Me** for all t > 0}.
It is well-known that
— 00 < 5(A) < w(A) < +oo, (10)

see, e.g (1], [5].
In what follows, we will essentially use the following two results.

Theorem 2. [3] The following statements are equivalent:
. (i) The zero solution of Eq. (1) is uniformly asymptotically stable.
(i) The operator A\I — A~ [F*° e** B(s)ds is invertible in L(X) for any A € C, R\ > 0.

Lemma 1. Assume that A generates a positive semigroup (T'(t))i>0 on X and P €
L£(X),Q € Li(X). If
|Pz| < Qlz|, Vz € X,
then
w(A+P)=3(A+P)<s(A+Q)=w(A+ Q).
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Proof of Lemma 1. Let (G(t))s»0 and (H(t))t»0 be the Cp semigroups with the infinites-
imal generators A+ P and A+ Q, respectively. Since A generates the compact semigroup .
(T(t))t0, 50 do A+ P and A+ Q, see e.g. [1, 5). This implies that s(A + P) = w(A+ P)
and s(A + Q) = w(A + Q), see e.g. {1, 5]. As the standard property of Co compact
semigroups, we know that e”(©) = o{M(1)}\{0}, where C is the infinitesimal generator
of any compact Cy semigroup (M (t))e>0 on X; see e.g. [1, Corollary IV.3.11]. Hence we
have e“(°) = r(M(1)), where r(M(1)) is the spectral radius of the operator M(1). Thus,
it is sufficient to show that

r(G(1)) < r(H(1)).
Note that (G(t))i»0 and (H(t)):o are defined respectively by
G(t)z = nli)?m(T(t/n)e(‘/“)P)"z', H(t)z = n_l_i’x_'l_lw(T(t/n)e(t/")Q)"m, z € X,

for each ¢ > 0; see e.g. [5, p.44] and see also [1, Theorem II1.5.2]. By the positivity of
(T(¢))e0 and the hypothesis of |Pz| < Q|z|, z € X, it is easy to see that

IG(1)z| < H(1)z|, =z € X.
Then, we get further that
IG(1)* | < H(1)*e|, ze€X,keN, (11)

by induction. From the property of a norm on Banach lattices (3), it follows from (11)
and (7) that '

IGL)*I| < JIH (1))
By the well-known Gelfand ’s formula, we have
r(G(1)) < r(H(1)),

which completes our proof.

We are now in the position to prove the main result of this section.

Theorem 3. Assume that A generates a positive semigroup (T(t))t>0 on X and B(t) > 0
for allt > 0. Then the following two statements are equivalent:

(i) The zero solution of Eq. (1) is uniformly asymptotically stable.
(i1) s(A + [} B(r)dr) < 0.

Proof. (i) = (i) Assume that AJ — A — [}* e~ **B(s)ds is not invertible for some
A € C, R) > 0. This implies that A € o(A + [;7* e~**B(s)ds). We thus get

. 400
0<RA< s(A+ L e~ B(s)ds).
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On the other hand, it is easy to see that
+o0 +oo
—As
(/0 e B(s)ds)z < /0 B(s)ds|z|,
by the hypothesis of B(t) > 0,Vt > 0. Hence, we get
| +oo —As too
0< s(A+ fo e B(s)ds) < s(A + /0 B(s)ds),

by Lemma 1. This is a contradiction to the assumption that s(A + [+ B(s)ds) < 0.

(i) => (ii) For every A > 0, we put &) = f5° B(t)e~*dt and f()\) = s(A+®,). Consider
the real function defined by g(}) := A—f()), A > 0. We show that g(0) = —3(A+®0) > 0.
Since B(-) is positive, by almost the same argument as in [1, Proposition VI.6.13] one can
see that f(}) is non-increasing and left continuous in A > 0. Hence g()) is increasing and
left continuous in A with limj4c0 g(A) = +00. We assert that the function g()) is right
continuous in A > 0. Indeed, if this assertion is false, then there is a Ay > 0 such that
(5% :=) limeoy40 f(Ao +€) < f(Xo) =: 5. Notice that so = s(A+ ®),) and A+ ®,, =: A
generates a positive and compact Cj semigroup ( A‘)t>o It follows that so = s(A) € o(A)
by [1, Theorem VI.1.10). Take a ¢, € p(A). Since

o(R(to, A)\{0} = {m | u € o(A)}

by [1, Theorem IV.1.13], we get 1/(to — s0) € o(R(to, A)). Observe that 1/(to — o) is
isolated in the spectrum o(R(to, /i)) of the compact operator R(to, A). Therefore, if s,
is sufficiently close to sq and s; # so, then 1/(to — ;) is sufficiently close to 1 /(to — 30);
hence 1/(to — s1) € o(R (to,A)), in particular, s, & o(A). Therefore one can choose an
s1 € (s*,80) so that s; € p(A), that is, 3,]—A—®), has a bounded inverse (81/-A-9),)!
in £(X). In the following, we will show that (s;7 — A — ®,,)! > 0. Since s* < sy, it
follows that s(A + ®),4.) < s; for sma.ll € > 0. Then [1, Lemma VI.1.9] implies that
(81— A—=®),4.)" ' >0and

(] = A= Brpp) Mz = [T e exp(A + ®x, . )t)zdt, = € X,
Observe that
| sl —A=®y, = ]~ A= By +(By, — Brse)
= (I = (Prose — ‘I’AO)R(ShA)) (s — A)
and that A
1(@ro4e — o) R(s1, A)||
< [TUB(rer (1 = e=n)drl|R(sy, A

< [TUBOI( - e*7)dr|[A(sy, )| - 0 (e +0)
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Hence, if ¢ > 0 is small, then (®xrp4e — @AO)R(sl,A)” < 1/2; hence I — (®,,,. —
®,,)R(s1, A) is invertible with

(1= @are = 2R, 2) = 5 {(@rre = B0 B

n=0

and consequently

M8

(311 —-A- Q»\o+c)._1 = R(sla "’i) {(Qz\o+e - <I>AO)R(‘SI,A)}ﬂ .

0

n

1}

Thus we get
(817 — A= ®s5ppe) ™" — (511 — A — ,,)7Y|
= [|B(s1, A) 3 {(@rote — B10) B(s1, D)} |
n=1

< 1R(s1, A) | 3 (@rose — B2g) Rs, A)|

n=1

= 1R(s1, D@20 — @30} B33, DI/ (1 = |0 — B20) B(s1, A)]))
< 2| R(st, DI [T IBEI(1 = 7 )dr 50 (e = +0).

Then the positivity of (s;/— A— ®,,)* follows from the positivity of (811 —A—®,,,.)7,
as desired. Applying [1, Lemma V1.1.9] again, we get s, > 8(A+®,,) = s¢, a contradiction
to the fact that s; < so. Thus, f(A) and g(\) must be right continuous in A > 0.

Assume contrary that g(0) < 0. Since the function g is continuous on [0,00) and
limy_,o g(A) = oo, there is a A; > 0 such that g(A1) = 0; that is, A\; = s(A + ®,,).

Since A + @), generates a positive semigroup and s(A + & n) > —o0, by virtue of [1,
Theorem VI.1.10] Ay = s(A + @),) € o(A + ®,,). Since A + ®,, generates a compact
Co semigroup, it follows from [1, Corollary IV.1.19] that (A + ®,,) is identical with
P,(A+ ®,,), the point spectrum of A + ® a - Thus, there exists a nonzero z, € X such
that (A + @,)z1 = A2y that is, Azy + [ B(r)e ™ "z,dr = A\z;. Put z(t) = eMiz,
for t € R. Then, it is easy to see that

£(t) = Az(?) +/ B(r)z(t — r)dr, teR;

hence z satisfies the ”limiting” equation of Eq. (1). By virtue of {3, Proposition 2.3], the
zero solution of the limiting equation is uniformly asymptotically stable because of the
uniform asymptotic stability of Eq. (1). Hence we must get lim;, ||z(2)|| = 0. However,
llz(2)ll = e*||z4]| > ||zy]| > 0 for ¢ > 0, a contradiction. This completes the proof of the
implication (i) = (ii).
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