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On Plane Curve Which Has Similar Caustic

Thai Heng
National Institute of Education, Cambodia

1. Whatis a caustic?

A caustic is the envelope of rays reflected by a curve. For example, if we put a coffee cup
on the table and we make parallel light rays on the coffee cup, then we will see a caustic on
the surface of coffee. See Figure 1.

Figure 1 Figure 2

The contents of this paper are as follows: In Section 2, we study how we calculate the
caustic from a given curve. As examples, we show that the caustic of a half circle is an
epicycloid and that the caustic of a cycloid is also a cycloid whose size is a half of the original
cycloid. In Section 3, we study how we calculate the original curve from a given caustic. As
an example, we show that, if the caustic is a cycloid, the original curve is also a cycloid. In
Section 4, we prove that the cycloid is the unique curve whose caustic is similar to the
original curve.

2. Parametrization by angle

Consider a smooth curve on xy-plane. Assume that light rays are parallel to the y-axis. Let
6 be the angl'c between the y-axis and the tangent line of the curve at a point P. Assume
that @ is increasing from 0 to n as P varies from end to end of the curve. So we can
express the point P by 8.Let a(8) = (x(6),y(6)) be a parametrization of a given curve.



i - a(8) =(x(6), ¥(6)
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How can we find the caustic from a given curve? By the definition of 8, we have

YO _ o, ' (1)
x'(6)
Therefore the equation of reflected ray from P(x(8), y(8)) is given by
| y = cot 26(x — x(8))+ y(6) . | )

By diﬁ‘erentiating both sides with respect tod and using (1), we have

Yo = 29 (x—x(8))-cot26x'(8) +y'(6)
=—'z—-(x-x(e>)—°°s” x(@)+ 222 '£a)
L (e-x@)- 22 g 0, r@+22 2 1)
229(::- *(6))+ = 29 x'(6).

Setting y, =0 gives the envclope. By setting y, =0, we have
x = x(6)+ —;—sin 26%'(8) = x(6) +sin 6 c0s O x'(6).

By putting it to (2), we have
15sin 6(cos? 9 —sin’ 6)
2 cos@

y=y0)+ %cos 20x'(6) = y(0) + y'().

Therefore, if we put
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u(8) = x(6) +sin O cos 6 x' (H) 3)
: 20 il
v(9)=y(9)+%sm0 cos” @ —sin O)y,(g). @)
cos@
Then B(6) = (u(6), v(6)) is the caustic of a(8). By the definition of &, we have
v'(@) _
@) = cot 24. )

Example 1. When () = (- cos8, sin8), find its caustic 8(6).

Solution. Since «/(#) satisfies (1), we can apply our formulas to this example. By using (3)
and (4), we have

u(6) = -cosb +lsin 20sinf = —icose —lcos39.
2 4 4
. 1 . 3. |
v(€) = sin @ +—cos28sinf = —sinf + —sin 36.
2 4 4
Thus we have B(6)= (— %cosa - -i:cos 36, %sin 0+ %sin 36). Therefore the caustic of a
half circle is an epicycloid.

Example 2. When () = (26 -sin 26, 1~cos28), find its caustic 8(6) .

Solution. Since (@) satisfies (1), we can apply our formulas to this example. By using (3)
and (4), we have '

u(6) =20 -sin20 + -lz-sin 26(2 - 2c0s26) = (20 ~sin 28 c0s 26) = %(49 —sin 46).
W(@) =1-cos26 + %cos20(2 ~2c0s26) = (1-cos? 26)= -;-(l ~cos48).

Thus we have S(6) =(—;— (49 —sin48), -;—(l~cos4€)). Therefore the caustic of a cycloid is

also a cycloid.

3. Inverse problem
From (3), we have
1 u(@)
' —_——x() = ———.
¥+ sin@cosé *(6) sinfcosé
The above equality is equivalent to



@) 1and) = u(6) ©)
When 0<6 < -’i’- by integrating (6), we have

*(6)tan = j:ﬁ%dgs.
When % < @ < 7, by integrating (6), we have

~x(6)tan6 = “(¢)¢ dg.

Therefore we obtain

(4(0) ©@=0)
0 z
cotajo cos2¢d¢ 0<6<3)
x(6) =4 u(f’z—) ©= %) )
—cotﬁf:;:%);d;é (%< <)
| u(7) @ = 7).

Example 3. When £(6) = (—;—(46 —-sin46), %(l —Cos 40)), find the original curve a(6).

Solution. Since [(0) satisfies (5), we can apply our formula to this example. When

0<@< % , by using (7), we have

x(0)=cot0_[:-(-‘-‘%—£%@- d¢
—--cot a 4¢ as1n4¢ ¢}
- ° cos ¢ ° cos’ ¢

i 9(9 4¢ Y a4 04sm¢cos¢(cos ¢ - smzj )
2

0 cos® ¢ cos’ ¢

cote(4etane-4j:tan¢d¢-sj:sin¢cos¢d¢+4j:tan¢d¢)

cot8(46 tan 6 — 4sin? 6) = 26 - sin 26.
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When % < 8 < 7, by using (7), we have

x(6)==cot8” %ﬂw

=1 x sin 4¢
cotO(L cos ¢ 0 cos’ ¢d¢)

'-——cot I #4sm¢cos¢(cos ¢ —sin ¢)
¢ cos’ ¢

cos’ ¢

1 . ., .
=—§cot¢9(—49tan6-4[a tan¢d¢-—8!o sm¢cos¢d¢+4fa tan¢d¢)
=--—;-cote(-40tan9+4sin2 9):20—sin20.

Therefore we have x(6) = 20 —sin26 . By using (1), we have
¥'(8) =cotfx'(8) = 2cotd - (1 - cos268) = 2sin 26 .
Therefore we have

(6) =2’ sin2¢ dp = 1-cos26.

Thus we obtain a(8) = (26 - sin 26, 1-cos 26).
4. On plane curve which has similar caustic

Example 2 says that the caustic of cycloid is also a cycloid. So a question arises: “Is there
another curve which is similar to its caustic?” The following theorem is an answer of this
problem.
Theorem. Suppose that a curve a(6) (0<0<7z) with «(0)=(0,0), a(7)=(27,0) has a
caustic B(B) which consists of two curves both similar to a(6) in ratio % that is,
1 ‘ i
—a (26 0<0s<s—) -
2 (26) ( 2 )

B©) = i z
(7,0)+ —2-a(26 -7) (-2- s@sn),

- then a(8) = (26 ~sin26,1-cos26).

Proof. Put a,(6) = (x,(8), ¥,(8)) = (20 —sin 26, 1 - cos 26) . In Example 2, we already
proved that @,(6) satisfies the assumption of the theorem. We assume that there is a curve



a,(6) = (x,(6), y,(6)) which also satisfies the assumption. Then by (7), both x,(8) and
x,(0) satisfy

r @=0)
6 x1(2¢) ‘ L
tej (0<6<3)
@) =1 = (a=%)
- *x,(29-7) z |
n cotej 20057 ¢ 4 —"d¢ (2 <f<n)
| 27 @ =n).

Put M= (r,lgaas):lx, (6) - x,(6)| . Then we can calculate as follows:

sup le 6)-x, (9)I = Sup

cotBI %2 ¢;d¢ cotd x0(2¢)

0<0<E 0<8< 0 2COS ¢
< sup {cotej |x.(2¢) %, (26) d¢}

0<6<X

2

< sup {cotBI —'co—.z;d¢}=-%l—,

0<8<=
<2

sup |x, (8) - x,(6)| = Sup

- cotej wd¢ -7+ cotej:wdyﬁ'

= ocn I per 2cos’ ¢ 2cos’ ¢
< sup {cot& j |x, ¢ — )~ x,(2¢ - )| d¢}
S<b<x
M M
< ::Ex{cota_[ 7 d¢} ==
Therefore we have M < max{O A:,o,ﬁzl-,o} = % . Thus we have M =0, that is,
x,(8) =x,(6) forevery 6. Since i ::Ez; = i ::Eg =cotd, we have y,'(0)=y,'©).

Since we have y,(0) = y,(0), we obtain y,(0) = y,(6) forevery 6. Thus a,(d) isthe
only curve satisfying the assumption.
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