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Abstract

We investigate the random dynamics of rational maps on the Rie-
mann sphere $\hat{\mathbb{C}}$ and the dynamics of semigroups of rational maps on $\mathbb{C}$ .
We will see that the both fields are related to each other very deeply.
Moreover, we investigate singular functions in the complex plane.

1 Introduction
In this paper, we investigate the random dynamics of rational maps on the
Riemann sphere $\hat{\mathbb{C}}$ and the dynamics of semigroups of rational maps on $\mathbb{C}$ .
We will see that the both fields are related to each other very deeply.

One of the motivations of the research of complex dynamical systems is to
describe some mathematical models on ethology. For example, the behavior
of the population of a certain species can be described as the dynamical
system of a polynomial $f(z)=az(1-z)$ such that $f$ preserves the unit interval
and the postcritical set in the plane is bounded (cf. [7]). However, according
to the change of the natural environment, some species have several strategies
to survive in the nature. From this point of view, it is very important to
consider the random dynamics of such polynomials.

In order to consider the random dynamics of polynomials on $\hat{\mathbb{C}}$ , let $T_{\infty}(z)$

be the probability of tending to $\infty\in\hat{\mathbb{C}}$ starting with the initial value
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$z\in\hat{\mathbb{C}}$ . In this paper, we will see that under some condition, the function
$\tau_{\infty}$ : $\hat{\mathbb{C}}arrow[0,1]$ is continuous on $\hat{\mathbb{C}}$ and has some singular properties (for
instance, varies only inside a fractal set, so called the Julia set of a poly-
nomial semigroup), and this function is a complex analogue of the devil’s
staircase (Cantor function) or Lebesgue’s singular functions (see figure 2, 3,
4). Moreover, in this paper we will see that under some condition, for any
fixed $z\in\hat{\mathbb{C}},$ $T_{\infty}(z)$ is real-analytic with respect to the probability parameter,
and the partial derivative of $T_{\infty}(z)$ with respect to the probability parameter
can be regarded as a complex analogue of the Takagi function (see figure 5).
Before going into the detail, let us recall the definition of the devil’s staircase
(Cantor function), Lebesgue’s singular function, and the Takagi function.

Definition 1.1 ([25]). Let $\varphi$ : $\mathbb{R}arrow[0,1]$ be the unique bounded function
which satisfies the following functional equation:

$\frac{1}{2}\varphi(3x)+\frac{1}{2}\varphi(3x-2)\equiv\varphi(x),$ $\varphi|_{(-\infty,0]}\equiv 0,$ $\varphi|_{[1,+\infty)}\equiv 1$ . (1)

The function $\varphi|_{[0,1]}$ : $[0,1]arrow[0,1]$ is called the devil $s$ staircase (or Cantor
.function).

Remark 1. The above $\varphi$ : $\mathbb{R}arrow[0,1]$ is continuous on $\mathbb{R}$ and varies only on
the Cantor middle third set. Moreover, it is monotone (see figure 1).

Definition 1.2 ([25]). Let $0<a<1$ be a constant. We denote by $\psi_{a}$ : $\mathbb{R}arrow$

$[0,1]$ the unique bounded function which satisfies the following functional
equation:

$a\psi_{a}(2x)+(1-a)\psi_{a}(2x-1)\equiv\psi_{a}(x),$ $\psi_{a}|_{(-\infty,0]}\equiv 0,$ $\psi_{a}|_{[1,+\infty)}\cong 1$ (2)

The function $L_{a}$ $:=\psi_{a}|_{[0,1]}$ : $[0,1]arrow[0,1]$ is called Lebesgue’s singular
function with respect to the parameter $a$ .
Remark 2. $\psi_{a}$ : $\mathbb{R}arrow[0,1]$ is continuous on $\mathbb{R}$ and monotone. Moreover,
for almost every $x\in[0,1]$ with respect to the one-dimensional Lebesgue
measure, the derivative of $\psi_{a}$ at $x$ is equal to zero (see figure 1). Moreover,
in [13], it was shown that for each fixed $x\in[0,1]$ , the function $a\mapsto L_{a}(x)$ is
real-analytic on $(0,1)$ .
Definition 1.3 ([25]). Let $0<a<1$ be a constant. We denote by $\phi:\mathbb{R}arrow$

$\mathbb{R}$ be the unique bounded function which satisfies the following functional
equation:

$\frac{1}{2}\phi(2x)+\frac{1}{2}\phi(2x-1)+\psi_{1/2}(2x)-\psi_{1/2}(2x-1)\equiv\phi(x),$ $\phi|_{(-\infty,0]\cup[1,+\infty)}\equiv 0$ . $(3)$

The function $S:=4_{1_{[0,1]}}2$ : $[0,1]arrow \mathbb{R}$ is called the Ihlagi function.
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Remark 3. The Takagi function is continuous on $[0,1]$ but non-differentiable
at every point of $[0,1]$ (see figure 1). Moreover, in [11], it was shown that
the function $x rightarrow\frac{1}{2}\frac{\partial L_{a}(x)}{\partial a}|_{a=1/2}$ on $[0,1]$ is equal to the Takagi function.

Figure 1: (Ftom left) Devil’s staircase, Lebesgue’s singular function, Takagi
function.

These singular functions defined on $[0,1]$ ct be redefined by using the
random dynamical systems on $\mathbb{R}$ ae follows. Let $f_{1}(x)$ $:=3x,$ $f_{2}(x)$ $:=3(x-$
$1)+1(x\in \mathbb{R})\bm{t}d$ we consider the random dynamical system on $\mathbb{R}$ such that
at every step we choose $f_{1}$ wlth probability 1/2 $\bm{t}df_{2}$ wlth probability 1/2.
We set $\hat{\mathbb{R}}$

$:=\mathbb{R}\cup t\pm\infty$ }. We denote by $T_{+\infty}(x)$ the probability of tending to
$+\infty\in\hat{\mathbb{R}}$ starting with the initial value $x\in \mathbb{R}$ . Then, we can see that the
function $\tau_{+\infty}|_{[0,1]}$ : $[0,1]arrow[0,1]$ is equal to the devil’s staircase.

Similarly, let $g_{1}(x)$ $:=2x,g_{2}(x)$ $:=2(x-1)+1(x\in \mathbb{R})\bm{t}d$ let $0<$

$a<1$ be aconstant. We consider the rtdom dynamical system on $\mathbb{R}$

such that at every step we choose the map $g_{1}$ wlth probabihty $a$ $\bm{t}d$ the
map $g_{2}$ with probability $1-a$. Let $T_{+\infty,a}(x)$ be the probability of tending
to $+\infty$ starting with the initial value $x\in \mathbb{R}$ . Then, we ct see that the
function $\tau_{+\infty,a}|_{[0,1]}$ : $[0,1]arrow[0,1]$ is equal to Lebesgue’s singular function
$L_{a}$ with respect to the parameter $a$ . Therefore, ae in Remark 3, the hnctlon
$x- \rangle\frac{1}{2}\frac{\partial\tau_{+\infty}.(x)}{\partial a}|_{a=1/2}$ defined on $[0,1]$ is equal to the $Ta1fflgi$ function. In
particular, the Talgi function is equal to the half of the partial derivative of
the function of probability of tending $to+\infty$ with respect to the probability
parameter $a$ .

In fact, it is eaey to show that $\tau_{+\infty},\tau_{+\infty,a}$ td $\frac{\partial r_{+\infty.\circ}(x)}{\partial a}|_{a=1/2}$ satisfies
(1), (2), $\bm{t}d(3)$ , respectively. We remark that in most of the $re8earches$ , the
theory of rtdom dynamical systems has not been used directly, in order to
investigate these singular functions on the interval, although some r\’eearchers
have used it implicitly.

One of the main purposes of this paper is to consider the complex $ana_{r}$.
logue of the above story. In order to do that, we have to $inv\infty tigate$ the
i.i.d. rtdom dynamioe of rational maps and the dynamioe of semigroups
of rational maps on $\hat{\mathbb{C}}$ , simultteously. We will develop both the theory of
rtdom dynamioe of rational maps $\bm{t}d$ that of the dynamics of semigroups
of rational maps. The author thinks this is the best strate$y$. In fact, when

86



we want to investigate the i.i. $d$ . random dynamics of rational maps, we need
to investigate the dynamics of semigroups of rational maps, and when we
want to investigate the dynamics of semigroups of rational maps, we need to
investigate the i.i. $d$ . random dynamics of rational maps.

2 Preliminaries
In this section, we give some basic definitions and notations on the dynamics
of semigroups of rational maps and the i.i. $d$ . random dynamics of rational
maps.

A rational semigroup is a semigroup generated by a family of non-
constant rational maps on the Riemann sphere $\hat{\mathbb{C}}$ with the semigroup opera-
tion being functional composition([12, 10]). A polynomial semigroup is
a semigroup generated by a family of non-constant polynomial maps.

DeflnitIon 2.1 ([12, 10]). Let $G$ be a rational semigroup.

$\bullet$ The Fatou set of $G$ is defined to be $F(G)$ $:=$

{ $z\in\hat{\mathbb{C}}|\exists$ nbd $U$of $z$ s.t. $\{g|_{U}$ : $Uarrow\hat{\mathbb{C}}\}_{g\in G}$ is equicontinuous on $U$}.
$\bullet$ The Julia set of $G$ is defined to be $J(G)$ $:=\hat{\mathbb{C}}\backslash F(G)$ .

$\bullet$ If $G$ is generated by $\{g_{i}\}_{i}$ , then we write $G=\langle g_{1},g_{2}, \ldots\rangle$ .
$\bullet$ For a rational map $g$ , we set $J(g)$ $:=J(\langle g\rangle)$ .

Lemma 2.2. Let $G$ be a rational semigroup. Then for each $h\in G,$ $h(F(G))\subset$

$F(G)$ and $h^{-1}(J(G))\subset J(G)$ . Note that the equality does not hold in general.

Definition 2.3. We set Rat: $=$ { $h:\hat{\mathbb{C}}arrow\hat{\mathbb{C}}|h$ is a non-constant rational map}
endowed with the topology induced by uniform convergence on $\hat{\mathbb{C}}$ . Moreover,
we set $\mathcal{Y}$ $:=$ { $g$ : $\hat{\mathbb{C}}arrow\hat{\mathbb{C}}|g$ is a polynomial, $\deg(g)\geq 2$} endowed with the
relative topology from Rat.

Definition 2.4. For each $\gamma=(\gamma_{1}, \gamma_{2}, \ldots)\in(Rat)^{N}$ , we set

$F_{\gamma}$ $:=$ { $z\in\hat{\mathbb{C}}$ I $\exists$ nbd $U$ of $z$ s.t. $\{\gamma_{n}0\cdots 0\gamma_{1}\}_{n\in N}$ is equicontinuous on $U$}

and $J_{\gamma}$
$:=\hat{\mathbb{C}}\backslash F_{\gamma}$ . This $J_{\gamma}$ is called the Julia set of the sequence $\gamma$ .

Deflnition 2.5. For a topological space $X$ , we denote by $\mathfrak{M}_{1}(X)$ the space of
all Borel probability measures on $X$ endowed with the weak topology. Note
that if $X$ is a compact metric space, then $\mathfrak{M}_{1}(X)$ is a compact metric space.
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For any $\tau\in \mathfrak{M}_{1}$ (Rat), we will consider the i.i. $d$ . random dynamics on $\hat{\mathbb{C}}$

such that at every step we choose a rational map according to $\tau$ .
Definition 2.6. Let $\tau\in \mathfrak{M}_{1}$ (Rat).

1. We denote by supp $\tau$ the support of $\tau$ . Moreover, we set $X_{\tau}$ $:=(supp\tau)^{N}$

$(=\{\gamma=(\gamma_{1},\gamma_{2}, \ldots)|\gamma_{j}\in supp\tau\})$ endowed with the product topol-
ogy. Furthermore, we set $\tilde{\tau}$

$:=\otimes_{j=1}^{\infty}\tau$ . This is a Borel probability mea-
sure on $X_{\tau}$ . We denote by $G_{\tau}$ the rational semigroup generated by supp
$\tau$ .

2. Let $C(\hat{\mathbb{C}})$ be the Banach space of all continuous functions on $\hat{\mathbb{C}}$ endowed
with the supremum norm. Let $M_{\tau}$ be the operator on $C(\hat{\mathbb{C}})$ defined
by $M_{\tau}(\varphi)(z)$ $:= \int_{\sup p_{\mathcal{T}}}\varphi(g(z))d\tau(g)$ . Moreover, let $(M_{\tau})_{*}$

.
: $\mathfrak{M}_{1}(\mathbb{C})arrow$

$\mathfrak{M}_{1}(\hat{\mathbb{C}})$ be the dual of $M_{\tau}$ . Thus for each $\mu\in \mathfrak{M}_{1}(\hat{\mathbb{C}})$ and each open
subset $V$ of $\hat{\mathbb{C}}$ , we have $(M_{\tau})_{*}( \mu)(V)=\int_{\sup p_{\tau}}\mu(g^{-1}(V))d\tau(g)$ .

3. We denote by $F_{mcas}(\tau)$ the set of $\mu\in \mathfrak{M}_{1}(\hat{\mathbb{C}})$ satisfying that there exists
a neighborhood $B$ of $\mu$ in $\mathfrak{M}_{1}(\hat{\mathbb{C}})$ such that the sequence
$\{(M_{\tau})_{*}^{n}|_{B} : Barrow \mathfrak{M}_{1}(\hat{\mathbb{C}})\}_{n\in N}$ is equicontinuous on $B$ .

4. We set $J_{meas}(\tau):=\mathfrak{M}_{1}(\hat{\mathbb{C}})\backslash F_{m\epsilon a\epsilon}(\tau)$ .

5. We denote by $F_{meas}^{0}(\tau)$ the set of $\mu\in \mathfrak{M}_{1}(\hat{\mathbb{C}})$ satisying that the
$sequence\{(M_{\tau})_{*}^{n} : \mathfrak{M}_{1}(\mathbb{C})arrow \mathfrak{M}_{1}(\hat{\mathbb{C}})\}_{n\in N}$ is equicontinuous at the one
point $\mu$ . Note that $F_{mea\epsilon}(\tau)\subset F_{mea\epsilon}^{0}(\tau)$ .

6. We set $J_{mea\epsilon}^{0}(\tau)$ $:=\mathfrak{M}_{1}(\hat{\mathbb{C}})\backslash F_{mea\epsilon}^{0}(\tau)$ .
Definition 2.7. Let $\Phi$ : $\hat{\mathbb{C}}arrow \mathfrak{M}_{1}(\hat{\mathbb{C}})$ be the topological embedding defined
by: $\Phi(z);=\delta_{z}$ , where $\delta_{z}$ denotes the Dirac measure at $z$ . Using this topo-
logical embedding $\Phi$ : $\hat{\mathbb{C}}arrow \mathfrak{M}_{1}(\mathbb{C})$ , we regard $\mathbb{C}$ as a compact subset of
$\mathfrak{M}_{1}(\hat{\mathbb{C}})$ .
Definition 2.8. Let $\tau\in \mathfrak{M}_{1}(Rat)$ . Regarding $\hat{\mathbb{C}}$ as a compact subset of
$\mathfrak{M}_{1}(\hat{\mathbb{C}})$ as above, we use the following notation.

1. We denote by $F_{pt}(\tau)$ the set of $z\in\hat{\mathbb{C}}$ satisfying that there exists a
neighborhood $B$ of $z$ in $\hat{\mathbb{C}}$ such that the $sequence\{(M_{\tau})_{*}^{n}|_{B}$ : $Barrow$

$\mathfrak{M}_{1}(\hat{\mathbb{C}})\}_{n\in N}$ is equicontinuous on $B$ .

2. We set $J_{pt}(\tau)$ $:=\hat{\mathbb{C}}\backslash F_{pt}(\tau)$ .
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3. Similarly, we denote by $F_{pt}^{0}(\tau)$ the set of $z\in\hat{\mathbb{C}}$ such that the sequence
$\{(M_{\tau})_{*}^{n} le: \hat{\mathbb{C}}arrow \mathfrak{M}_{1}(\hat{\mathbb{C}})\}_{n\in N}$ is equicontinuous at the one point $z\in\hat{\mathbb{C}}$ .
Note that $F_{pt}(\tau)\subset F_{pt}^{0}(\tau)$ .

4. We set $J_{pt}^{0}(\tau)$ $:=\hat{\mathbb{C}}\backslash F_{pt}^{0}(\tau)$ .

Remark 4. We have $F_{pt}(\tau)\subset F_{pt}^{0}(\tau),$ $F_{meas}(\tau)\subset F_{mea\epsilon}^{0}(\tau),$ $J_{pt}^{0}(\tau)\subset J_{pt}(\tau)\cap$

$J_{m\epsilon a\epsilon}^{0}(\tau)$ , and $J_{mea\epsilon}^{0}(\tau)\subset J_{mea\epsilon}(\tau)$ .
Remark 5. If supp $\tau=\{h\}$ with $h\in Rat$ and $\deg(h)\geq 2$ , then $J_{meas}(\tau)\neq\emptyset$ .
In fact, using the embedding $\Phi$ : $\hat{\mathbb{C}}arrow \mathfrak{M}_{1}(\hat{\mathbb{C}})$ , we have $\emptyset\neq\Phi(J(h))\subset$

$J_{mea\epsilon}(\tau)$ .

Definition 2.9. Let $\tau\in \mathfrak{M}_{1}(\mathcal{Y})$ . For each $z\in\hat{\mathbb{C}}$ , we set

$T_{\infty,\tau}(z)$ $:=\tilde{\tau}$( $\{\gamma=(\gamma_{1},\gamma_{2},$ $\ldots)\in \mathcal{Y}^{N}|\gamma_{n}0\cdots 0\gamma_{1}(z)arrow\infty$ as $narrow\infty\}$ ).

This is the probability of tending to $\infty$ starting with the initial value
$z\in\hat{\mathbb{C}}$ , with respect to the i.i. $d$ . random dynamics on $\hat{\mathbb{C}}$ such that at every
step we choose a polynomial map accordlng to the probability distribution
$\tau$ .

The following is the key to investigate the random complex dynamics.

Definition 2.10. Let $G$ be a rational semigroup. We set $J_{ker}(G)$ $:= \bigcap_{g\in G}g-1(J(G))$ .
This is called the kernel Julia set of $G$ .
Remark 6.

1. $J_{ker}(G)$ is a compact subset of $J(G)$ .

2. For each $h\in G,$ $h(J_{ker}(G))\subset J_{ker}(G)$ . If $F(G)\neq\emptyset$ , then int $J_{ker}(G)=$

$\emptyset$ .

3. If $G$ is generated by a single map or if $G$ is a group, then $J_{k\epsilon r}(G)=$

$J(G)$ . However, for a general rational semigroup $G$ , it may happen that
$J_{ker}(G)\neq J(G)$ .

Definition 2.11. We denote by $Leb_{2}$ the two-dimensional Lebesgue measure
on $\hat{\mathbb{C}}$ .
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3 Results
In this section, we present the main results.

Theorem 3.1. Let $\tau\in \mathfrak{M}_{1}$ (Rat) be such that supp $\tau$ is compact. Suppose
that $J_{ker}(G_{\tau})=\emptyset$ . Then, $F_{meas}(\tau)=\mathfrak{M}_{1}(\hat{\mathbb{C}})$ , and for almost every $\gamma\in(Rat)^{N}$

with respect to $\tilde{\tau},$ $Leb_{2}(J_{\gamma})=0$ .
By Theorem 3.1, we obtain the following result.

Theorem 3.2. Let $\tau\in \mathfrak{M}_{1}(\mathcal{Y})$ be such that supp $\tau$ is compact. Suppose
that $J_{ker}(G_{\tau})=\emptyset$ . Then, the hnction $T_{\infty,\tau}$ : $\hat{\mathbb{C}}arrow[0,1]$ is continuous on the
whole $\hat{\mathbb{C}}$ .
Remark 7. Let $h\in \mathcal{Y}$ and let $\tau$ $:=\delta_{h}$ . Then, $T_{\infty,\tau}(\hat{\mathbb{C}})=\{0,1\}$ and $\tau_{\infty,\tau}$ is
not continuous at every point in $J(h)\neq\emptyset$ .

On the one hand, we have the following, due to Vitali’s theorem.

Lemma 3.3. Let $\tau\in \mathfrak{M}_{1}(\mathcal{Y})$ be such that supp $\tau$ is compact. Then, for each
connected component $U$ of $F(G_{\tau})_{f}$ there exzsts a constant $C_{U}\in[0,1]$ such
that $T_{\infty,\tau}|_{U}\equiv C_{U}$ .
Remark 8. Higher dimensional version of Theorem 3.1 can be shown. More
over, higher dimensional (and modified) version ofTheorem 3.2 and Lemma 3.3
can be shown. However, we omit the detail.

Remark 9. Combining Theorem 3.2 and Lemma 3.3, it follows that under
the assumption of Theorem 3.2, if $T_{\infty,\tau}\not\equiv 1$ , then the function $\tau_{\infty,\tau}$ is con-
tinuous on $\hat{\mathbb{C}}$ and varies only inside the Julia set $J(G_{\tau})$ of $G_{\tau}$ . In this case,
the function $\tau_{\infty,\tau}$ is called the devil’s coliseum (see figure 3, 4). This is
a complex analogue of the devil’s staircase or Lebesgue’s singular functions.
We will see the monotonicity of this function $\tau_{\infty,\tau}$ in Theorem 3.6.

In order to present the result on the monotonicity of the function $\tau_{\infty,\tau}$ :
$\hat{\mathbb{C}}arrow[0,1]$ , the level set of $T_{\infty,\tau}|_{J(G_{r})}$ and the structure of the Julia set $J(G_{\tau})$ ,
we need the following notations.

Definition 3.4. Let $K_{1},$ $K_{2}$ be two non-empty compact subsets of $\hat{\mathbb{C}}$ .

1. $K_{1}<_{\epsilon}K_{2}$
’ indicates that $K_{1}$ is included in the union of all bounded

components of $\mathbb{C}\backslash K_{2}$ .

2. $K_{1}\leq_{\epsilon}K_{2}$
’ indicates that $K_{1}<_{\epsilon}K_{2}$ or $K_{1}=K_{2}$ .
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Remark 10. This $\leq_{\epsilon}$ is a partial order in the space of all non-empty
compact subsets of $\hat{\mathbb{C}}$ . This $\leq_{s}$ is called the surrounding order.

Definition 3.5. Let $G$ be a polynomial semigroup. We set

$\hat{K}(G)$ $:=$ { $z\in \mathbb{C}|\{g(z)|g\in G\}$ is bounded in $\mathbb{C}$ }.

Moreover, if $\infty\in F(G)$ , then we denote by $F_{\infty}(G)$ the connected component
of $F(G)$ containing $\infty$ . (Note that if $G$ is a polynomial semigroup generated
by a compact subset of $\mathcal{Y}$ , then $\infty\in F(G).)$

By Theorem 3.2 and Lemma 3.3, we obtain the following result.

Theorem 3.6. (Monotonicity of $\tau_{\infty,\tau}$ and the structure of $J(G_{\tau})$) Let $\tau\in$

$\mathfrak{M}_{1}(\mathcal{Y})$ be such that supp $\tau$ is compact. Suppose that $\tau_{\infty,\tau}\not\equiv 1$ on $\hat{\mathbb{C}}$ and
$J_{kor}(G_{\tau})=\emptyset$ . Then, we have all of the following.

1. int $(\hat{K}(G_{\tau}))\neq\emptyset$ .
2. $T_{\infty,r}(J(G_{r}))=[0,1]$ .

S. For each $t_{1},$ $t_{2}\in[0,1]$ with $0\leq t_{1}<t_{2}\leq 1$ , we have
$T_{\infty,\tau}^{-1}(\{t_{1}\})<T_{\infty}^{-1}(\{t_{2}\})\cap J(G_{\tau})$ .

4.
$\hat{K}(G_{\tau})<\delta T_{\infty,\tau}^{-1}(\{t\})\cap J(G_{\tau})<\delta\overline{F_{\infty}(G_{\tau})}Foreacht\in(0,1)_{f}wehave$.

Remark 11. If $G$ is generated by a single map $h\in \mathcal{Y}$ , then $\partial\hat{K}(G)=$

$\partial F_{\infty}(G)=J(G)$ and so $\hat{K}(G)$ and $\overline{F_{\infty}(G)}$ cannot be separated. However,
under the assumption of Theorem 3.6, the theorem implies that $\hat{K}(G)$ and
$\overline{F_{\infty}(G)}$ are separated by the uncountably many level sets $\{T_{\infty,\tau}|_{J(G_{r})}^{-1}(\{t\})\}_{t\in(0,1)}$ ,
and that these level sets are totally ordered with respect to the surrounding
order, respecting the usual order in $(0,1)$ .

Deflnition 3.7. Let $G$ be a rational semigroup.

$\bullet$ We set $P(G)$ $:= \ovalbox{\tt\small REJECT}\bigcup_{g\in G}${ $al1$ critical values of $g:\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$} $(\subset\hat{\mathbb{C}})$ . This is
called the postcritical set of $G$ .

$\bullet$ We say that $G$ is hyperbolic if $P(G)\subset F(G)$ .
$\bullet$ For a polynomial semigroup $G$ , we set $P^{*}(G)$ $:=P(G)\backslash t\infty$ }.

Deflnition 3.8. Let $G$ be a rational semigroup.
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$\bullet$ Let $N$ be a positive integer. We denote by $SH_{N}(G)$ the set of points
$z\in\hat{\mathbb{C}}$ satisfying that there exists a positive number $\delta$ such that for
each $g\in G,$ $\deg(g:Varrow B(z, \delta))\leq N$, for each connected component
$V$ of $g^{-1}(B(z, \delta))$ . Moreover, we set $UH(G)$ $:= \hat{\mathbb{C}}\backslash \bigcup_{N\in N}SH_{N}(G)$ .

$\bullet$ We say that $G$ is semihyperbolic if $UH(G)\subset F(G)$ .
Remark 12. We have $UH(G)\subset P(G)$ . If $G$ is hyperbolic, then $G$ is semi-
hyperbolic,

The following theorem generalizes some results in $[2, 4]$ .
Theorem 3.9. Let $\tau\in \mathfrak{M}_{1}(\mathcal{Y})$ be such that supp $\tau$ is compact. Suppose that
$P^{*}(G_{\tau})$ is not bounded in $\mathbb{C}$ . Then, for almost every $\gamma\in \mathcal{Y}^{N}$ with respect to
$\tilde{\tau}$ , the Julia set $J_{\gamma}$ of $\gamma$ has uncountably many connected components.

Question 1. What happens if $\tau_{\infty,\tau}\equiv 1$ ?

We present a necessary and sufficient condition for $\tau_{\infty,\tau}$ to be the constant
function 1.

Lemma 3.10. Let $\tau\in \mathfrak{M}_{1}(\mathcal{Y})$ be such that supp $\tau$ is compact. Then, the
following are equivalent.

1. $T_{\infty,\tau}\equiv 1$ .
. 2. $T_{\infty,\tau}|_{J(G_{r})}\equiv 1$ .
3. $\hat{K}(G_{\tau})=\emptyset$ .

Definition 3.11. Let $\gamma=(\gamma_{1}, \gamma_{2}, \ldots)\in \mathcal{Y}^{N}$ . We set

$K_{\gamma}$ $:=$ { $z\in \mathbb{C}.|\{\gamma_{n^{O}}\cdots 0\gamma_{1}(z)\}_{n\in N}$ is bounded in $\mathbb{C}$ }.

Theorem 3.12. Let $\tau\in \mathfrak{M}_{1}(\mathcal{Y})$ be such that supp $\tau$ is compact. Suppose
that $T_{\infty,\tau}|_{J(G,)}\equiv 1$ (for example, suppose $\hat{K}(G_{\tau})=\emptyset$). Then, we have all of
the following 1,2, and 3.

1. $J_{ker}(G_{\tau})=\emptyset$ .
2. $\tau_{\infty,\tau}\equiv 1$ on $\hat{\mathbb{C}}$ .
3. For almost $eve\eta\gamma\in \mathcal{Y}^{N}$ with respect to $\tilde{\tau}$ ,

$(a)Leb_{2}(K_{\gamma})=0$ ,
$(b)K_{\gamma}=J_{\gamma}$ , and
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$(c)K_{\gamma}=J_{\gamma}$ has uncountably many connected components.

Even if $J_{ker}(G_{\tau})\neq\emptyset$ , we have the following.

Theorem 3.13. Let $\tau\in \mathfrak{M}_{1}(\mathcal{Y})$ be such that supp $\tau$ is compact. Suppose that
$J_{ker}(G_{\tau})$ is included in the unbounded component of $\mathbb{C}\backslash (UH(G_{\tau})\cap J(G_{\tau}))$ .
Then, for almost every $\gamma\in X_{\tau}$ with respect to $\tilde{\tau},$ $Leb_{2}(J_{\gamma})=0$ .

Corollary 3.14. Let $\tau\in \mathfrak{M}_{1}(\mathcal{Y})$ be such that supp $\tau$ is compact. Suppose
that $J_{ker}(G_{\tau})$ is included in the unbounded component of $\mathbb{C}\backslash (P(G_{\tau})\cap J(G_{\tau}))$ .
Then, for almost every $\gamma\in X_{\tau}$ with respect to $\tilde{\tau},$ $Leb_{2}(J_{\gamma})=0$ .
Question 2. When $J_{ker}(G)=\emptyset$?

Lemma 3.15. Let $\Gamma$ be a $sub_{8}et$ of Rat such that the intenor of $\Gamma$ with
respect to the topology of Rat is not empty. Let $G$ be a rational semigrvup
generated by F. Suppose that $F(G)\neq\emptyset$ . Then, $J_{ker}(G)=\emptyset$ .
Lemma 3.16. Let $\Gamma$ be a subset of $\mathcal{Y}$ such that the interior of $\Gamma$ with respect
to the topology $of\mathcal{Y}$ is not empty. Let $G$ be a polynomial semigrv up generated
$by$ F. Then, $J_{ker}(G)=\emptyset$ .
Definition 3.17. For a metric space $X$ , we denote by Cpt(X) the space of
all non-empty compact subsets of $X$ , endowed with the Hausdorff topology.

Lemma 3.18. Let $\tau\in \mathfrak{M}_{1}(\mathcal{Y})$ be such that supp $\tau$ is compact. Let $B_{1}$ be any
neighborhood of $\tau$ in $\mathfrak{M}_{1}(\mathcal{Y})$ and $B_{2}$ any neighborhood of supp $\tau$ in $Cpt(\mathbb{C})$ .
Then, there evists an element $\rho\in \mathfrak{M}_{1}(\mathcal{Y})$ such that $\rho\in B_{1}$ , supp $\rho\in B_{2}$ ,
$\#supp\rho<\infty$ , and $J_{ker}(G_{\rho})=\emptyset$ .
Theorem 3.19. Let $G$ be a polynomial semigroup generated by a subset of
$\mathcal{Y}$ . Suppose that $P^{*}(G)$ is bounded in $\mathbb{C}$ and $J(G)$ is disconnected. Then
$J_{ker}(G)=\emptyset$ and $\tau_{\infty,\tau}\not\equiv 1$ for each $\tau\in \mathfrak{M}_{1}(\mathcal{Y})$ with $G_{\tau}=G$ .

Proposition 3.20. Let $(h_{1}, \ldots , h_{m})\in(Rat)^{m}$ and suppose $\deg(h_{j})\geq 2$ for
each $j=1,$ $\ldots$ , $m$ . Let $G=\langle h_{1}, \ldots, h_{m}\rangle$ . Suppose that $J_{ker}(G)=\emptyset$ and $G$

is hyperbolic. Then there $e$ vists an open neighborhood $U$ of $(h_{1}, \ldots, h_{m})$ in
$(Rat)^{m}$ such that for each $(g_{1}, \ldots,g_{m})\in U$ , we have $J_{ker}(\langle g_{1}, \ldots , g_{m}\rangle)=\emptyset$.
Question 3. What happens if $J_{ker}(G_{\tau})\neq\emptyset$?

Theorem 3.21. Let $\tau\in \mathfrak{M}_{1}$ (Rat) be such that supp $\tau$ is compact. Suppose
that $G_{\tau}$ is semihyperbolic, $F(G_{\tau})\neq\emptyset$ , and for each $g\in supp\tau,$ $\deg(g)\geq 2$ .
Then, we have all of the following.

1. $Leb_{2}(J_{pt}^{0}(\tau))=0$ .

93



2. $J_{ker}(G_{\tau})\subset J_{pt}^{0}(\tau)$ .

S. If, in addition to the assumption, $J_{ker}(G_{\tau})\neq\emptyset_{;}$ then $J_{meas}(\tau)=\mathfrak{M}_{1}(\hat{\mathbb{C}})$ .
Corollary 3.22. Let $\tau\in \mathfrak{M}_{1}$ (Rat) be such that supp $\tau$ is compact. Suppose
that $G_{\tau}$ is hyperbolic and for each $g\in supp\tau,$ $\deg(g)\geq 2$ . Then, we have all
of the follouring.

1. $Leb_{2}(J_{pt}^{0}(\tau))=0$ .
2. $J_{kor}(G_{\tau})\subset J_{\phi}^{0}(\tau)$ .

S. If, in addition to the assumption, $J_{ker}(G_{r})\neq\emptyset$ , then $J_{mea\epsilon}(\tau)=\mathfrak{M}_{1}(\hat{\mathbb{C}})$ .
Theorem 3.23. Let $\tau\in \mathfrak{M}_{1}$ (Rat) be such that $\#$ supp $\tau<\infty$ . Suppose that
$G_{\tau}$ is semihyperbolic, $F(G_{\tau})\neq\emptyset_{2}$ and for each $g\in$ supp $\tau,$ $\deg(g)\geq 2$ .
Then, we have all of the following.

1. $\bigcup_{g\in G_{\tau}}g-1(J_{ker}(G_{\tau}))\subset J_{pt}^{0}(\tau)$.

2. Either $J_{meas}(\tau)=\emptyset$ or $J_{pt}(\tau)=J(G_{\tau})$ .
Corollary 3.24. Let $\tau\in \mathfrak{M}_{1}(Rat)$ be such that $\#$ supp $\tau<\infty$ . Suppose that
$G_{\tau}$ is hyperbolic and for each $g\in supp\tau,$ $\deg(g)\geq 2$ . Then, we have all of
the following.

1. $\bigcup_{g\in G_{\tau}}g^{-1}(J_{k\epsilon r}(G_{\tau}))\subset J_{pt}^{0}(\tau)$ .
2. Either $J_{mea\epsilon}(\tau)=\emptyset$ or $J_{pt}(\tau)=J(G_{\tau})$ .
We now present some results on the case $\#$ supp $\tau=2$ .

Definition 3.25. We use the following notation.

$\bullet$ $\mathcal{B}:=$ { $(h_{1},$ $h_{2})\in \mathcal{Y}^{2}|P^{*}(\langle h_{1},$ $h_{2}\rangle)$ is bounded in $\mathbb{C}$ }.

$\bullet$ $C:=$ { $(h_{1},$ $h_{2})\in \mathcal{Y}^{2}|J(\langle h_{1},$ $h_{2}\rangle)$ is connected}.
$\bullet$ $\mathcal{D}:=$ { $(h_{1},$ $h_{2})\in \mathcal{Y}^{2}|J(\langle h_{1},$ $h_{2}\rangle)$ is disconnected}.
$\bullet$

$\mathcal{H}$ $:=$ { $(h_{1},$ $h_{2})\in \mathcal{Y}^{2}|\langle h_{1},$ $h_{2}\rangle$ is hyperbolic}.

$\bullet \mathcal{I}:=\{(h_{1}, h_{2})\in \mathcal{Y}^{2}|J(h_{1})\cap J(h_{2})\neq\emptyset\}$ .
1 $Q:=$ { $(h_{1},$ $h_{2})\in \mathcal{Y}^{2}|J(h_{1})=J(h_{2})$ , and $J(h_{1})$ and $J(h_{2})$ are quasicircles}.
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$\bullet$ For each $(h_{1}, h_{2})\in \mathcal{Y}^{2},0<p<1$ , and $z\in\hat{\mathbb{C}}$ , we set

$T(h_{1}, h_{2},p)z)$ $:=T_{\infty,p\delta_{\hslash_{1}}+(1-p)\delta_{h_{2}}}(z)$ .

$\mathcal{Y}^{2}Lem$

ma 3.26. The sets $\mathcal{H},$ $\mathcal{B}\cap \mathcal{H},$ $D\cap \mathcal{B}\cap \mathcal{H}$ are non-empty open subsets of

Theorem 3.27. We have all of the following.

1. There exists a neighborhood $U$ of $(\overline{D}\cap \mathcal{B}\cap \mathcal{H})\backslash \mathcal{I}$ in $\mathcal{Y}^{2}$ such that for
each $(h_{1}, h_{2})\in U,$ $J_{k\epsilon r}(\langle h_{1}, h_{2}\rangle)=\emptyset$ and $T(h_{1}, h_{2},p, \cdot)\not\equiv 1$ (hence we
can apply Theorem 3.1, S.2, and S.6).

2. There exists a neighborhood $U$ of $(\overline{\mathcal{D}}\cap \mathcal{B}\cap \mathcal{H})\backslash Q$ in $\mathcal{Y}^{2}$ such that
for each $(h_{1}, h_{2})\in U,$ $\dim_{H}(J(\langle h_{1}, h_{2}\rangle))<2$ . Here, $\dim_{H}$ denotes the
Hausdorff dimension with respect to the spherical metric.

3. We have $\overline{int(C)}\cap \mathcal{B}\cap \mathcal{H}=C\cap \mathcal{B}\cap \mathcal{H}$ .

4. Suppose that $h_{1}\in \mathcal{Y},$ $P^{*}(\langle h_{1}\rangle)$ is bounded in $\mathbb{C}$ , and $\langle h_{1}\rangle$ is hyperbolic.
Let $d\in N,$ $d\geq 2$ and suppose $(\deg(h_{1}), d)\neq(2,2)$ . Then, there exists an
element $h_{2}\in \mathcal{Y}$ such that $(h_{1}, h_{2})\in((\partial C)\cap \mathcal{B}\cap \mathcal{H})\backslash \mathcal{I}$ and $\deg(h_{2})=d$.

5. For each $(h_{1}, h_{2})\in(\mathcal{D}\cap \mathcal{B})\cup((\partial C)\cap \mathcal{B}\cap \mathcal{H})$ and each $0<p<1$ ,
$J(\langle h_{1}, h_{2}\rangle)=$ { $z_{0}\in\hat{\mathbb{C}}|\forall$ nbd $V$ of $z_{0},$ $T(h_{1},$ $h_{2},p,$ $\cdot)|_{V}$ is not constant}.

6. Let $(h_{1}, h_{2})\in(\mathcal{D}\cap \mathcal{B})\cup(((\partial C)\cap \mathcal{B}\cap \mathcal{H})\backslash \mathcal{I})$ . Then, for each $z\in\hat{\mathbb{C}}$ ,
the function $p\mapsto T(h_{1}, h_{2},p, z)$ is real analytic on $(0,1)$ . Moreover,
for each $n\in N\cup\{0\}$ , the function $(p, z)rightarrow(\partial^{n}T/\partial p^{n})(h_{1}, h_{2},p, z)$ is
continuous on $(0,1)x\hat{\mathbb{C}}$ .

Definition 3.28 ([17]). Let $\Gamma$ be a non-empty compact subset of Rat.
We define a map $f$ : $\Gamma^{N}\cross\hat{\mathbb{C}}arrow\Gamma^{N}x\hat{\mathbb{C}}$ as follows: For a point $(\gamma, y)\in\Gamma^{N}x\hat{\mathbb{C}}$

where $\gamma=(\gamma_{1},\gamma_{2}, \ldots)$ , we set $f(\gamma, y)$ $:=(\sigma(\gamma),\gamma_{1}(y))$ , where $\sigma$ : $\Gamma^{N}arrow\Gamma^{N}$ is
the shift map, that is, $\sigma(\gamma_{1}, \gamma_{2}, \ldots)=(\gamma_{2},\gamma_{3}, \ldots)$ . The map $f$ : $\Gamma^{N}x\hat{\mathbb{C}}arrow$

$\Gamma^{N}\cross\hat{\mathbb{C}}$ is called the skew product associated with the generator system
F. Moreover, we use the following notation.

1. Let $\pi$ : $\Gamma^{N}x\hat{\mathbb{C}}arrow\Gamma^{N}$ and $\pi_{\hat{\mathbb{C}}}$ : $\Gamma^{N}x\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ be the canonical projections.

2. For each $\gamma\in\Gamma^{N}$ , we set $J^{\gamma}$ $:=\{\gamma\}xJ_{\gamma}(\subset\Gamma^{N}\cross\hat{\mathbb{C}})$ .
3. We set $\tilde{J}(f):=\overline{\bigcup_{\gamma\in\Gamma^{N}}J^{\gamma}}$ , where the closure is taken in the product

space $\Gamma^{N}x\hat{\mathbb{C}}$ . (Note that $f^{-1}(\tilde{J}(f))=\tilde{J}(f)=f(\tilde{J}(f)).$ )
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4. For each $\gamma\in\Gamma^{N}$ , we set $\hat{J}^{\gamma,\Gamma}$ $:=\pi^{-1}\{\gamma\}\cap\tilde{J}(f)$ and $\hat{J}_{\gamma,\Gamma}$ $:=\pi_{\mathbb{C}}(\hat{J}^{\gamma,\Gamma})$ .
Note that $J_{\gamma}\subset\hat{J}_{\gamma,\Gamma}$ .

5. For each $z=(\gamma, y)\in\Gamma^{N}x\hat{\mathbb{C}}$ , we set $f’(z)$ $:=(\gamma_{1})’(y)$ .

Remark 13. Under the above notation, let $G$ be the rational semigroup
generated by F.

1. $\pi_{C}(\tilde{J}(f))\subset J(G)$ . Moreover, the following diagram commutes.

$\Gamma^{N}x\hat{\mathbb{C}}arrow^{f}\Gamma^{N}x\hat{\mathbb{C}}$

$\pi\downarrow\Gamma^{N}$

$arrow^{\sigma}$

$\Gamma^{N}\downarrow\pi$

2. If $\# J(G)\geq 3$ , then $\pi_{\hat{\mathbb{C}}}(\tilde{J}(f))=J(G)$ .

Deflnition 3.29. Let $(h_{1}, h_{2,\wedge})\in \mathcal{Y}^{2}$ and $0<p<1$ and we set $\Gamma:=\{h_{1}, h_{2}\}$ .
Let $f$ : $\Gamma^{N}x\hat{\mathbb{C}}arrow\Gamma^{N}x\mathbb{C}$ be the skew product associated with $\Gamma$ . Let
$\mu\in \mathfrak{M}_{1}(\Gamma^{N}x\hat{\mathbb{C}})$ be an $f$-invariant Borel probability measure. We define a
function $\tilde{p}$ : $\Gamma^{N}\cross\hat{\mathbb{C}}arrow \mathbb{R}$ by

$\tilde{p}(\gamma,y)$ $:=\{\begin{array}{ll}p if \gamma_{1}=h_{1},1-p if \gamma_{1}=h_{2},\end{array}$

(where $\gamma=(\gamma_{1},$ $\gamma_{2},$
$\ldots)$ ), and we set

$u(h_{1}, h_{2},p,\mu)$ $:= \frac{-(\int_{\Gamma^{N}x\mathbb{C}}\log\tilde{p}d\mu)}{\int_{\Gamma^{N}x\mathbb{C}}\log|f|d\mu}$

(when the integral converges).

Definition 3.30. Let $V$ be a non-empty open subset of $\mathbb{C}$ . Let $\varphi$ : $Varrow \mathbb{R}$

be a function and let $y\in V$ be a point. We set

H\"o1 $(\varphi,y)$ $:= \sup\{\beta\in \mathbb{R}|\lim_{zarrow}\sup_{y}\frac{|\varphi(z)-\varphi(y)|}{|z-y|^{\beta}}=0\}$

and this is called the pointwise H\"older exponent of $\varphi$ at $y$ .

Remark 14. If H\"ol $($ \varphi , $y)<1$ , then $\varphi$ is non-differentiable at $y$ . If H\"ol $($ \varphi , $y)>$
$1$ , then $\varphi$ is differentiable at $y$ and the derivative at $y$ is equal to $0$ .

96



Theorem 3.31. (Non-differentiability of $T(h_{1}, h_{2},p, \cdot)$ at the points in
$J(G_{\tau}))$ Let $(h_{1}, h_{2})\in \mathcal{D}\cap \mathcal{B}$ and $0<p<1$ and we set $\Gamma$ $:=\{h_{1}, h_{2}\}$ . Let
$f$ : $\Gamma^{N}\cross\hat{\mathbb{C}}arrow\Gamma^{N}\cross \mathbb{C}$ be the skew product associated with F. Let $\tau$ $:=p\delta_{h_{1}}+(1-$

$p)\delta_{h_{2}}\in \mathfrak{M}_{1}(\Gamma)\subset \mathfrak{M}_{1}(\mathcal{Y})$ and we set $G=\langle h_{1}, h_{2}\rangle$ . Let $\mu\in \mathfrak{M}_{1}(\Gamma^{N}\cross\hat{\mathbb{C}})$ be the
maximal relative entropy measure of $f$ : $\Gamma^{N}x\hat{\mathbb{C}}arrow\Gamma^{N}\cross\hat{\mathbb{C}}$ with respect to $(\sigma,\tilde{\tau})$

(Note that the existence and the uniqueness of the maximal relative entropy
measure has been shown in [14]). Moreover, let $\lambda$ $:=(\pi_{6})_{*}(\mu)\in \mathfrak{M}_{1}(\hat{\mathbb{C}})$ .
Then, we have all of the following.

1. int $J(G)=\emptyset$ .
2. supp $\lambda=J(G)$ .

3. For each $z\in J(G),$ $\lambda(\{z\})=0$ .

4. For almost every $z_{0}\in J(G)$ with respect to $\lambda$ ,

H\"o1(T $(h_{1},$ $h_{2},p,$ $\cdot),$ $z_{0}$ ) $=u(h_{1}, h_{2},p,\mu)$

$=_{p\log(\deg(h_{1}))+(1-p)\log(\deg(h_{2}))}^{-(p\log p+(1-p)\log(1-p))}\ovalbox{\tt\small REJECT}<1$ .

In particular, there exists an uncountable dense subset $A$ of $J(G)$ such that
for each $z\in A,$ $T(h_{1}, h_{2},p, \cdot)$ is non-differentiable at $z$ .
Remark 15. $T(h_{1}, h_{2},p, \cdot)$ is a complex analogue of devil’s staircase or
Lebesgue singular functions (see figure 3, 4). Moreover, $z-\rangle$ $\frac{\partial T}{\phi}(h_{1}, h_{2},p, z)$

is a complex analogue of Ihkagi function (see figure 5). For the defini-
tion and the properties of the devil’s staircase, Lebesgue singular functions,
the Takagi function, and further singular functions on $\mathbb{R}$ , see $[25, 1]$ etc.
(however, in these references, the relation between the singular functions on

$\mathbb{R}$ and the random dynamical systems was not written).

Remark 16. In the proof of Theorem 3.31, we use the Birkhoff ergodic theo-
rem and the Koebe distortion theorem, in order to show H\"o1(T $(h_{1},$ $h_{2},p,$ $\cdot),$ $z_{0}$ ) $=$

$u(h_{1}, h_{2},p,\mu)$ . Moreover, we apply potential theory in order to calculate
$u(h_{1}, h_{2},p, \mu)$ by $p$ and $\deg(h_{i})$ .
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4 Tools
In this section, we give some basic tools to prove the main results.

Lemma 4.1 ([15]). Let $G$ be a rational semigroup generated by a compact
subset $\Gamma$ of Rat. Then, $J(G)= \bigcup_{h\in\Gamma}h^{-1}(J(G))$ . In $pa\hslash icular$, if $G=$
$\langle h_{1}, \ldots , h_{m}\rangle$ , then $J(G)= \bigcup_{j=1}^{m}h_{j}^{-1}(J(G)).$ This property is called the back-
ward self-similarity.

Lemma 4.2. Let $\tau\in \mathfrak{M}_{1}$ (Rat). Then, we have the following.

1, $(M_{r})_{*}^{-1}(F_{mea\epsilon}(\tau))\subset F_{mea\epsilon}(\tau)$ , and $(M_{\tau})_{*}^{-1}(F_{meas}^{0}(\tau))\subset F_{m\epsilon a\epsilon}^{0}(\tau)$ .
2. Let $y\in\hat{\mathbb{C}}$ be a point. Then, $y\in F_{pt}(\tau)$ if and only iffor any $\phi\in C(\hat{\mathbb{C}})$ ,

there exists a neighborhood $U$ of $y$ in $\mathbb{C}$ such that the sequence $\{zrightarrow$

$M_{\tau}^{n}(\phi)(z)\}_{n\in N}$ offunctions on $U$ is equicontinuous on U. Similarly, $y\in$

$F_{pt}^{0}(\tau)$ if and only iffor any $\phi\in C(\hat{\mathbb{C}})$ , the sequence $\{z\mapsto M_{\tau}^{n}(\phi)(z)\}_{\in N}$

of $\phi nctions$ on $\hat{\mathbb{C}}$ is equicontinuous at the one point $y$ .
3. $F_{m\epsilon a\epsilon}(\tau)\cap\hat{\mathbb{C}}\subset F_{pt}(\tau)$ and $F_{meas}^{0}(\tau)\cap\hat{\mathbb{C}}=F_{pt}^{0}(\tau)$ .
4. $F(G_{\tau})\subset F_{pt}(\tau)$ .
5. Let $y\in\hat{\mathbb{C}}$ be a point. Suppose that supp $\tau$ is compact, and that

$\tilde{\tau}(\{\gamma=(\gamma_{1},\gamma_{2},\gamma_{3}, \ldots)\in X_{\tau}|y\in\bigcap_{j=1}^{\infty}\gamma_{1}^{-1}\cdots\gamma_{j}^{-1}(J(G_{\tau}))\})=0$ . Then,
we have that $y\in F_{pt}^{0}(\tau)=F_{m\epsilon a\epsilon}^{0}(\tau)\cap\hat{\mathbb{C}}$.

6. $F_{pt}^{0}(\tau)=\hat{\mathbb{C}}$ if and only if $F_{mea\epsilon}(\tau)=\mathfrak{M}_{1}(\hat{\mathbb{C}})$ .
Lemma 4.3 ([22]). Let $\Gamma$ be a compact subset ofRat and let $G$ be the rational
semigroup genera ted by $\Gamma$ . Suppose that $\#(J(G))\geq 3$ . Let $f$ : $\Gamma^{N}x\hat{\mathbb{C}}arrow\Gamma^{N}x\hat{\mathbb{C}}$

be the skew product associated with $\Gamma$ . Then, $\pi e(J(f))=J(G)$ and for each
$\gamma=(\gamma_{1},\gamma_{2}, \ldots)\in\Gamma^{N}$ , we have $\hat{J}_{\gamma,\Gamma}=\bigcap_{j=1}^{\infty}\gamma_{1}^{-1}\cdots\gamma_{j}^{-1}(J(G))$.
Lemma 4.4. Let $\tau\in \mathfrak{M}_{1}(Rat)\wedge$ be such that supp $\tau$ is compact. Let $V$ be a
non-empty open subset of $\mathbb{C}$ such that for each $g\in G_{\tau},$ $g(V)\subset V$ For each
$\gamma=(\gamma_{1},\gamma_{2}, \ldots)\in X_{r}$ , we set $L_{\gamma}$ $:= \bigcap_{j=1}^{\infty}\gamma_{1}^{-1}\cdots\gamma_{j}^{-1}(\hat{\mathbb{C}}\backslash V)$ . Moreover, we set
$L_{ker}$ $:= \bigcap_{g\in G_{\tau}}g^{-1}(\hat{\mathbb{C}}\backslash V)$ . Let $y\in\hat{\mathbb{C}}$ be a point. Then, we have that

$\tilde{\tau}(\{\gamma\in X_{r}|y\in L_{\gamma}, \lim_{narrow}\inf_{\infty}d(\gamma_{n}\circ\cdots\circ\gamma_{1}(y), L_{ker})>0\})=0$ .

(When $L_{ker}=\emptyset$ , we set $d(z,$ $L_{ker})$ $:=\infty$ for each $z\in\hat{\mathbb{C}}.$)
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Remark 17. As we see in this paper, both the theory of rational semigroups
and that of the random dynamics of rational maps are related to each other
very deeply. For the research of polynomial semigroups, see [22] and [20]. In
[20], many new phenomena which can hold in the dynamics of polynomial
semigroups (or random dynamics of polynomial maps) but cannot hold in the
usual dynamics of a single polynomial map were found and systematically
investigated. For example, in [22], it was shown that for each $n\in N\cup\{\aleph_{0}\}$ ,
there exists a finitely generated polynomial semigroup $G\subset \mathcal{Y}$ such that
the cardinality of the set of all connected components of $J(G)$ is equal to
$n$ . This cardinality is related to a new cohomology theory on the backward
self-similar systems, which the author initiated (see [19, 23]).
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Figure 2: The Julia set of $G=\langle h_{1}, h_{2}\rangle$ , where $g_{1}(z)$ $:=z^{2}-1,$ $g_{2}(z)$ $:=$

$z^{2}/4,$ $h_{1}$ $:=g_{1}^{2},$ $h_{2}$ $:=g_{2}^{2}$ . $G$ satisfies the assumption of Theorem 3.19. Hence
$J_{ker}(G)=\emptyset$ .

Figure 4: The upside down figure of figure 3.
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Figure 5: The graph of $z \mapsto\frac{\partial T}{\partial p}(h_{1}, h_{2},1/2, z)$ . A complex analogue of the
Takagi function.
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