Existence of invariant manifolds at an indeterminate point

Tomoko Shinohara¹ Tokyo Metropolitan College of Industrial Technology E-mail address: sinohara@tokyo-tmct.ac.jp

> 篠原 知子 東京都立産業技術高等専門学校

Abstract

In this note, consider dynamics of a rational mapping F on 2-dimensional complex projective space \mathbb{P}^2 which has a periodic indeterminate point p. By using a symbol sequence $j \in \{1, 2\}^{\mathbb{N}}$, we will define some family $\{V_j\}_{j \in J}$ which consists of locally invariant holomorphic curves at p by F, algebraically.

1. Introduction.

In this note, we consider a local dynamical structure of a rational mapping F of \mathbf{P}^2 near a periodic indeterminate point p. Using a blow up, we construct a family $\{V_j\}_{j\in J}$ which consists of locally invariant curves at p by F, where J is a subset of the Cantor set $\{1,2\}^{\mathbb{N}}$.

Here, prepare some notation and terminology. Let $f_i(x, y, t)(i = 0, 1, 2)$ be homogeneous polynomials with degree $d, F : [x : y : t] \mapsto [f_0 : f_1 : f_2]$ a rational mapping on \mathbf{P}^2 and $\tilde{F} : (x, y, t) \mapsto (f_0, f_1, f_2)$ a polynomial mapping on \mathbf{C}^3 . Then, we have $\pi \circ \tilde{F} = F \circ \pi$ on \mathbf{C}^3 except some analytic sets, where $\pi : \mathbf{C}^3 \setminus \{(0, 0, 0)\} \to \mathbf{P}^2$ is the canonical projection. A point $p \in \mathbf{P}^2$ is said to be an *indeterminate point* of F if $\tilde{F}(\tilde{p}) = (0, 0, 0)$ for some point $\tilde{p} \in \pi^{-1}(p)$. In general, if p is an indeterminate point, then $\bigcap_{U_p} \overline{F(U_p \setminus \{p\})}$ is not a single point, where the intersection is taken over all open neighborhoods U_p of p. So, no definition of the image F(p)makes the mapping F be continuous. Moreover, if $p \in \bigcap_{U_p} \overline{F(U_p \setminus \{p\})}$, it is called a *periodic indeterminate point*. It can be seen from the definition that a periodic indeterminate point has a certain recurrent property, hence we expect a local dynamical structure at this point.

¹ Supported by the Ministry of Education, Culture, Sports, Science and Technology, Grants-in-Aid for Young Scientists (B) No. 18740094

In this note, we assume that $F : \mathbf{P}^2 \to \mathbf{P}^2$ is a rational mapping with an indeterminate point p = [0:0:1]. We often identified \mathbf{C}^2 with the affine chart of \mathbf{P}^2 which is defined by $\{[x:y:t] \in \mathbf{P}^2 \mid t \neq 0\}$, and put p = (0,0). Let

$$X := \left\{ (x, y) \times [u : v] \in \mathbf{C}^2 \times \mathbf{P}^1 \mid xv - yu = 0 \right\}$$

be a subset of $\mathbb{C}^2 \times \mathbb{P}^1$. Then, X is a subvariety of $\mathbb{C}^2 \times \mathbb{P}^1$ and covered by the following two coordinate neighborhoods $\{(U^j, \mu^j)\}_{j=0,1}$,

$$U^{0} := \left\{ (x, y) \times [u : v] \in X \mid y = \frac{v}{u} x \right\}, \ \mu^{0} : U^{0} \ni \ (x, y) \times [u : v] \mapsto \left(x, \frac{v}{u} \right) \in \mathbf{C}^{2},$$
$$U^{1} := \left\{ (x, y) \times [u : v] \in X \mid x = \frac{u}{v} y \right\}, \mu^{1} : U^{1} \ \ni (x, y) \times [u : v] \mapsto \left(\frac{u}{v}, y \right) \in \mathbf{C}^{2}.$$

Definition 1 (see [4]). The mapping $\pi : X \to \mathbb{C}^2$ defined by restricting the first projection $\mathbb{C}^2 \times \mathbb{P}^1 \to \mathbb{C}^2$ is called the blow up of \mathbb{C}^2 centered at p = (0,0) and $E := \pi^{-1}(0,0) = (0,0) \times \mathbb{P}^1$ is called the exceptional curve.

It is remarked here that $\pi: X \setminus E \to \mathbb{C}^2 \setminus \{(0,0)\}$ is a biholomorphic mapping, and by replacing \mathbb{C}^2 with the affine chart $\{[x:y:t] \in \mathbb{P}^2 \mid t \neq 0\}$ of \mathbb{P}^2 , it can be naturally extended as the blow up of \mathbb{P}^2 centered at p = [0:0:1]. To simplify the notation, we call it blow up of \mathbb{P}^2 centered at p, too.

The study of local dynamics of a periodic indeterminate point was started by Y. Yamagishi (see [8] and [9]). Here, introduce his results. Set $\tilde{F} := F \circ \pi : X \to \mathbf{P}^2$. Assume that F satisfies the following assumption.

(1) \tilde{F} is a holomorphic mapping on some open neighborhood of E,

(A.0)
$$\left\{ \begin{array}{c} (2) \ \tilde{F}^{-1}(p) \cap E = \{p_1, p_2\} \text{ and}, \end{array} \right.$$

(3) there exist open neighborhoods N_i of p_i such that $\tilde{F}|_{N_i}$ is a biholomorphic mapping for i = 1, 2.

Here, we remark that p is a periodic indeterminate point of F. Moreover, he assumed that \tilde{F} is contracting in the horizontal direction on N_i . Then, it has been proved that there exists a family of local stable manifolds of p which is indexed by the Cantor set

$$\{1,2\}^{\mathbf{N}} := \{j = (j_1, j_2, \ldots) \mid j_n = 1, 2 \text{ for } n \in \mathbf{N}\}.$$

It is called the *Cantor bouquet* (for detail, see [8] and [9]).

In this note, we consider the following family of curves which is a generalization of the Cantor bouquet.

Definition 2. A family $\{W_{\lambda}\}_{\lambda \in \Lambda}$ of curves is locally invariant at p by F if (1) every W_{λ} is given by a graph of some continuous function

$$\phi_{\lambda}: \Delta_{\rho_{\lambda}}
i x \mapsto y = \phi_{\lambda}(x) \in \mathbf{C}$$

with $\phi_{\lambda}(0) = 0$, where $\Delta_{\rho_{\lambda}} := \{x \in \mathbb{C} \mid |x| < \rho_{\lambda}\}$, and (2) for any W_{λ} there is a $\lambda' \in \Lambda$ and some open neighborhood $N_{\lambda'}$ of p such that $\lim_{x\to 0} F(x, \phi_{\lambda}(x)) = p$ and

$$F(x,\phi_{\lambda}(x))\cap N_{\lambda'}\subset W_{\lambda'} \text{ for } x\in \Delta_{\rho_{\lambda}}\setminus\{0\}.$$

Especially, if every ϕ_{λ} is a holomorphic function, then $\{W_{\lambda}\}$ is called a family of holomorphic curves.

Remark. Let be a mapping $\Phi_{\lambda} : \Delta_{\rho_{\lambda}} \to \mathbb{C}^2$ by $\Phi_{\lambda}(x) = (x, \phi_{\lambda}(x))$. Assume that Φ_{λ} is a holomorphic mapping. Then, $F \circ \Phi_{\lambda}$ is well-defined on $\Delta_{\rho_{\lambda}}$, even if p is an indeterminate point of F, that is, there is a unique holomorphic mapping $g : \Delta_{\rho_{\lambda}} \to \mathbb{C}^2$ such that $g(z) = F \circ \Phi_{\lambda}(z)$ for $z \in \Delta_{\rho_{\lambda}} \setminus \{0\}$ (for detail, see [1]).

Now, we state our Main theorems. In the reminder of this note, denote $j_n = 1, 2$ for every $n \in \mathbb{N}$. Assume that F satisfies the condition (A.0). Then, the following claim (A.1) holds.

 $(A.1) \begin{cases} (1) \ F_0 := \pi^{-1} \circ \tilde{F} \text{ is a meromorphic mapping on } N(E) \text{ and } \{p_1, p_2\} \text{ are} \\ \text{indeterminate points of } F_0, \text{ where } N(E) \text{ is an open neighborhood of } E. \\ \text{Let } \pi_{j_1} : X_{j_1} \to X \text{ be the blow up of } X \text{ centered at } p_{j_1} \text{ and} \\ \tilde{F}_{j_1} := F_0 \circ \pi_{j_1} : X_{j_1} \to X. \text{ Then,} \\ (2) \ \tilde{F}_{j_1}|_{E_{j_1}} : E_{j_1} \to E \text{ is bijective, and one can set } p_{j_1j_2} := \tilde{F}_{j_1}^{-1}(p_{j_2}) \in E_{j_1}. \\ (3) \text{ There is an open neighborhood } N_{j_1j_2} \text{ of } p_{j_1j_2} \text{ such that} \\ \tilde{F}_{j_1}|_{N_{j_1j_2}} \text{ is a biholomorphic mapping.} \end{cases}$

Theorem 1 (see [5]). We can repeat this process inductively for all $n \in \mathbb{N}$ and symbol sequences $j = (j_1, \ldots) \in \{1, 2\}^{\mathbb{N}}$, and succeed with infinitely many times of

blow ups $\pi_{j_1...j_{n+1}} : X_{j_1...j_{n+1}} \to X_{j_1...j_n}$. In particular, there exist sequences of points $p_{j_1...j_{n+1}} \in X_{j_1...j_n}$.

In addition to the condition (A.0), we suppose the following condition (B).

(B)
$$p_{j_1...j_n} \in U^0_{j_1...j_{n-1}}$$
 for every $n \in \mathbb{N}$,

where $U_{j_1...j_{n-1}}^0$ is the coordinate neighborhood of $X_{j_1...j_{n-1}}$ analogue to that defined for X. Then, we can set $p_{j_1...j_n} := (0, \alpha_{j_1...j_n})$ by using the local coordinates system of $U_{j_1...j_{n-1}}^0$. Finally, for all symbol sequences $j \in \{1, 2\}^N$ with $j = (j_1, j_2, ...)$, define a formal power series

$$y = \phi_j(x) := \alpha_{j_1}x + \alpha_{j_1j_2}x^2 + \cdots,$$

$$J := \left\{ j \in \{1,2\}^{\mathbb{N}} \mid \phi_j(x) \text{ has a positive convergent radius } \rho_j > 0 \right\},$$
$$V_j := \left\{ (x,y) \in N_j \mid y = \phi_j(x) \text{ on } \Delta_{\rho_j} \right\} \text{ for all } j \in J.$$

Then, we have the following Theorem 2.

Theorem 2 (see [5]). $\{V_j\}_{j\in J}$ is a family of locally invariant holomorphic curves at p by F. In particular, every family $\{W_{\lambda}\}_{\lambda\in\Lambda}$ of locally invariant holomorphic curves at p by F must be a subfamily of $\{V_j\}_{j\in J}$.

As applications, consider the following rational mappings of \mathbb{C}^2 .

$$(*1) \quad F(x,y) = \left(ax, \frac{y(y-x)}{x^2}\right), \quad |a| > 4,$$
$$(*2) \quad F(x,y) = \left(x + ax^2, \frac{y(2y-x)}{x^2}\right), \quad |a| \neq 0.$$

Theorem 3 (see [6]). Suppose that F is the rational mapping in (*1). For all symbol sequences $j = (j_1, j_2, ...) \in \{1, 2\}^N$, one of the following claims holds. (1) If there exists an integer n_0 such that $j_n = 1$ for any $n \ge n_0$, then $V_j \ne \emptyset$ and $V_j \subset F^{-n_0}(V_{11\cdots}) = F^{-n_0}(\{y = 0\})$. Especially, V_j are unstable manifolds of p. (2) If there exist infinitely many $n_0 \in \mathbb{N}$ with $j_{n_0} = 2$, then $V_j = \emptyset$.

For the rational mapping F in (*2), the following theorems 4 and 5 hold.

Theorem 4. For every symbol sequence $j \in \{1,2\}^{\mathbb{N}}$ there exists a continuous function $y = \psi_j(x)$ on Δ_{δ} . Put

$$W_j := \left\{ (x, y) \in \mathbf{C}^2 \mid y = \psi_j(x) \text{ on } \Delta_\delta \right\}.$$

In particular, $\{W_j\}_{j \in \{1,2\}^N}$ is a family of curves which is locally invariant at p by F.

Theorem 5. For any symbol sequence $j \in \{1,2\}^N$, there exists $j' = (j'_1, j'_2, ...) \in \{1,2\}^N$ such that the formal power series $\phi_{j'}(x) = \sum \alpha_{j'_1...j'_n} x^n$ is the asymptotic expansion of $\psi_j(x)$. That is, for all $n \in \mathbb{N}$, there exist positive constants δ_n and M_n such that

$$\left|\psi_j(x)-\alpha_{j'_1}x-\cdots-\alpha_{j'_1\cdots j'_{n-1}}x^{n-1}\right|\leq M_n|x|^n,$$

for any $x \in \Delta_{\delta_n}$.

Remark. Although $\phi_{j'}$ may not be a convergent power series, for any fixed $n \in \mathbb{N}, \psi_j(0)$ is approximated by the polynomial $\alpha_{j'_1}x + \cdots + \alpha_{j'_{n-1}}x^{n-1}$ with the order $O(|x|^n)$ by taking the limit as $x \to 0$.

Theorems 1, 2 and 3 have been obtained by [5] and [6]. In this note, we will give an outline of proof of Theorems 4 and 5.

2. Proof of Theorem 4.

Put $q(x) := x + ax^2$. This is the first component of F in (*2). We begin with basic facts on dynamics of the polynomial q(x) at x = 0 (for detail, see [7]). For the polynomial q(x), x = 0 is a rationally indifferent fixed point and there exist an attracting petal P and a repelling petal R such that

(1)
$$q(\overline{P}) \subset P \cup \{0\}, \quad \bigcap_{n=1}^{\infty} (\overline{P}) = \{0\},$$

(2) $(q|_R)^{-1}(\overline{R}) \subset R \cup \{0\}, \quad \bigcap_{n=1}^{\infty} (q|_R)^{-n}(\overline{R}) = \{0\},$

(3) $\{0\} \cup P \cup R$ is an open neighborhood of 0.

Now, let us start the proof of Theorem 4. In the following part, we shall give a

proof which is based on an argument by Hadamard-Perron Theorem in [3] and the construction of the Cantor bouquet in [8].

For $\alpha_j \in \mathbb{C}$, $p = (0,0) \in \mathbb{C}^2$ and $p_j := (0,\alpha_j) \in \mathbb{C}^2$, define the following sets;

$$\Delta_r(\alpha_j) := \{ x \in \mathbf{C} \mid |x - \alpha_j| < r \}, \quad \Delta_r := \Delta_r(0),$$
$$\Delta_r^2(p) := \Delta_r \times \Delta_r, \quad \Delta_r^2(p_j) := \Delta_r \times \Delta_r(\alpha_j).$$

From some easy calculation, one can check that our F satisfies the conditions (A.0) and (B). Hence, Theorems 1 and 2 hold and for any infinite symbol sequence $j \in \{1, 2\}^{\mathbb{N}}$, there exists the sequence of points $\{\alpha_{j_1...j_n}\}_{n \ge 1}$.

In the reminder of this note, denote k, l = 1, 2. From (A.0), \tilde{F} is a locally biholomorphic mapping on some neighborhoods of p_l , and there are positive constants rand r' and branches $G_l : \Delta_r^2(p) \to \Delta_{r'}^2(p_l)$ of \tilde{F} . Let $\rho : \mathbb{C}^2 \to [0, 1]$ be a C^1 -function such that

$$\rho(x,y) = \begin{cases} 1 & \text{on } \Delta_r^2(p_k) \\ 0 & \text{on } \Delta_{2r}^2(p_k)^c. \end{cases}$$

By using this C^1 -function ρ , define a C^1 -mapping $f_{kl}: \mathbb{C}^2 \to \mathbb{C}^2$ such that

$$f_{kl} = \begin{cases} G_l \circ \pi \text{ on } \Delta_r^2(p_k) \\ J(G_l \circ \pi)_{p_k} \text{ on } \Delta_{2r}^2(p_k)^c, \end{cases}$$

where $J(G_l \circ \pi)_{p_k}$ is the Jacobian matrix of $G_l \circ \pi$ at the point p_k . Set

 $C^{p_k}_{\gamma} := \{ \phi : \mathbf{C} \to \mathbf{C}, \text{ Lipshitz ft. with Lipshitz constant } \gamma \text{ and } \phi(0) = \alpha_k \},$

$$C_{\gamma} := C_{\gamma}^{p_1} \cup C_{\gamma}^{p_2}.$$

Then, C_{γ} is a complete metric space with respect to the metric d defined as follows;

$$d(\phi,\psi) := \begin{cases} \sup_{x \in \mathbb{C} \setminus \{0\}} \frac{|\phi(x) - \psi(x)|}{|x|} & \text{if } \phi, \psi \in C_{\gamma}^{p_{k}} \\ 3 & \text{if } \phi \in C_{\gamma}^{p_{k}} \text{ and } \psi \in C_{\gamma}^{p_{l}} \ (k \neq l). \end{cases}$$

It can be seen that for any $\phi \in C^{p_k}_{\gamma}$ there exists $\psi \in C^{p_l}_{\gamma}$ such that

$$f_{kl}(ext{graph } \phi) = ext{graph } \psi.$$

By using this fact, one can define the action of g_l on C_{γ} by

$$g_l(\operatorname{graph} \phi) := \operatorname{graph} \left((f_{kl})_* \phi \right), \text{ if } \phi \in C^{p_k}_{\gamma}$$

and know that $g_l: C_{\gamma} \to C_{\gamma}^{p_l}$ is a contraction mapping.

Let S be the space of non-empty compact subsets of C_{γ} . Then, S is a complete metric space with respect to the Hausdorff metric. Setting a mapping

$$G: S \to S$$
, by $A \mapsto G(A) := g_1(A) \cup g_2(A)$

we can show that G is contraction on S, since g_l is a contraction mapping.

Thus, it follows from Banach's contraction mapping theorem that G has the unique fixed point $E \in S$, and $G^n(A)$ converges to E for any $A \in S$. Here, we choose a subset A of S satisfying $g_l(A) \subset A$ for l = 1, 2. Then

$$\bigcap_{n=0}^{\infty} G^n(A) = E.$$

Consequently, since $g_1(A) \cap g_2(A) = \emptyset$, there exists the unique point $\phi_j \in C_{\gamma}$ such that $g_{j_1} \circ \cdots \circ g_{j_n}(A) \to \phi_j$ $(n \to \infty)$ for every symbol sequence $j \in \{1, 2\}^{\mathbb{N}}$.

By using $\tilde{\phi}_j$, let us set

$$\tilde{W}_j := \left\{ (x, y) \in \mathbf{C}^2 \mid y = \tilde{\phi}_j(x) \right\}.$$

Then, it implies that $g_l(\tilde{W}_j) = \tilde{W}_{\sigma(j)}$, where σ is the shift mapping on $\{1, 2\}^{\mathbb{N}}$. Take a small positive constant δ with $0 < \delta < r$, and put

$$ilde{W}_j^\delta := ilde{W}_j \cap \Delta_\delta imes \mathbf{C} \ \ ext{and} \ \ W_j := \pi(ilde{W}_j^\delta).$$

Finarlly, we can prove that

$$W_j = \left\{ (x, y) \in \mathbf{C}^2 \mid y = x \tilde{\phi}_j(x) \right\}$$

and $\{W_j\}_{j \in \{1,2\}^N}$ is a family of curves which is locally invariant at p by F. This is required.

Remark. Unfortunatelly, $\tilde{\phi}_j$ depends on the construction of an extension mapping f_{kl} and does not have uniqueness. However, $\tilde{\phi}_j(x)$ is determined uniquely for any $x \in P$, where P is an attracting petal of q(x) at 0, and

$$F^n(x,y) \to p \text{ as } n \to \infty \text{ for any } (x,y) \in W_j \cap \{P \times \mathbb{C}\} \text{ with } x \neq 0.$$

3. Proof of Theorem 5.

To prove Theorem 5, we need the following Lemmas 1 and 2.

Lemma 1. For every symbol sequence $j \in \{1, 2\}^{\mathbb{N}}$ the following claims hold; (1) there exists a point $p_{j'_1} \in \{p_1, p_2\}$ such that $\overline{\pi^{-1}(W_j \setminus \{p\})} \cap E = \{p_{j'_1}\}$, and put

$$(W_j)_{j'_1} := \overline{\pi^{-1}(W_j \setminus \{p\})},$$

(2) there exists a continuous function $\phi_{j'_1}$ on Δ_{δ} such that

$$(W_j)_{j'_1} = \left\{ (x, y) \in \Delta_{\delta} \times \mathbf{C} \mid y = \phi_{j'_1}(x) \text{ on } \Delta_{\delta} \right\}.$$

Since $\{W_j\}_{j\in\{1,2\}^N}$ is a family of curves which is locally invariant at p by F, for every W_j there exists a symbol sequence $i = (i_1, i_2, \ldots) \in \{1, 2\}^N$ and an open neighborhood N_i of p such that $F(W_j \setminus \{p\}) \cap N_i \subset W_i$. From Lemma 1 (1), there is a point $p_{i'_1} \in \{p_1, p_2\}$ such that $\overline{\pi^{-1}(W_i \setminus \{p\})} \cap E = \{p_{i'_1}\}$. Put

$$(W_i)_{i'_1} := \overline{\pi^{-1}(W_i \setminus \{p\})}$$
 and $F_0 := \pi^{-1} \circ \tilde{F}.$

Then, we have the following lemma.

Lemma 2.

(1) There exists an open neighborhood $(N_i)_{i'_1}$ of $p_{i'_1}$ such that

$$\lim_{x \to 0} F_0(x, \phi_{j_1'}(x)) = p_{i_1'} \text{ and } F_0\left((W_j)_{j_1'} \setminus \{p_{j_1'}\}\right) \cap (N_i)_{i_1'} \subset (W_i)_{i_1'}$$

(2) There exist positive constants δ_{j_1} and M_{j_1} such that

$$|\psi_j(x)-lpha_{j_1'}x|\leq M_{j_1} ~~ ext{for}~~x\in \Delta_{\delta_{j_1}}.$$

We can repeat this process inductively for every $n \in \mathbb{N}$ and prove Theorem 5.

References

- [1] J. Diller, Dynamics of birational maps of \mathbf{P}^2 , Indiana Univ. Math. J. 45 (1996), 721-772.
- [2] T. C. Dinh, R. Dujardin and N. Sibony, On the dynamics near infinity of some polynomial mapping in C², Math. Ann. 333 (2005), 703-739.

- [4] I. R. Shafarevic, Basic Algebraic Geometry Vols I and II, Springer-Verlag, Berlin, (1994).
- [5] T. Shinohara, A construction of invariant curves at a periodic indeterminate point, Suurikaiseki kenkyuusho Koukyuroku, 1494 (2006), 13–23.
- [6] T. Shinohara, Unstable curves at a periodic indeterminate point, Suurikaiseki kenkyuusho Koukyuroku, 1537 (2007).
- [7] S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, *Holomorphic Dynam*ics, Cambridge University Press, (2000).
- [8] Y. Yamagishi, Cantor bouquet of holomorphic stable manifolds for a periodic indeterminate point, Nonlinearity, 14 (2001), 113-120.
- [9] Y. Yamagishi, On the local convergence of Newton's method, Journal of the Mathematical Society of Japan, 55 (2003), 897–908.