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1 Introduction
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We consider the system of equations describing the motion of the viscous incompressible fluid which
occupies an unbounded domain without taking into account surface tension. For given initial fluid
domain 0 = Q(0) C R® with its boundary {Fo(z) = 0}, the initial velocity field uo(z) in 2, and
an outer force f = f(z,t) defined in R3 x [0, 0], we would like to know the domain Q(t), ¢t > 0
occupied by the fluid, with its free boundary Sg(t) = {F = F(z,t) = 0}, t > 0, the velocity field
u = u(z,t) = (ul(z,t),u*(z,t),u%(z,t)) and the pressure ¢ = g(z,t) satisfying the following system

%:V-T(u,q)+f, V-u=0 for (z,t) € Q(t) x (0, 00),

tfe=0 = uo(z) for z€Q,
Tn=0  for (z,t) € Sp(t) x (0,00),
DE _ 6 for (z,t) € Sr(t) x (0,00),

Dt
Fli=o = Fo(z) for z €.
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Dt ot

(E 8;T;;); with the stress tensor T = T'(u,q) = —gI+pD. The tensor D = D(u) is the deformation
=1

of the velocity with elements D;; = 8u’/8z; +8u? /8z; (1,5 = 1,2,3). Moreover, I is the unit matrix

of degree three, n = n(z,t) is the unit vector of the outward normal to Sr(t) at the point z.

Here, -1-)- = _8_ + u - V is the material derivative, V =V, = (52-1-, 52—;, B‘g;)’ and V.- T =divT =
3

In the case the domain € is bounded, hence, so is Q(t), local-in-time unique existence [7] and
global-in-time unique existence [8] were obtained in Solonnikov. Also, Y. Shibata-S.Shimizu [5]
proved global-in-time unique existence in more general setting of the spaces than [8] by the L? — L?
maximal regularity theorem for the linealized problem. In both (8] and [5] surface tension is not
taken into account. On the other hand, in the surface wave problems, that is, if the domain is a
semi-infinite domain between the moving upper surface and a fixed bottom, in the Holder space
setting Beale showed local-in-time existence [2] and global-in-time existence with surface tension
([3]), Also, global-in-time existence even the case without surface tension was proved by Sylvester
[6]. In the L2-space framework Tani-Tanaka [10] showed global-in-time unique existence, while in
the L?-space framework by Abels [1]. '

The aim of this paper is to extend the local-in-time existence result, a part of results in Solonnikov
[7], to the case that the domain is unbounded. For this aim we utilise the transformation from
z € (), the Euler coordinate, into the Lagrange coordinate, { € §, as

t
z=6+ / (€, 7) dr =: Xu(£,1), (1.1)
0
which shifts the above system into the following initial boundary value problem in the initial domain
£ and its boundary Sr(0) on u(§,t) := u(Xu(,?),t) and ¢(§,?) := ¢(Xu({,1),2)-
%':- —vV3u+ Vg = f(Xul(é,t),t), Vu-u=0  for (§1t) € 2 x (0,00), (1.2)
“(E, 0) = uO(f) for { € Q, Tu(u" Q)AnO'SF(O) =0. (1'3)
Here,

2 ot B’
Vau (:: At—IV) =AV =V A", T.,(u, q) = ((Tu)ij) = 2 (Ajk@ + Aﬂ;’gg—k) s
k=1

V = Vg, and A = (a;;);; is the Jacobian matrix of the transform (1.1), as; = &;; + f: %'E‘_: dr. Also,
A is the matrix whose (i, j)-components is the (i, j)-cofactor A;; of the matrix A, and no = no(§) is
the unit outer normal vector to Sr(0).

The proof of local-in-time existence, in [7], relies on the usual successive approximation, that is,

solving a system, corresponding to (1.2)-(1.3), for (u(m+1),¢(m+1)) from a given (u(™,q(™) for
m € N, by defining the transformation

z=§{+ /(,t u™(€,7) dr(=: Xym (1) =1 Xm(£:2). (1.4)

The reason why boundedness of the domain was assumed in [7], is the way of estimating the
transformed outer force term f(X,,(€,t),t). Since the space variable X,,(¢,t) is a different variable
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from the variable £, in which iteration scheme is taken place by estimating integral norm. So, in
[7], the term is estimated by pulling out the supremum norm of f in the whole space R3 from the
integral in £ as

1/p
(/ (X6, 0, )P de) <M sup [FEOI < IO sp  [FED,  (19)
Q £ER® T

§€R?, 0<t<

which, of course, causes appearance of ||, the volume of domain €2, imposing boundedness of the
domain.

On the other hand, the main idea of proof of current paper is based on transforming back to the
Euler coordinate z € €Q(t) where the original equation is described, from the Lagrange coordinate
¢ € 0 where iteration is taken place. Then we have the following alternative estimate to (1.5).

p /e . 1 i/p
( [n £ (Xm(& 1), 8)] ds) ( /m F @ 0P samEn d")
1/p ‘ 1/p
( /ﬂ o F@or dz)
= 8sup

1/p 1/p
,2)IF d
ecn | det A(m)(€,1) ( /n © |f(=z,1)] a:)

< (R If (2 )|z me),
where, b3, (t) is the positive increasing function on small ¢ > 0 defined later (in (3.13)). Here, by
Alm) = (ag.")) = (65 + fy Q!g‘{;l dr) we denote the Jacobian matrix of the transform (1.4), and by
W) (m 2 0), the usual Sobolev spaces in space variables. Moreover, we denote by W},'"‘(QT),
the anisotropic spaces in space-time domain Qr = Q x [0,T] with the order I € N in space and the
order m € N in time. All the spaces will be defined formally later.

Now the theorem reads as.
Theorem 1.1. Assume p > 6 and that Q(C R3) be a domain (which can be unbounded). Let
Sr(0) € Wy —YP  and an outer force f(z,t) defined in R® x[0, Ty] be satisfying the Lipschitz condition
with respect to © € R®. Then, for any vo € Wy ~2/P(Q) satisfying the compatibility condition

1

S R |3t ATE B

z€0(t)

A

div Y = 0 inQ and {D(vo)no - no('no . D(vo)nu)}kes’.(o) = 0,

there ezist Ty =T, (H”OHW;;‘—*/»(Q)a3“P0_<_t5'.z‘c A L,(Rs)(t)) (£ Tp) and a unique time-local solution
u € W2(Qr), ¢€WH°(Qmn) of (1.2) - (1.3).
This paper is an excerpt from the forthcoming paper [4].

2 Preliminaries

2.1 Function spaces

In this subsection we define function spaces. First, for a function u(z) in space variable z € Q we
denote the LP (1 < p < 00) and L*™ norms as

/p
lullpa = el = ([ fu@lP dz)  and o o= [ullmqe) = sup uto),



respectively. Also, as usual, we define for an integer { > 0

i/p
llullwya) = (z HDaqu,n) )

le|<i

and for a non integer I =[] + A > 0 (A € (0, 1)),

1/p
o - (-] P

lullwi o) = (llullfw;(m +

Next, for a function u(z,t) in space-time variable (z,t) € Qr := Q x (0,T) we denote by W,?" (@r)
the Banach space with the norm

) 1/p
”u”W;J(Q,.) = (“ pQT + Z ”‘Dau”p Q,.) ’
|a]<2
where
T - 1/}’
llullp,@r = llullzs o, 1iLe(q)) = (/0 luCs T d"') .

The spaces of W}%(Qr) and W2:%(Qr) are similarly defined.
For a function u(z,t) in space-time variable (z,t) € Gr := T x (0,T), where I' = 81, we also
introduce the anisotropic spaces W, ”/ 3(Gr) for | € (0,1) with the norm

1/p
T (A e T I

where

1/»
T [ [ et~ u, o
Iellwgoay) = (nuu:,a,+ [ e[ [HeR=g I s, as,)

3 4 T 4 t |u.(a:,t) - u(z,t - T)lp d 1/p
<<u >>Gr.l/2'f L Sz o t o |7-|1+p(l/2) T )

2.2 Linear problem

In order to solve the equations (1.2) - (1.3) in the Lagrange coordinate, we consider the linear
problem with inhomogeneous datum in a fixed domain Q of the form;

%—:— -vVv4Vg=f, V.v=p for (&t) € Q x (0,00), (2.1)

v(§,0)=w(§) for{€Q,  T(v,p)nlse) =d. (2.2)

Then we have

33
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Proposition 2.1. [8, Theorem 2] Assume p >3 and Sp(0) € W:"” P

f € LP(QT)’ pPE W;’O(QT)i pP= v 'R(.’B,t), R’ R € H(QT):
vp € W:-—Z/p(g)’ de W,}—l/p.(l/z)(l—llp) (Gr).

Moreover, let d|s=0 = 0, p(z,0) = 0 and also suppose that compatibility condition

, and

divye=0 inQ, {D(vo)no — no(no - D(vo)no)}eesro) =0
Then, the problem
%tv——uvzv+Vq=g, V.-v=p  for(£t) € Q x (0,00),
v(£,0)=v() for£é€Q, T(v,p)nlsy() =4
has a unigue solution v € W2'(Qr), g € W}°(Qr), and g € Wi—Y/P DA/ (G which satisfy

”””wgvl(qr) + gg "””w,?"/’(n) + ||‘1||w;‘°(ar) + IIQIIw;—x/r.u/a)u-xm(a,,)

6R
< e(T) {lifllp.@r + ||P“W}-°(Q,-) + ”"a‘;”mQr + ””0”w,=-’/r(g) + |Mlw,‘-‘/"ﬂ/’)ﬂ-‘/v)(a,.)}’
where ¢(T) is a nondecreasing function of T > 0. Here, Gz := Sr(0) x (0,T), Qr :=Q x (0,T).

2.3 Trace and interpolation inequalities

Proposition 2.2. (trace) Assume 1 < p < co. Let u € W2'(Qr). Then, u(-, t) € Wz—z/ P(Q) for
all0 <t < T, up,la, € Wy /PR (Gry (j=1,2, 3), and
2 llute: lyz-ars @y < x il
1D2ully2-1mama-1m gy < czllullwg.l(gr)~
Proposition 2.3. (interpolation I) Assume 1 < p < co. Then,
IDullpa < esllulli3qllullya, (2.3)
fulas < edlullB75E ullza . (24)
Proposition 2.4. (interpolation II) Let p > 3. Then,
|Dula < cslfullbs # lullio®. (2.5)
Proof. By the Sobolev imbedding theorem
|Du|q < C||Du|| a forp>3
w?

and the interpolation inequality
fllwae < CllflIwllflle  for0<6<1, 1<p<oo
we have for p > 3 that

IDula < OlIDull 3 < Clul 103 < Cllulldys® uiido®
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3 Estimate of the Jacobian matrix of the transformation to
the Lagrange coordinate

In this section we give estimates for determinant and cofactor of the transformations (1.1) and (1.4).

Firstly, we list estimates for the determinant and the (¢, j)-cofactor Ag-“) of the Jacobian matrix
A = (aij)ij = (85 + fot 'g-g;" dr);; of the transformation (1.1). .

Lemma 3.1. Let p > 3 and u € W2 (Qr). Then there hold

T — (A%)7H = (&5 — Asj)ssl

<C /o | Du(e,7)| dr (1 + /0 "\ Du,Dla d‘r) < Cb(t), (3.1)
[(A*)~Y = |4s5] < |Asjla < C(1+b(2)), (3.2)
11— (A*)lpe = ||6i5 — Asjllpa < CV'(2), (3.3)

|D(A*)™Y| = |DA;| ‘
t ¢
<c /o ID%u(e, 7)| dr (1+ [ 1pute e dr),
ID(A*) " Ip2 = IDAs;llna < Cb(2), (3.4)

where
50 = [ 1D%uC, Dl ér (14 [ 1Dut,la ar).
¥(t) = /0 D8Pl dr (1+ /o "\ Du, e d‘r).

Proof. All the inequalities are direct consequences from calculation of the cofactor matrices of

A = (ai) = (8i; + bis) with by = [y $£(¢,7) dr. For (3.1) and (3.2) we used the embedding
luln < ||Dul|p,a for p > 3. For (3.3) and (3.4) we note the estimate

t t
I /o £(,7) drllpg < /0 £ )llpa dr (3.5)
for all f(-,t) € LP(0). ' O

In the next lemma we give estimates for the determinant and the (i, j)-cofactor AE;") of the Jacobian
matrix A™ = (a{fV)y; = (8 + J; 245> dr)i; of the transformation (1.4). We also define 4™
and f_if;") by

m m 1 m
A™ (= (A.(j Mij) := (m-,,,—,A§,- ).

Lemma 38.2. Assume that p > 3 and u(™ € W2(Qr) satisfy

87 < o /||ut™ w2 @y (3.6)



36

where o is & positive root of 1 — 3¢ — 622 — 623 = 0. Then there hold

s A(m)l <B(t), |detA™|<16, |D detA(™)]< 16, (3.7)

L= (A1 = |65 — AT)ii] < 165 — 8i)is] + (&5 — AG )ul
< (1+18,(8)) + CB, (4) / IDu™ (¢, 7)| dr (1+ / D™ (,7)la dr)
0

< 1+ 80, (£) + CWL(2) bm(t) (=: B, (1)), (3.8)

(A1) = 1A < |AP |a < OB, (8)(1 + bm(8)) (=2 B3,(8)), (3.9)
1 m m

ID(A™*) | = IDA| < 16C o (DA (€8] + 1457 (€. 9)

< OS2 (DA (€, + 1A (6, 1)), (3.10)
IDA s < bm(2), (3.11)
1Al < C(1 + bm (1)), (3.12)

where §;; := m&,-,- and

t t
bm®) = [ 105Dl dr (14 [ 1Dl ar),
0 0
and b2, (t) is the positive increasing function on t > 0 under the assumption (3.6), defined by

/(@) =1- 3(t||"(m)||w3"(q,-)) - 6("”'“('"‘)||w,3-‘(Q.,.‘))2 - G(t”"(m)l|w3-1(a,.))3 (>0). (313)

Proof. Most of the estimates can be obtained similarly to Lemma 3.1, however, we note that the
assumption (3.6) yields that

(vn) Su (m) t .ot
| f o drla < / (Ppi—la dr < ([ ans ([ 1Dutlq aryts
0 0
<&/ ”Du(m)”W}”(Q,) < tl/pI”“(m)HW:J(QT)(S 7' Z,),

which gives 1
—_— 0
|detA("*) | S bm(t)
For (3.10) we calculate

1
D450 < A B

and adapted (3.7). O

(DA (€, 1)I|det A™ (€, )] + |45 (€, )] | Ddet A™ (&, 1))]) (3.14)

4 Key Lemma - Estimate for outer force

In this section we give the key lemma and its proof again, though they are already described in
Introduction.
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Lemma 4.1. Let f = (fl(x,t), f2(x,t), f3(z,t)) be any vector field defined in R® x [0, 00]. Assume
that t is small so that (8.6) holds. Then its representation in the Lagrange coordinate f(§,t) :=
F(Xm(&,1),t) can be estimated as follows.

i/p
( [1rctatenop ds) < ()11 @ )Ly, @1)

where, b2, () is defined in (3.18).
Proof. We estimate the norm in the Lagrange coordinate by passing back into the Euler coordinate

1
L irxntetnop de = [ 1500 gy 4

1 P
AT Lo 0P ¢

IA

sup
2€0(L)
1
z,t)|P dz
22 || o o)

B0, (172 ey
bgn O f (=, t)“ip(gs) .

IA IA

5 Outline of Proof

In this section we give outline of proof of the theorem, the method of iteration scheme, especially
boundedness. Full proof will be given in [4].

Let 4 := 0 and ¢/ := 0, and let the pair (u(m+1),g(m+1)) be a solution of the following linear
problem, regarding the pair (u(™,q(™) is given.

6“(;;“) — V(M) 4 ygim+1)

= f(Xm(£,1),t) + (V2 = V2 )ul™ 4+ (V = Vpn)g™ (= f™(E,8)),  (5.1)
Vol ) = (V= V) - ul™(=: p™(€,2))  for (£,8) € 2 x (0,00), (5.2)
u(mt(£,0) = vo(¢) for £ € O, (5.3)
T(u™+D), g™+ D)njs o) = T(u™, ™) (1 - A™)no|se(0)

HT (™, ¢™) = T (ul™, g™)) Al ng| s, 0) (=: d™ (£, 1)). (5.4)

Here, the variable ¢ is determined by the transform

z=§+ /: u(™ &, T) d'r(=: Xutm) (€,t) =: Xem (€, t). (5'5)

Also, we denote its Jacobian matrix by A(™) = (ag.”)). Moreover, by AS;-") we denote the (i, §)-

cofactor of the matrix A(™), and define

m m 1 m m)%k\— m m)%
A™ (= (A7) = (m(m—)As,. Ny V(= Vem) := (A 1V = 4™ = V. AM™* and
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Hu(™
m u m a
(Tr)is = T (™, g™))y5 = —¢™4 +u2(45 )5+ A il )
k-—
By virtue of Propositon 2.1

1Dz @r) + 22 llu‘"‘“)Hw’-’/'(m + ||q(m+1) llwgoiar) + 6™ Dllya-srmamu-ism gy

+||”°”w,’,'-=/'(n) + |ldtm )||w;—:/p.amu-m)(ar)}, (5.6)

Then we estimate each term of RHS of the inequality. The most typical difference between our
unbounded domain case and bounded domain case [8] appears in the estimate for f(Xm(§,t),¢) in
f(™)(¢,t), whose || - ||p,or norm is estimated by virtue of Lemma 4.1 by

(% (T)T P sup || (2, t)l| > Re)-
t<T

Although, in this note we do not mention all the estimates, mainly thanks to Lemma 3.2 we estimate
other terms.

Y = Vam) 8™ lpiar = | L= (A™*) 72 Vg™ |Ip0r < B (DIIVE™|lp.0r- (5.7
16 lpi@r = IV = Vim) - 4™ |lp.0r
= || 1= (A™")~ V- ul™||, 0r < b (MIIDU™|lp.qr. (5.8)
Moreover,
1(V? = V2 )u™)| | 0 < (D)jul™) lw29(@r) (5.9)
Vo™ |lp.@r = IV{(V = Vi) - u(™}lp,qr < c?n(T)lIu""’llw:-o(Q,), (5.10)
where

e (T) = b (TY(1 + 07, (7)) + C (O (T))? b5(T) (1 + 26 (T)),
e (T) 2= bl (T) + C(60(T))* (1 + 2bm(T))-

Hence, the estimates (4.1), (5.9) and (5.7) lead to
1™ llp@r < (b (TNT? sup|If(@,8)lli@e) |
+1ek, (D)6 |20y + COR (Db (T)IVe™ |5, Qz- (5.11)

Although we do not give detail here, we can also estimate

8R

1/p
122 ar < O D™ 0z + (D) ( [ |u<'">|'°uvu"">||'adt)

T 1/p
+em (T) ( / uDu‘""nmdt) ( [ gD dt)
0
T T T 1/»
+eh(T) ( P dt) ( | 10utie dt) ( [ WpiDu dt) (5.12)
0 0 0
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and
”d(m)||W;"/’-“/’>““/’)(G,) < (lld(""lliv;&(o,ﬁ << dim) >>gr)1/r
< {S,(T) + Cby, (T)(1 + b, (T)B2,(T))}
X (116 Iz gz + 112 llwgo@m+ << 2™ >>ar ). (5.13)
Here,

e (t) = C(n(T) + b (T) + e (T) + b3 (T (T)),
Cm (t) = COL(TI0 (T) + o (T) + b (T)epn (1)),

O (8) = B (T)b3 (T) + V3, (T)C (b0 (T))* (1 + 2bm(T)),
Cm (t) 1= C(bm (£))* (1 + bm(2))-

Also we denote

— t ¢ :
B (t) = ( / IDu™ dr)t/P(1 + 2 /0 IDu™|q dr), (5.14)
0
t 2
Bm(2) = ( / | Dt d-r)l/’{l-i- / \Du™|q dr (1+ /o * | Du™|g d'r)} . (5.15)
1] 0
(T = g5 0P (@5 D) + (TN} (5.16

Then we conclude that

||u(m+1)||W’?,1 @nt Egg | lu("'“)”w:—’ 1y + ”q(m+1) Hw,}'° @n)* ||q("'+1)||w;-""“”’“‘"”(ar)

< ¢o(T) [ Ilvollya-2rp g
+C{c (T) + b (T) (1 + B, (T)2,(T))}
% (116 |23y + 1™ M0y + << 4™ >>a5 )
O ENT? sup || £(a: 1)l ooy

T 1/p
+cm (T) ( /o lu™ 5| Dut™|P dt)

T T T 1/»
+c(T) ( /o [1Du™ |50 dt) (1+ /o |Du™q dt) ( /0 [ut™ 5| Dul™ B dt) ]- (517)

For boundedness we define
m = ||“("')||w:-*(ar) + ”q(m)“w:-"(q,.)*‘ << g™ >>Gr - (5.18)

Noting that
T ’ T /
[ |Du™ (., 7)lq d7 < CroT**( / ID?u™ (-, T)|[E o dr)!/P < C1oTV/¥ Z,n(5.19)
0 0

T T ,
ad [ DM nle dar STV ([ DD ) ST 2 (520)
0 0
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for (1/p) + (1/p') = 1 we have

b (T) < TV? 2, (1 + C1oTY? 2,,) =: B(T, Z,), (5.21)
R T T T 2
Bm(T) < Cno( [ ID*u™[7 dr)ile {1 + [ 1Dumig ar (1 + [ 1Du™lg df) }
0 0 0
/ ) 2
< Ci0Zm {1 +C1oTV? 2, (1 + CyoT/? Zm)} = C10Zm(1 + C1oB(T, Zm))?,

— T T
b () < Cuol [ D% dr)i/e+2 [ IDu™lq dr)
0 [1]
< C10Zm(1 + 2C1oTY? Z,) = 2C10T~% B(T, Z,,).

Moreover, recalling Lemma, 3.2, if we take T' > 0 small so that rather TY/?' < kzo/ ““(m)”wf'l(qr)
than (3.6), we have

8%, (t) < 1/{1 - 3(z0/2) — 6(20/2) — 6(0/2)*} =: C11(20),
and
bL(T) €1+ C1 +CCnB(T, 2,,) < C12(1 + B(T, Z,,)).
Similarly, it’s easy to see

b2,(T) < Cis(1 + B(T, Zm)),
c?n(T) < Ci(1+ B(T,Z,,)),
e (T) < Cis(1 + B(T, Z,))?,
ch(T) £ Cie(1 + B(T, Z)),
¢, (T) £ Cir(1 + B(T, Z,))?,
¢ (T) < Cis(1+ B(T, Zm))?,
&, (T) € Cro(1+ B(T, Zm))?,
cm (T) < Cao(1 + B(T, Zpm)).

The above estimates immediately give us

¢n(T) < Cis(1+ B(T, Zm))* + Cis(1 + B(T, Zm))
+C1a(1 + B(T, Zm)) + Cu1B(T', Zpn) + Cro(1 + B(T, Zn))?
021(1 + B(T’ Zm))z’

<
< Caa(p)TY ) B(T, Zmm) + Cas(p)TY @) 2, (1 + C1oB(T, Zm))>.

b (T)
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By Proposition 2.3 and the Hélder inequality we have

IA

IA

IA

CIA

T i/p
( [ weioug dt)

1/p
T
0304( /0 HU(m)”:t/';(n)”u("l)”z}'s/?”u(m)“P/z(n)”u(m)”p/z )

T 1/p
s c4 ( /0 [l as NSl )

T +& / p _ PO RV
cs q{( /o [ [ dt) _ ( /0 uu“'"llffé hh dt) }

T A+ .
C3 C4 (/ Hu(m)”{‘,g(m dt) (sup”u(m)“p‘n)g_‘a; TP(*—%)

s callut™E ,O(Q )(supuu(m)”,,n)% 8 pi(h-4)

8-
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Here, we used the Holder inequality with the pair of indices (2Bs 5 p—s) for p > 3 in the second
inequality. For I we estimate
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Note that 5%7 - % = -%'—;—9 > 0 for p > 3. Hence,
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‘Similarly, it follows from (2.4) and (2.5) that
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Here, we used the Holder inequality with the pair of indices (22 e -;_35) for p > 6 in the second
inequality. We estimate

III

= OB, Tl

+6 —6 =
{" (eI 0cgay) + 200 TP u”"}

IA

< C (ellu("‘)”w:-°(or)+e-’_”z’ TVl )=
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and
V= O, TR il a5
T 3(p—2
< Cllu‘""llﬁo(oﬂ 75 {( / llu{™I[2 o dt)*/?( fo ¥ dt)‘/"'}
S O™ ., T I8,

Note that 5%3 > 0 for p > 6. Hence,

1
( /0 T |u™) 8| Dum2 dt) ” <C (e Zp+em 78 Tl/”llvollzi?g) +023 7%, (5.22)
‘We also note that
/o t | Dut™||p.q dr < TP ( /0 ' |Du™|[E o dr)H/P < TVP Z,,
and hence, by (5.19),
( /o t [[Du™|E o dr)(1 + /0 t [Du™)|q dr) < TVP Z,,(1 + C1oT*¥ 2,,.) < B(T, Zpm).
Then, it is not difficult to derive from (5.17) that
Zm1 SO [ K + { (1 +TY@P) Z,.(1 + B(T, Z,,))? + T -2¥)B(T, z.,.)) 1+ B(T, Zm))’}

+ (1+ B Za){ eZm(1+ BT, Z)) + 76~ 2 lluol 5 + e~ ool L5 BT, Z))

+Z2(T% ™% + T'% B(T, Zm))} | (5.23)
=: H(T, Z,,)

holds for any € > 0, where

K 1= |[ollyg-orn gy + (B (T)TY? s0p (2, 1) 1)

The right hand side of (5.23) can be written in ascending order of powers of Z,, as
H(T,2,) = ho + K12 + K2 B(T, Z1n) + Ho(T, Zm, B(T, Z,n)).
Here,
ho(= ho(T)) = 1+ T*Pe= 7% ||uo||S,
K1(= K]_(T)) =3 Tl/(2p') +€,

Ky (= Ka(T)) := T%) 4 2.4 T/2(™3%% |lug |50 + €™ o), and
Hy(T, Z,B(T, Z)) is a positive increasing function of both T' and Z.

Also, we denote o := ﬂ:_’—l)- B = -‘Eﬂ which are positive for p > 6.
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Since Ho(T, Z, B(T, Z)) does not have the first order term in Z (It is a polynomial in T with lowest
degree 1/p’ and the highest 17/2, and in Z with lowest degree 2 and the highest 9), we have the
representation of H by splitting B(T, Z,) in (5.21) into the 2 terms T%/?' Z,, and CyoT?/¥ Z2, as

H(T,Zm) = ho + b1 Zpn + T/ ) 2, H\ (T, Z.,). (5.24)
Here,

hy(= hy(T)) = Ky + K, TV?
Hy(T, Z) = K;CyoT¥ %) Z 4 T-V/(?¢) Z2-1Hy(T, Z, B(T, 2)).

Take T small enough so that h; < 1, say,
h(T) <1/2. (5.25)

Now we seek solution Z of the equation Z = H(T, Z). It is easy to see that the equation Z = H(T, Z)
has a positive root if the inequality Z > H(T, Z) holds for Z = hof with some § > 1/(1 — h;). In
fact, the inequality hof > H (T, hof), which is equivalent to

(1= h1)8 — 1> TV )G H, (T, hob) (5.26)

can be seen to have a positive root § by comparing the graphs of both sides of (5.26) with respect
to 6.
First, the condition (5.25) on T is fulfilled if

2T/ ) 4 T/7) + T (455 |juo| |30 + 4775 |luol[2,) < 1/4. (5.27)
Here, we have taken € = 1/4. Next, for (5.26) it is sufficient for us to impose
T*/3*)3H, (T, 8he) < 1/2 (5.28)

thanks to the assumption (5.25). Here, we took 6§ = 3. Under the conditions (5.27) and (5.28) on T,
the equation Z = H(T, Z) on Z has one or two positive roots. We denote by 2o the smaller one. By
the form of H(T, Z) ((5.24)) and the choice § = 3, obviously, hy < 29 < 3ho. Now, suppose Z,,, < zo,
then Z,,+1 < H{T,Z,,) < H(T, 2y) = zo. Thus, we have the boundedness of Z,, as Z,, < z for all
m.
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