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1 Introduction

The aim of this paper is to review recent progress on semilinear parabolic equations
that are obtained by joint work with Eiji Yanagida (Tohoku University). In this paper,
we investigate the behavior of solutions of the Cauchy problem

—_ p—1 N
{_ut Au + |u|P1u, zeRN, t>0, (11)

u(z, 0) = uo(z), z € RV,

'where u = u(z,t), A is the Laplace operator with respect to z, p > 1 and ug # 0
is a given continuous function on R" that decays to zero as [z| — oo. The problem
(1.1) has been studied in many papers, since Fujita studied the blbw-up problem
[6]. Ainong them, the stability problem of stationary solutions is one of the most
important problems and we study the problem (1.1) along this line.

It is known that there exist critical exponents p that govern the structure of
solutions. The exponent

2 for N>2,
bs=
00 for N <2,
is well known as the Sobolev exponent that is critical for the existence of positive

stationary solution of (1.1). Namely, there exists a classical positive radial solution ¢
of

Ap+¢?=0, zeRV,
if and only if p > ps [1, 2, 8]. We denote the solution by ¢ = @a(r),r = |z],a > 0,
where ¢4(0) = a. Then ,(r) satisfies the initial value problem

{ Pa,rr + N:1¢a,r + (Pﬁ =0,
va(0) =@, @ar(0)=0.
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For each a > 0, the solution ¢, is strictly decreasing in |z| and satisfies ¢, —
0 as |z] — oo. We extend the solution by setting po = —¢p_o for @ < 0 and
o = 0. Then the set {pq; @ € R} forms a one-parameter family of radial stationary
solutions.

The exponent

N—2)2—4N+8 -
9. — ( (13,_2)(,\,_;’0”) I for N> 10,
c =
00 for N <10,

is another important exponent which appeared first in [15]. It is known that for
ps < p < P, any pair of positive stationary solutions intersects each other. For
P > D., Wang [20] showed that the faxﬁily of stationary solutions forms a simply
ordered set, that is, (¢, is strictly increasing in « for each . We call it the ordering
property of {¢,}. Moreover, ¢, satisfies

lim go(|2]) =0, Lim pa(z]) = peol|z]),
for each z, where p(|z|) is a singular stationary solution given by
¢oo(lz]) = L|z|™, zeRY\{0},
with .
m = p'Tl, L={m(N-2- m)}l/(?’l).
It was also shown in [12] that each positiire stationary solution has the expansion

L|z|™™ — aq|z|~™* + h.o.t. P > Pe,
pa(lz]) =
L|z|™™ — aq|z| ™™ M log |z| + h.o.t. D= pe,
as |z| — oo, where ), is a positive constant given by

N-2-2m—-+/(N—-2—-2m)2-8(N-2-
A1=A1(-N.’p) = ‘ il ( 2 ) ( m)7

and aq = a(a) is a positive number that is monotone decreasing in . Note that )
is a smaller root of the quadratic equation

h(A) =22 - (N-2—-2m)A+2(N-2—-m)=0.



We define by

Do = Ma(N,p) = N-2-2m+ \/(N—22—- 2m)? — 8(N — 2 —m)’
a la.rgef root of the quadratic equation. :

Concerning the stability problem, Gui, Ni and Wang [12, 13] showed that any
regular positive radial stationary solution is unstable in any reasonable sense if pg <
P < p. and “weakly asymptotically stable” in a weighted L* norm if p > p.. For
P > pe, Polékik and Yanagida [18, 19] improved the above results and proved that the
solutions approach a set of stationary solutions for a wide class of the initial data. As
a by-product, they also showed the existence of global unbounded solutions. We note
that the study of global unbounded solutions of (1.1) [3, 5] is closely related to our
problem on bounded solutions mentioned later.

Recently, Fila, Winkler and Yanagida [4] carried out the further investigation
about the convergence of solutions of (1.1). They studied the following more general
problem: Let u and 4% denote solutions of (1.1) with initial data u, 4 respectively.
They considered how fast these two solutions approach each other as ¢t — oco. In
particular, in the case of iy = o(|z|), then the rate of approach corresponds to the
convergence rate to the stationary solution. More prec1se1y, they showed that if p > p,
,m+)\1 <l < m+ \g and uy, 1o satisfy

(H1) | luol, lGio] < wallzl), z€RM
and
(H2) . luo — o] < c1(1 +|z])~!, z€RY

with some constants a > 0 and ¢; > 0, then ||u(-,t) — 4(-,t)||L~ decays faster in time
than the rate t—(-m-2)/2,

The above result is no longer valid for large ! and in fact they found a universal
lower bound for the rate of approak:h which applies to any initial data. More precisely,
they showed that if p > p. and 0 < 1io(z) < uo(2) < Yoo(|z() then |ju(-,) — &(:,?)]|
decays more slowly in time than the rate t~(V="-21)/2, We note that there exists a
gap of the convergence rate between the rate t~(*2~21)/2 which is obtained for the case
l = m + )\g and a universal lower bound of the rate t-~(N-m-21)/2,
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On the other hand, for the grow-up problem which can be regarded as a stability
problem of singular stationary solution, a sharp universal upper bound of the grow-
up rate was found by Mizoguchi [17], and optimal lower bound of the grow-up rate
was found by Fila, Winkler and Yanagida [3]. The results on the grow-up problem
strongly suggest that the above result of the convergence rate is not optimal.

The main purpose of this study is to obtain a sharp bound of the convergence rate
in the case of I > m + A, which leads to its optimal convergence rate. In fact, we
improve the results in [4] as follows.

Theorem 1.1 ([14]) Let p > p.. Suppose that ug and iy satisfy (H1) and (H2).
(i) If m+ A <l<m+ A2+ 2, then there exists constant C > 0 such that
(-1 8) = &, Bllim < C(1 4 £)"G-mmba)a
forallt > 0.

() Ifl=>m+ A + 2, then for any small € > 0 there exists constant C > 0 such
that

(-, ) = G(-, t)|| o < C(1 + t)~Wa—2a+2)/2+e

for allt > 0.

Our next theorem shows that if |ug — 1| decays faster in space, then we have a
slightly better estimate than in Theorem 1.1(ii).

Theorem 1.2 ([14]) Let p > p,. Suppose that ug and iy satisfy (H1) and
lup — fio| < ¢y exp(—v|z|?), z€RN
witﬁ some constants ¢; > 0 and v > 0. Then there exists constant C > 0 such that
(-1 8) — G, )| < C(1 4+ £)~Ca=2r¥2/2
forallt > 0.

Remark 1.3 Letp > p. and m+XA; <l < N—2. In Theorem1.2 of [4], it was shown
that if uo and iy satisfy wa(|z]) < flo < uo < Pool|z]) and ug — Gy = c2(1 + |z|)~*
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with some constants o > 0 and c; > 0, then ||u(-,t) —@(-,t)||~ decays more slowly in
time than the rate t~(~™=2)/2 Since we can show that m+ Ay +2 < N — 2 by direct
computation, we find that Theorem 1.1 yields a sharp estimate of the convergence rate
in the case of lig = pu(|z]). '

The next result shows that there exists a universal lower bound for the rate of
approach which applies to any two initial data. This lower bound implies that the
convergence rate of Theorem 1.1(i) can not be extended to the range | > m + Ay + 2.

Theorem 1.4 ([14]) Let p > p.. ‘Suppose that uo and iy satisfy
va(lz]) < Gio(z) < uo(2) < Puo(lzl), = €RY\{0}
with some o > 0. Then for any € > 0 there exists constant C > 0 sucﬁ that
1) = 8 llam 2 C(1+ ) Camdv/2
for allt > 0.

On the other hand, we investigate the behavior of solutions of the Cauchy problem
with singular nonlinear absorption term

— Yt . N
{ut Au—u™9, zeRY, t>0, (1.2)

u(z,0) = uo(z), zeRY,

where u = u(z,t), ¢ > 0 and uy > 0 is a given continuous function on RV _that grows
to infinity as |z| — oo. The problem similar to (1.2) which includes singular nonlinear
term has been studied in many papers, since Kawarada studied the quenching problem
[6].

We also study the problem (1.2) concerning the stability of stationary solutions
and use the same notation as in the problem (1.1) here. Namely, we denote the
positive radial stationary solution by ¢ = (7)), r = |z|, @ > 0, where p,(0) = a. We
~ see that ¢, (r) satisfies the initial value problem

{ Pa,rr + #Soa,r —pal=0,
‘Pa(o) =0, @ar(0)=0.
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Then we can find similar structure for (1.2) as that in (1.1). For example, the solution
(a is strictly increasing in |z| for each o > 0 and satisfies p, — 00 as |z| — oo.
The exponent

e WB AT for 3< N <10,
. =
oo for N > 10,

is an important exponent for the problem (1.2) which appeared already in the problem
(1.1). It is known that for ¢ > g., any pair of positive stationary solutions intersects
each other. For 0 < g < ¢., Guo and Wei [9] showed that the family of stationary
solutions forms a simply ordered set, that is, ¢, is strictly increasing in o for each z.
We also call it the ordering property of {¢.}. Moreover, ¢, satisfies

 Jim pallal) = 0, lim gala)) = pollal),
for each z, where ¢o(|z]) is a singular stationary solution given by
| oo(lzl) = Llal™, = € RY\ {0},
with
Ly = {mg(N — 2 +my)}¥/ @),

It was also shown in [9] that each positive stationary solution has the expansion

Iz Lg|z|™ + by |z|™ =2 + h.o.t. 0<q<ge
PallT]) =
Lg|z|™ + bs|z|™ > log || + h.o.t. ¢ =g,

88 |z| — oo, where A3 is a positive constant given by

N —2+2mg — /(N =2+ 2m,)? — 8(N — 2+ my)
2 3

)13 = Ag(N, q) =

and b, = b(a) is & positive constant that is monotone increasing in o.. Note that Ag
is a smaller root of the quadratic equation

ho(A) = A% = (N — 2+ 2m)A + 2(N — 2+ m,) =0.

We denote by

N —2+2mg + /(N — 2+ 2mg)? — 8(N = 2+ my)

)\4 = _A4(N: Q) = 2
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a larger root of the quadratic equation.

In the previous papers, Guo and Wei [9, 10, 11] studied the problem (1.2). Con-
cerning the stability problem, they showed that any regular positive radial stationary
solution is unstable in any reasonable sense if ¢ > ¢, and “weakly asymptotically sta-
ble” in a weighted L{° norm if 0 < ¢ < ¢ in [10]. Building on the results in [9, 10], for
0 < g < g, they improved the above results that showed global attractive properties
of the stationary solutions and the solutions approach a set of stationary solutions
for & wide class of the initial data in [11]. As a by-product, they also showed the
existence of global quenching solutions. l |

Our concern in this stage is to find similarity between the problem (1.1) and (1.2)
as Theorem 1.1 and so on (cf.[4, 14]). Namely, we want to obtain a sharp bound of
the convergence rate for (1.2) which leads to its optimal convergence rate. In fact, we

have some similar results again. For example, we obtain Theorem 1.5 corresponding
to Theorem 1.1 as follows.

Theorem 1.5 Let 0 < q < g.. Let ug, iip be two initial data and u and i denote the
corresponding solutions of (1.2). Suppose that uy and @io satisfy

(H3)  Ug, Up 2 pa(r) for >0
and
(H4) luo — o] S cg(1 + 1) for >0

with some a > 0 and ¢; > 0.
(1) If \a—m <l < Ay — m+2, then there erists constant C, > 0 such that
(s t) = G, 8|z < Co(1 + ¢)~Hm=2)/2
for allt > 0'.

(i) Ifi > A\ —m + 2, then for any small £ > 0 there exists constant Cy > 0 such
. that

lu(- ) = @(-, t)|| g < Cy(1 4 t)~Pa—2s+2)/2 e
forallt > 0.
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In this article, we mainly focus our attention on the problem (1.1) in the followmg,
and omit the details for the problem (1 2) here.

Proofs of these theorems are obtained by a comparison technique that is based
on matched asymptotics expansion. This expansion consists of two parts which are
called the inner expansion and the outer expansion. The inner expansion is used
to approximate the behavior of solutions near the origin and the outer expansion is
used to approximate the behavior of solutions near the spatial infinity. The inner
expansjon is the same as in [4] and the key of our proof is a precise description of
the outer expansion. In fact, we will find a solution which behaves in a self-similar
way near the spatial infinity. Then we construct suitable super and subsolutions by
matching these inner and outer solutions. .

This paper is organized as follows. In section 2, we recall preliminary results in
[3] and [4]. The formal analysis in this section will give the idea of constructing super
and subsolutions, and a matching condition of these two expansions leads to the exact
convergence rate. In section 3, we derive an upper bound of the cbnvergence rate. In
section 4, we derive a universal lower bound of the convergence rate.

2 Preliminary results on the linearized equation

In this section, we summarize previous results on the linear equations that are needed
in subsequent sections. For proofs of the results, see [3, 4].

We consider radial solutions U = U(r,t), r = |z|, of the linearized equation of
(1.1) at @o. Namely, let P, be the linearized operator defined by

PU = U, +£V-——1U + ppoP U

and let U(r,t) be a solution of
Uu=PU r>0 t>0,
U.(0,t) =0, t>0, (2.1)
U(r,0) =Uy(r), r>0,

where U is a continuous function that decays to zero as r — 0o. From the maximum

principle, we see that U(-,t) > 0 for all t > 0 if Uy > 0 and U # 0. We will describe
some fundamental properties for the solution of (2.1).
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2.1 Comparison principle

Let u and 4 be solutions of (1.1) with initial data ug and iy respectively. We recall
some comparison results for u — i and the solution U of (2.1), which comes from the

ordering property and the convexity of nonlinearity.
Lemma 2.1 ([4]) Let p > p.. Suppose that uy and iy satisfy (H1). If

luo(z) — tio(z)] < Up(l2l), =z €RY,

then
lu(z,t) — a(z,t)| < U(jz),t), z€RY
forallt>0.

Lemma 2.2 ([4]) Let p > p.. Suppose that uo and o satisfy

(Pa(lzl) < ﬁo(-’t) < ’U.o(it) < CPoc(lxl)’ TE RY \ {0}

with some a > 0. If

0 < Up(|z]) < uo(z) — tio(z), z € R¥Y,

then
0 < U(|z,t) < u(z,t) — i(z,t), zeRY

forallt > 0.

2.2 Formal matched asymptotics

By the above comparison results, we may only consider the convergence of radial
solution of the linearized equation (2.1). In the following, we recall the asymptotic
analysis, which is only formal but will be useful in the rigorous analysis in subsequent
sections. | |

First, following Fila, Winkler and Yanagida [4], the formal expansion of a solution
of (2.1) near the origin is given by

U(r,t) = o(t)y(r,t) + oe(t)¥(r, t) + h.o.t., (2.2)
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where, o(t) = U(0,t), ¢ and ¥ satisfy

{ Pap=0, r>0, 23)
'¢(0) =1, ¢r(0) =0
and ‘
{P,qx=¢, r> 0, (2.4
¥(0)=0, ¥, (0)=0,

respectively (see also [4] and [7] for details). We recall some results in [4] on the above
~ linear differential equations (2.3) and (2.4) in the following.

Lemma 2.3 ([4]) Foralla> 0 andr >0, a— @,(r) is differentiable and
0
Y(r) := 'a_a"ﬂaa
satisfies (2.3). Moreover, if p > p., then Y(r) is positive and satisfies
Y(r) =cer™ M +0o(r ™M) as r— oo,

where ¢, 18 a constant given by ¢, = ﬂ,r%la'—"m;'\ and a; = a(1) is a constant inde-

pendent of a.

Remark 2.4 The function ¢ defined in Lemma 2.8 satisfies 1, < 0 for all r > 0.
Indeed, we see from (2.3) that v does not attain a positive local minimum by the
positivity of p, and 1. |

Lemma 2.5 ([4]) Ifp = p., then"th'e solution ¥ of (2.4) has the following properties:

(i) ®(r)/+(r) is strictly increasing in r > 0. In particular, ¥ is positive for all
r>0.

(i) ¥ satisfies
\Il(r) = Car™ ™ M2 4 o(r~m=MH42) g5 1 00,

where
Ca = g(m +C;\1 — 2)) g(l_l.) e h(p’ - m)




Next, let us consider the expansion of a solution of (2.1) near r

expansion of p,(r) near r = oo, U(r, t) satisfies approximately

N-1 [Pt
Ut Urr r Ur ‘+,‘ ?

Following [5], we assume that U is of a self-similar form
U(r,t) = t™2F(q), n=t""r

Substituting this in (2.5), we see that F' satisfies

N-1 pL'"“1

Fp + Fp+ ”F+ SF+

F=0.
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= o0. By the

(25)

(2.6)

2.7)

In order that the outer expansion matches with the inner solution (2.2), F(n) must

sat1sfy
s m+ —
ﬂhgn *F(n) = ao

in view of the spatial order of Lemma 2.3, where a4 is an arbitrary constant depending
on initial data. Matching the inner expansion (2.2) and the outer expansion (2.6),

and using Lemma 2.3, we obtain

o o P02 ()
= pmtArp—=(m+da)/24(m+21)/24—(1/2) F(n)
= t-(l—m-—;\1)/2nm+)\1 F(n)

~ g-(0-m-2)/2

This gives the exact convergence rate given in Theorem 1.1 (i).

2.3 Properties of self-similar solutions

In this subsection, we recall the behavior of solutions of (2.7) satisfying

Lim ™ F(n) = ao > 0,
n—-0
where ag > 0 is an arbitrary cohstant. To this end, we set

f(n) =™ F(n).
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Substituting this in (2.7), we see that f satisfies

NN A A I LI LI

f(0)=a0>0, f,(0)=0.

The following lemma characterizes the behavior of f as n — oo, and explains why
l =m+ Ay + 2 is critical. '

Lemma 2.6 ([3]) Let f be the solution of (2.8).

() Ifi € (m+ M, m+ Xy +2), then f > 0 and fn <0 for all n > 0. Moreover, for
each 1o > 0, there exist d_(mo) > 0 such that

() = d_(n)n~ ™) for 5>,
and dy > 0 such that

Ff(n) S din ™) forall n>o0.

(i) Ifl=m+ Ao +2, then f(n) is given explicitly by f(n) = ape™"/4.

(iii) Ifl > m+ Xy +2, then f(n) vanishes at some finite n.

3 Upper bound

Throughout this and the following sections, we assume p > p.. The aim of this section
is to derive an upper bound of the convergence rate. In the case m-{-)u <l<m+X+2,
we will show that any solution of (2.1) with 0 < Uy < (1 4 r)~* decays faster in time
than the rate t~(—m=2)/2_ To this end, we construct a suitable supersolution U+ of
(2.1):
Ut —P,Ut >0, r>0, t>0,
{ Ur(0,t)=0, t>0.
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3.1 Outer supersolution

First, we give an outer supersolution as follows.
Lemma 3.1 ([14]) If m+ A\ <l <m+ A3+ 2, then
Ut (r,1) 1= (¢ +7)5F(n), 7= (t+7)""/r,

is a supersolution of (2.1), where T is an arbitrary positive constant.

Proof. Using (2.7), we have

Uott — PalUout = —(t +7) 7472 (%F +an + Fpp + N—;——I-F,, + peP (¢ + .T)F)
=p(t+7)H(eht — g,
Then by the ordering property and the positivity of f from Lemma 2.6, we obtain
Usut s — PaUsut > 0

forall r,t > 0. [

3.2 Inner supersolution and matching

Next, we construct an inner supersolution Uj,(r,t) in the same way as [4].
Lemma 3.2 ([14]) Let! > m+ A, and set
Un(r,t) := (¢ +7)"%(r) — gt + 7)7*710(r),

where ¢ = (Il — m — \;)/2. If T > 0 is sufficiently large, then there ezist constants
B > 0 and ¢ > 0 such that the following inequalities hold :

Y Uit = PaUi forallr >0 andt > 0.
(ii)- Uin(r,t) > 0 for allt > 0 and r € [0, B(t + 7)3].

(iii) U(r,t) > cUous(r,t) atr = B(t+ T)?i for allt > 0.
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Proposition 3.3 ([14]) Suppose thatm + A <l <m+ A2 +2 and
0<Up(r) Sa(t+r), r>0

with some constant ¢; > 0. Then there exists constant C > 0 such that the solution
of (2.1) satisfies |

NUG t)llze < CA+8)~4™"2)/2 forall ¢t>0.

Proof. Let U, and Uy, be as given in Lemmas 3.2 and 3.1 respectively, and define

Ut t) = Uin(7,t) forv T < r*(t),
cUsut(r,t) for r >1r*(t),

where ¢ > 0 is given in Lemma 3.2 and r*(t) is defined by
r*(t) := sup{r > 0| Un(p,t) < cUout(p, t) for p € [0,7)}.
Then by the comparison principle, we obtain |
0<U(rt) <CU(rt), >0, t>0
with some consta.nt'Cl > 0 and we see that U+ satisfies
|U* (r, )]z < Co(1 +2)¢-™2)/2 forallt >0

with some constant C; > 0. The proof is now complete. []
Proposition 3.4 ([14]) Suppose that

0 < Up(r) € cpexp(=vr?), r>0

with some constants ¢; > 0 and v > 0. Then there exists constant C-> 0 such that
the solution of (2.1) satisfies .

UG t)llze < CA+1)~PQa=24D/2 for gll ¢ > 0.
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Proof. The proof is similar to the procedure in the previous Proposition 3.3. []
- Now, let us complete the proofs of Theorem 1.1 — 1.2.
Proof of Theorem 1.1 (i). Taking

Uo(r) = a(1+1)7,
we have by assumption
luo(z) — tio(z)| < Uo(lz]), =€ RN,
By Lemma 2.1 and Proposition 3.3, this implies
luC+2) = a( Dl < MU E)llze < O(1+2)=0m—22

for all t > 0 with some constant C' > 0. []
Proof of Theorem 1.1 (ii). Given any small € > 0, we set

f:=m+A2+2—Ze,

and define
fjo(’l') =c(l+ T)_l.

We denote the solution of (2.1) with initial data Uo by U. Then U > U, and it
follows from the comparison principle that U(r,t) > U(r,t) for all 7,t > 0. On the
other hand by Theorem 1.1 (i), U(r,t) satisfies

U D)l S NT(r,t)lze < C1 + £)~Pa=2a+2)/24¢

for all ¢ > 0 with some constant C > 0. []
Proof of Theorem 1.2. Taking

Us(r) = e1 exp(—vlz[?),
we have by assumption
luo(z) — tio(z)| < Uo(lz]), z€R".
By Lemma 2.1 and Proposition 3.4, this implies
[, 8) = &, B)lze < (U, 8|z < C(L+£)~Gam2u/2

for all ¢ > 0 with some constant C > 0. []
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4 Universal lower bound

In this section, we prove that there exists a universal lower bound of the convergence
rate which applies to any initial data from above or below to a stationary solution.
Our key idea is to modify the outer solution. We construct a suitable subsolution U~
of (2.1):
U -=PU-<0, r>0, t>0,
{ U-(0,t)=0, t>0.

4.1 Outer subsolution

In this subsection, we construct a suitable subsolution of (2.1) with a vanishing prop-
erty; Uowt is identically equal to 0 near 7 =0 and 1 = oo.
First, we recall the initial value problem (2.8):

{ fm+"T-1an+§fn+gf=0, T;>0’
f(0)=ao>0, fn(o)=0,

where n = N —2(m + )\;), # =1~ m — ), and throughout this section, ! is fixed to
I =m+ A2+ 2 + ¢, with an arbitrarily constant € > 0. We note that f vanishes at
some finite 7o and f > 0 for 0 < 7 < ny by Lemma 2.6. -

Next, we modify this initial value problem as follows:

f(no/2) = F(mo/2),  Fa(no/2) = folmo/2),

where B =1 —m — )\, + 6 with any constant § > 0. Then, we see that the solution of
(4.1) has a desired vanishing property as follows.

Lemma 4.1 ([14]) There exist two vanishing points of f (denoted by my and nz) such
that 0 < m < 10/2 < M2 <1 and 0 < f(n) < f(n) for m <n < 1.

Lemma 4.2 ([14]) Let & be a positive constant satisfying € > § > 0, and déﬁne

Uout (7, t) = {(t+T)—‘#F(7’) | m<n<n,

0 otherwise,
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with n = (t + 7)~Y2r, where F(n) = =M+ f(n). If r > 0 is sufficiently large, then
Uout s a subsolution of (2.1).

Proof. It is trivial that U = 0 is a subsolution of (2.1). Thus, we only need to verify
the case of 7, < 7 < 72. We can check Uqy becomes a subsolution for sufficient large
T > 0 by straight forward computation. [] '

4.2 Inner subsolution and matching
We use the same inner subsolution as in [4].

Lemma 4.3 ([4]) For anyq > 0,
Uia(r, 1) = (¢ +7)~%(r)
is a subsolution of (2.1) for allt > 0.

Since the subsolution as above decays too slowly as r — oo, we shall only use it
in an inner region 0 < r < r*(t) with suitable positive function r*(t).

In the outer region, we shall work with a different class of subsolutions defined in
Lemma 4.2 instead of the subsolution defined in Lemma 4.3.

Proposition 4.4 ([14]) Suppose Up(r) > 0 for all T > 0. Then for any small e > 0,
there exists constant C' > 0 such that the solution of (2.1) satisfies
U(0,t) > C(1+t)~Ga=—2+D/2—¢  gor ql] ¢ > 0,

Proof. The proof is similar to the procedure in the previous Proposition 3.3. See [14]
for details. []
- Proof of Theorem 1.4. We take
Uo(r) := min |ue(z) — fio(z)| > 0, > 0.

||=r

Then by Lemma 2.2 and Proposition 4.4, we have
lu(-,2) = 4(, t)llze 2 U(0,8) 2 C(1 +£)~Pa~tatD)/2 e

for all t > 0 with some constant C > 0. []

- Remark 4.5 We can relax the condition of initial data. In fact, this theorem holds
for the case Uy = 0 for sufficient large |z| > 0.
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