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Interactive dynamics of two interfaces in a
reaction diffusion system
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1 Introduction

We consider a bistable reaction-diffusion-advection system describing the growth
of biological individuals which move by diffusion and chemotaxis [5]:

w = dyAu—V(uVx(w))+ f(u)
(1)

wy = dyAw+u—yw

where f(u) =u(l —u)(u—a) (0 <a<1/2). :

By the numerical simulations, there are many various patterns with static and dy-
namic properties [1], [5], [6]. Here, we mainly consider the dynamics of stripe and
snaky patterns. In our model, the phase transition phenomena appears due to the
bistable system and we call the boundary of two phases an interface. Therefore, it
is enough to consider the dynamics of the movement of the interface understand-
ing these pattern formations. Especially, we are concerned with the interactive
dynamics of two interfaces far from equilibrium. To do so, we introduce the equa-
tion which describes the movement of the interface and discuss the interactive
dynamics between two interfaces.

On the other hand, we already show the equation dominated the dynamics of
the interfaces near the equilibrium and the stability of the planar standing pulse
solution in the channel domain [5], [7]. In the case of two interfaces with same
constant curvatures given in [6], [8], it is shown that the stability of the simple
static snaky pattern and formally construction of the traveling solution with a
triple junction.



2 Interactive dynamics of two interfaces

In this section, we formally introduce the equation described the dynamics of
the interfaces with the interaction. To do so, we rewrite (1) as

u; = DAu — K;3(u) + F(u) (2)

where Kj(u) = div(uVy,0)T and u = (u, w)T.

When I'(0) is a curve corresponding to the interface with a parameter o, the
local coordinate is given by (z,y) = I'(e) + Av(0), (A, o) = (A(z,y), Z(z,y)) with
the normal vector v(o) at I'(o). Then, it holds that

VX(A, 2) = (A,x,\ + EzXa, AyXA 4+ 2yx,)T = x,\VA -+ X,VE,

VA=vy, VE= AT, [VAP =1, [T,2 =1, <VA, VE>=0, AA = — A&,

AD = oy
and

Ko(u,x) =div(uVyx) =< Vu,Vx > +uly
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=< upVA 4+ 4, VI, x,VA + XoVE > +u{XAA - 1._“&,\XA + 1_15,\(ﬁXX¢7)0}

= Kl(u" X) + f{(ua X)

where K (u,X) = uxxa+uxan, K, x) = goapteXe — Sawo+ % (EaXo)e-
Since K3 = K1+f{ with K; = (K]_(‘U,, X),O)a K; = (K2(ua X)so)s K =.(IA{('“" X)3 O)s
we have
u; = D(uy, +Ku) — K,(u) + P:(u) 3)
= L;1(u) + DKu - K; (u) — K(u)

where L; (u) = Duyy + F(u) and Ku = —E5u, + Za(Paw).-
The equation corresponding to (3) in R is given by

u; = Du,, — K;(u) + F(u) 4)

where K1 (u) = (usXa + #Xaz, 0)".
Let Ps be two roots of F(u) = 0. Then, the boundary conditions of (3) are

lim u(t, z) =FP_ = (0,0), zlé_’m u(t,z) = Py = (p,q). (5)

L=t =—00 00

Assumption: Let A = z + ct. There exists a traveling front solution of (4), (5)
with the velocity ¢, which solution S()) = (®()\), ¥())) satisfies

{ 0=DSxn —cS)—K;i(S)+ F(S), AeR (6)
S(+o0) = Ps.



Remark 2.1 [4] For suitable constants d,, and d., of the diagonal elements of the
matriz D, there exists a traveling front solution of (6).

We treat two interface curves I'; (i = 1,2) which have not any common point.
Let (z,y) = Ii(0;) + Aivs(0;) be local coordinates in the neighborhood of each
curve I';. Then, we assume that the solution u(t, z, y) is expanded by

'll(t, zvy) = S(Al(t1za y)) + S(_A2(tazay)) - P+ + v(t7m7y)' (7)

Assumption: Let £ be a small parameter. Then, it holds that for the curves I'; (
i=12)

curvatures &; of I'; ~ O(e),
v ~ v(t, A, 0;) in the neighborhood of I'; with o; = O(e).

Let &; = ex; and o; = ef;. Substituting (7) into (3), the left hand side is repre-
sented by |

= Au-SA(Al) - Aztsk(—'Az) + v+ A,‘tV)“ + EE,’ngi in the n.b.h. of 1";. (8)

First, we consider the problem in the neighborhood of I';. Then, S(—A2)— Py +vVv
becomes a remainder term in the neighborhood.

For simplicity, let A\; = A, §y = &, k1 = K, Ay = A, 2, — I, Then, the nght
hand side is rewritten as

Ly(u) + DKu — K;(u) - K(u) = L(S)+ L(S(~Az) — P, +v) + DKS
—K;(8) - K(S) + DK(S(—Ag) — P;)
+DKv — K1 (S)(S(—Ag) = P+ + V)
—R/(S)(S(=A2) — Py +v) o
where I = L}(S) = Dd?/d\? + F'(S).
Assumption: For the solution S()) of (6), there is a positive constant o and
vector a, = (a,b)T such that "

S(A) — Py ~ e **a, as A — oo. (10)

Then, we remark that DK(S(—Az) — P,.) = O(exe*?), A;v, and eX,v, are small
with respect to small €. Since 0 = L;(S) — ¢S» — K;(S) and DKv = O(e? +evy),
it follows that

ve+ASy ~ ¢Sy Lv + L(e*Ma,) + DKS — K(S) + DKv
—Kj(S)(e*ay + v) — K'(8)(e*2a, + v)
~ ¢S+ Lv + L(e*Ma,) + DKS — K(S)
—Kj}(S)(e**ay + v) — K'(S)(e*Ma, +v).
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By (6), (10), it holds that
0= a’De*a, + F'(Py)e"*a, + ace~*a, — K}(P;)e **a, + O(e~2**). (11)

Therefore, it follows from (11) that

f‘(e—a)'a+) ~ (F'(8) — F'(Py) — ac+ K} (Py))e **a, (12)
by L(e=**a,) = (2D + F'(S))e~*ay.
Since X; = Xoo = 0, we note that K'(S)(e**a, +v) ~ 0, KS = — 28 ~

—exS, and K(S) ~ (—ex®xy, 0) with respect to small €. By (9), (12), we have

0
+(F'(S) — F'(Py) + K (Py) - K} (S) — ac)e™a,

v+ Ay ~ (B —K|(8))v — enDSx +cSh+ ( " )

where

K.(S) = ( (<I>x((\)1')x),\ ) _ ( O (L)W + q>{xuo(\1:)x1:§ + X (¥)¥n} )

a? {x(q)ab + x"(q)pb?*} e~2* + a®x'(g)pbe~>* )

(azx’(cJ)pb) —a 0
~ e—o,

0
0 a?
(Pay= (o “PX@ )a,,
—-aA —a
K/ (S)e-**a, = ( e~*ax () +§>(e X' (¥)b) )
< e (XD O~ X (WP )
0
Next, we will have the outward normal velocity V' of the interface. Let ¢* =
(43, %) be an eigenfunction corresponding to 0 eigenvalue of the adjoint operator
(L — K{(S))* of L — K/(S) normalized by < S, * >= 1. Then, it follows from
the solvability condition (e. g. [3] ) that

At = —ex < DSy, p* >12 +ex < Px(¥)a, ¢} >12 +c
+ [ exhalea < (G(S(N)) - G(Py) - ac)ay, ¢ (X) > dA
-0

where G(II) = F'(IT) — K} (1) and < -, >72 means the L?(R) inner product.
From A; = —V/, the velocity V; of I'; is given by

Vi =er1(< DSy, 0" >p2 — < Ox(V)r, 0] >12) —c— @ (13)



where
o= / = eahaENIO) < (G(S(N)) — G(Py) — ac)ay, p*(X) > dA.

On the other hand, let $(A) = S(-2), @*(A) = ¢*(—)) and so on. Then, the
normal velocity V3 = Ay, of the interface I'; is represented by

Vo = —eka(< DSy, @* >0 — < Ox(9)s, 82 >12) +c+ g2 (14)

where

gr=[ e MENIN < (GEN) - G(Py) - ac)ay, $*(A) > dA.

-00

If the velocity c of the traveling front solution of (6) is of order &, then the velocity
of the interface depends on the curvature. '

3 Application ( 1 dimensional problem )

Let £(2), £2(t) ( £1(2) < £a(2) ) be interface positions in the line. It follows from
(13), (14) that |
élt(t) = "/1 =—c—- e‘l(t)—lg(t)H

ln(t) = Vo = c+ - g

where H = / " e < (G(S(N)) — G(Py) — ac)ay, ¢*(N) > dA.
As |£;(t) — £5(t)| >> 1, these equations imply that

¢ < 0 = two interfaces are attractive
¢ > 0 = two interfaces are repulsive.
As ¢ =0, it holds that

H* < 0 = two interfaces are attractive
H* > 0 = two interfaces are repulsive

where H* = / 7 e < (G(S(N) - G(Py))ay, " (A) > dA.

Remark 3.1 [4] For suitable constants dy, d,, and x(w), there ezxists a 1-dim.
standing front solution of (6), that is, the velocity is zero.
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