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Abstract. This paper considers the simultaneous optimization of the amount of
diecharge of greenhouse gaees and the amount of removing its harms in both
international and domestic markets. In the domestic market we introduce surcharges
and bounties in order that the individual optimization accomplishes the total (social)

optimization.
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1. Introduction

The global warming proceeds and its various influences, for example, the ascent of
$aea\cdot level$ and decertification are indicated. Many international conferences have held
toward the regulation of greenhouse gases. The Kyoto protocol, which was agreed at
1997, has established numerical targets of the reduction as legal liabihty of each nation.
Furthermore as a measure for its effective accomplishment the international emission
trading has been introduced. The emission \mbox{\boldmath $\theta$}adin $g$ is a system in which each nation
receives the quota of emission credits for greenhouse gases and the nation with
insufficient quota buys the emission credita from the nation with surplus. This method
aims to conquer the “market failure“ in the external diseconomy by creating a new
market toward the internalization of externality.

There are many literatures in the field of environmental economics. C.D.Kolstad [21

is a good introduction and a survey for this field. A.Malik [8] considers a method of
enforcing tradable emission permits when there are noncompliant firms. A.Mahk [41

shows that the condition for $m\dot{i}imi\dot{m}g$ the cost of enforcing an environmental policy
differs from that for minimizing the cost for firms to comply it. G.Amacher and
A.S.Malik [11 $\infty mpares$ the regulation by penalty with a taxation method in the case
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that regulations and firms bargain. Vath respect to an emission trading many
literatures consider effective methods of enforcing it, but there are a few literatures that
considers the difference between an individual and social optimization in the emission
trading market.

This paper has four focuses:
(1) As decision variables we consider not only the amount of discharge but also the

amount of removin$g$ harms of greenhouse gases.
(2) We $\infty neider$ both international and domestic markets.
(3) In both international and domestic marketa we consider the individual

optimization for each agent and the total (social) $opn_{1}mi\bm{z}ahon$.
(4) In the domestic markets we introduce surcharges and bounties in order that both

individual and $\omega tal$ oPtimizabons are accomplished simultaneously.

2. International Market

We $\infty nsider$ the international market in which there are $n$ agents (nations). The
total emission credits of greenhouse gases available for the world $\omega$ other words, for
human beings) is $A(>0)$ . Let $a_{l}(>0)$ be the quota of emission credits for agent $i$ ;

$\sum_{i\cdot 1}^{n}a_{t}=A$ . Let $p$ be the price of emission credit which is determined from the

balance between supply and demand in the international market. Let $R(z)$ be the
profit function of agent $i$ which denotes the profit of agent $j$ by $diaeh\arg_{\dot{i}}g$ the
amount $z$ of greenhouse gases. We $8upp0\infty$ that the function $r(z)$ is strictly concave

increasing and that the derivative $R_{i}’(z)$ converges to zero as $z$ approaches to

$infini\Psi$. Let $C_{t}(z)$ be the cost function of agent $i$ which denotes the cost of removing
harms for the amount $z$ of greenhouse gases. We suppoee that the fiiction $C_{l}(z)$ is

strictly convex increasing and that the derivative $C_{1}|(z)$ diverges as $z$ aPproaches to

$\dot{i}$fini\Psi . The policy of agent $i$ can be denoted by $(r_{l},y_{i})$ where $x_{l}$ is the discharge
amount of greenhouse gases and $y$, is the amount of greenhouse gases which harms
are removed. If $x_{l}-\mathcal{Y}_{t}>(<k_{l}$ , then agent $l$ buys (sells) emission eredits
$x_{l}-y_{l}-a_{l}(a_{i}-x_{l}+y_{l})$ in the international market. When agent $i$ uses a
policy $(x_{i},y_{l})$ , his net profit $G_{l}(x_{i},y_{i})$ is given by

$G_{i}(x_{t},y_{l})=R(x_{l})-C,(\nu_{l})-p(x_{l}-y_{l}-a_{l})$ . (1)
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We put $(x,y)=\{(x_{1},y_{1}),\cdots,(x_{n},y_{n})\}$ which is called a social policy. When a social policy
$(x,y)$ is used, let $T(x,y)$ be the total net profit of the world (the society of human
beings), namely,

$T(x,y)= \sum_{i=1}^{n}G_{l}(x_{l},y_{/})$ . �

2.1 International ?btal Ophmizahon

In this subsection we $\infty neider$ the total optimization in the in&rnahonal market
The problem is as follows:

$(P_{1})\{\begin{array}{l}T(x,y)=\sum_{l\underline{-}1}^{n}[R(x_{l})-C_{l}(y_{/})]subjectto\sum_{1}^{n}(x_{l}-y_{i})=Ax_{\prime},y_{l}\geq 0(i=L2,\cdots,n)\end{array}$

$arrow$ $(,y) \max_{X}$

$(\phi(3)$

The $cons\theta aint(4)$ means the balance between gupply and demand in the international
market.

THEOREMI. For a parameter $\lambda$ , we put

$I_{1}=\{$ $i|R’(0)>\lambda$ $c_{l}’(0)<\lambda$ $\}$

$I_{2}=\{$ $l$ I $R’(0)>\lambda$ $C^{\iota}(0)\geq\lambda$ $\}$

$I_{3}=\{$ $i|R^{i}(0)\leq\lambda$ , $c’(0)\geq\lambda$ $\}$

(6)

$I_{4}=\{$ $i|R’(0)$ SZ $*$

$c_{i}’(0)<\lambda$ $\}$

and

$f( \lambda)=\sum_{lJ,.1_{l}}R^{\prime-\iota-1}(\lambda)-\sum_{l\epsilon 1_{1}1}C_{l}’(\lambda)$ . (6)

Let $\lambda$ be the unique root of the equation $f(\lambda)=A$ . The optimal solution of the total
optimization problem $(P_{1})$ is given as follows:

$x_{i}=k^{-1}(\lambda^{l})|$
$i=1,2,\cdots,n$ (7)

$y_{t}=b_{i}|-1(\lambda)|$
$i=1,2,\cdots,n$ �

where $\alpha^{*}=maxb^{0}$}.
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$Pr\infty f$. Since the problem $(P_{1})$ is a concave programming problem, by the
$Karush\cdot Kuhn\cdot Tucker$ theorem, the necessary and sufficient conditions for a policy

$(x,y’)=\{(x_{1},y_{1}),\cdots,(x_{n},y_{n})\}$ to be optimal are as foUows: There is a constant (the

Lagrangian multiplier) $\lambda$ such that

$R)(x_{l})-\lambda\{\begin{array}{l}=\leq\end{array}\}0$ $jfx_{l}’\{\begin{array}{l}>=\end{array}\}0$

(9)

$-c_{l}’(y_{j})+\lambda\{\begin{array}{l}=\leq\end{array}\}0$ if $y,$ $\{\begin{array}{l}>=\end{array}\}0$ (10)

$A- \sum_{l=1}^{n}(x_{l}-y_{l})=0$ (11)

$x_{l},y_{/}\geq 0$ $(i=1,2,\cdots,n)$.

Using the relation (9) and the $decreas\dot{\bm{o}}g$ of $R^{t}(z)$ , we obtain

$x_{i}=\{\begin{array}{l}04^{\iota-1}(\lambda)>0\end{array}$ $\prime f$ $R’(0)\{\begin{array}{l}\leq>\end{array}\}\lambda$ . (12)

Similarly using the relation (10) and the increasing of $c_{l}’(z)$ , we $obk\dot{i}$

$y_{l}=\{\begin{array}{l}C_{l}^{\prime-1}(\lambda)>00\end{array}$ $lf$ $C_{i}^{\iota}(0)\{\begin{array}{l}<\geq\end{array}\}\lambda$ . (18)

Substituting these results (12) and (13) into the equation (11), we obtain $f(\lambda)=A$

where the $fi_{1}nchonf(\lambda)$ is defined by (6). Since the function $f(\lambda)$ is strictly

decreasing in $\lambda$ , the equation $f(\lambda)=A$ has a unique solution $\lambda=\lambda$ . Then we can
obtain the result from the relation (12) and (18) for $\lambda=\lambda$ . (q.e.d.)

Theorem 1 shows the following properue8:

(1) If the initial $mar\dot{\Re}nal$ profit $R’(0)$ is larger (smaller) than the constant level $\lambda$ ,

then the optimal amount of diecharge is Posifive (zero). If it i8 positive, the optimal

amount satisfies that the posterior marginal profit equals to $\lambda$ .
(2) If the imitial marginal cost $C_{t}^{\iota}(0)$ is larger (smaller) than $\lambda$ , then the optimal
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amount of removing harms is zero (positive). If positive, the optimal amount
satisfies that the posterior $m\arg_{\dot{i}}$al cost equals to $\lambda$ .

(3) The smaller the total emission credit $A$ becomes, the larger the constant level $\lambda$

becomes, and then the number of agents with positive amount of diecharge
(removing harmSl decreases (increases).

(4) In general the price is determined such that the $m\arg_{\dot{i}}$al profit equals to the

marginal cost. In the problem $(P_{1})$, since $R’(x_{l})=\lambda=c_{l}’(\gamma_{l})$ , the international

price of emission credits $i_{8}X$ .

2.2 International Individual Optimizahon

In this subsection we consider the individual optimizahon problem for agent (nation)
$i$ in the international market. It is supposed that the price $p$ of emission $\alpha edit$ and
the quota $a_{l}$ of emission credit for agent $j$ are constants. The problem is formulated
as follows:

(P) $\{\begin{array}{l}G_{i}(x_{l},y_{i})=R_{i}(x_{i})-C_{l}(y_{l})-p(x_{j}-y_{l}-a_{t})subjecttox,,y_{i}\geq 0\end{array}$

$arrow$
$x_{l},y_{l} \max$ (14)

The fouowin$g$ theorem is clear.

THEOREM2. The optimal solution of the problem $\varphi_{2}$) is given by

$x_{l} \sim=k-1(p)\int$
$i=1,\cdots,n$ (15)

$\tilde{y}_{l}=b_{i}’-1(p)|$
$i=1,\cdots,n$ . (16)

Since $p=\lambda$ , we know that both individual and total (social) optimization in the
international market are accomplished simultaneously.

3. Domestic Market

In this section we restrict our attention to agent $k$ (nation k) in the international
market and consider the domestic market in the nation $k$ . Then in this section the
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word “agent” means a company or an individual person in the nation $k$ . In this market
the price of emission credit is $p=\lambda$ which is determined in the international market.

Furthermore the optimal amount of diecharge $x(=xi)$ , the optimal amount of

removing harms $y(=yi)$ and the quota of emission credits $a(=a_{k})$ are considered to

be constanta. We suppose that there are $m$ agents in nation $k$ . Let $R_{j}(z)$ and

$C_{j}(z)$ be a profit function and a cost function of agent $j(=1\cdots,m)$ respectively which

are assumed to $sabs\theta$ the same conditions as in Smbon 2. A policy of agent $j$ is

denoted by $(u_{j},v_{f})$ where $u_{f}$ is the amount of discharge and $v_{j}$ is the amount of

removing hams of agent $j$ . A social policy of nahon $k$ is denoted by
$(u,v)=\{(u_{1},v_{1}),\cdots,(u_{n},v_{m})\}$ .

3.1 Domestic lbtal Optimization

The total optimization problem of nation $k$ is formulated as folows:

$(p_{a})\{\begin{array}{l}T(u,v)=\sum_{f\cdot 1}^{n}[R_{j}(u_{f})-C_{j}(v_{j})]-\lambda(x-y-a)subjectto\sum_{J\overline{-}1}^{n}u_{j}=x\sum_{j\cdot 1}^{n}v_{j}=yu_{J},v_{f}\geq 00=1,2,\ldots m\rangle\end{array}$

$arrow$ $() \max_{u,v}$

$(17)(18)(19)$

THEOREM8. For a $parame\hslash r\lambda$ and $\xi$ , we put
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$J_{1}=\{j|R_{J}^{\iota}(0)>\mu$ $C_{j}’(0)<\xi$ $\}$

$J_{2}=\{j|R_{j}’(0)>\mu$ $c_{\text{ノ}}’(0)\geq\xi$
$\}$

$J_{3}=\{j|R_{j}^{1}(0)\leq\mu$ , $C_{j}^{l}(0)\geq\xi$ $\}$

$J_{l}=\{j|R_{j}’(0)\leq\mu$ , $C_{j}^{\iota}(0)<\xi$ $\}$

(20)

and

$g( \mu)=\sum_{j\epsilon J_{1}\cdot J}R_{J^{-\downarrow}}’(\mu)$ (21)

$u_{\xi})=$ $\sum C_{j}^{\prime-1}(\xi)$. $(2\mathfrak{Y}$

$j\epsilon J_{1}\cdot J_{2}$

Let $\mu$ and $\xi\cdot M$ unique $r\infty ts$ of equahon8 $g(\mu)=x$ and $h(\xi)=y$ respectively.
The optimal solution of the problem (Ps) is given as follows:

$uj=b_{J^{-1}}’(\mu)|$
$j=1,\cdots,m$ (23)

$vj=b_{J^{-1}}’(\xi\cdot)1$
$j=1,\cdots,m$ . $\omega$

Proof. The neeessary and sufficient conditions for a policy

$(u,v)=Ku_{1},v_{1})\cdots,(u_{n},v_{n})\}$ to be optimal are as follows;

There are two Lagrangian multipliers $\mu$ and $\xi$ such that

$R_{f}’(u:)-l^{l}\leq 0$ $j=1,\cdots,m$ (26)

$-C_{j}’(vj)+\xi\leq 0$ $j=1,\cdots,m$ (26)

$\sum_{j\cdot 1}^{n}uj[R_{\text{ノ}}’(uj)-\mu]+\sum_{j-1}^{n}vj\vdash C_{j}^{\iota}(vj)+\xi]=0$ (27)

$\sum_{\text{ノ}-1}^{m}u:-arrow$ (28)

$\sum_{j1}^{n}vj=y$ (29)

$uj,vj\geq 0$ $j=1,\cdots,m$.

From the equabons (26), (27) and the $de\alpha eaging$ of $R_{j}’(z)$ , we obtain
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$uj=\{_{R_{j}^{1-1}(\mu)>0}0$ び $R_{f}^{l}(0\sqrt{}>\leq\}\mu$.

Similarly from the equations (26), (27) and the increasing of $C_{j}’(z)$ , we obtain

$v_{f}=\{\begin{array}{l}C_{i^{-1}}^{l}(\xi)\succ 00\end{array}$ $lf$ $C_{j}^{l}(0\sqrt{}\geq<\}\xi$. (31)

Substituting these results in (28) and (29), we $obta\dot{i}$

$g(\mu)=x$ (82)

$h(\xi)=y’$ . (33)

Since the function $g(\mu)(h(\xi))$ is $s\theta ictly$ decreasing ($increa8\dot{i}\theta$ in $\mu(\xi)$ , the
equations (32) and (33) have unique $r\infty ts\mu=\mu$ and $\xi=\xi$ respectively. Then we
obtain the result ofTheorem 3. (q.e. $d.$)

3.2 Domestic Individual Optimization

The individual optimization problem for agent $j$ in nabon $k$ is formulated as

follows. Let $b_{j}$ be the quota of emission credits for agent $j$ $( \sum_{j\cdot 1}^{m}b_{j}=a)$ .

$(P_{4})\{\begin{array}{l}G_{f}(u_{J},v_{J})=R_{j}(u_{J})-C_{J}(v_{J})-\lambda(u_{j}-v_{J}-b_{f})arrow\max_{u_{j},v_{J}}subjecttou_{j},v_{j}\geq 0\end{array}$

(34)

The problem $tP_{4}$) has the same for $m$ as the problem $\Phi\theta$ and therefore the following

theorem is clear.

THEOREM4. The optimal solution of the problem 0’4) is as follows:

$u_{j}\sim=b_{J^{-1}}^{\iota}(\lambda)1$ $j=12,\cdots,m$ (36)

$v_{j}\sim=b_{j}|-.1(\lambda)|$ $j=1,2,\cdots,m$ . (36)
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3.3 Surcharge and Bounty

From Theorem 3 and 4, we know that in the domestic market the result of ie
individual optimization is different from one of the total (social) opbmizabon. In order
to accomplish both optimizations $8imulhneously$, we inhoduce $8urcharge$ and bounty.
Let $r(\geq 0)$ be the surcharge for discharging a unit of greenhouse gas. Let $s(\geq 0)$ be
the bounty for $remov\dot{i}g$ a unit of harm. We want to obtain the optimal amounts of
surcharge and bounty for the simultaneous $ac\infty mpli_{8}hment$ of both $opnmi_{\mathbb{Z}}abons$ .
Since the surcharge and bounty are the give and take between the government and a
company the total (social) net profit of nation $k$ is invariant in gpite of introducing
surcharge and bounty. Then the total ophmizaUon problem with surcharge and bounty
is the same as the problem (Ps). On the other hand, the individual ophmizahon problem
of agent $j$ is as follows:

$(P_{4}’)$
$\{\begin{array}{l}G_{j}(u_{i},v_{j})=R_{J}(u_{f})-C_{i}(v_{j})-\chi(u_{f}-v_{j}-b_{j})-ru_{J}+sv_{j}arrow\max_{u_{j},v_{j}}subjecttou_{J},v_{J}\geq 0\end{array}$

(37)

The following theorem is clear.

THEOREM6. The optimal solution of the problem (P4’) is as follows:

$u_{f}\sim=u_{j}\sim(r,s)=b_{J^{-1}}’(\lambda+r)1$ $j=1,2,\cdots,m$ (88)

$v_{j}\sim=v_{j}\sim(r,s)=b_{J^{-1}}’(\chi+s)|$ $j=1,2,\cdots,m$ . (39)

Considering conditions that the result of Theorem 3 coincides with one of Theorem 5,
the following theorem is clear.

THEOREM6. In the domestic market, in order that the individual optimization

accomplishes the total (social) optimization, the optimal surcharge $r$ and the optimal
bounty $s$ are as follows:

$r=\mu-\lambda$ (40)

$s=\xi\cdot-\lambda$ (41)
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where $\mu^{\ell}$ and $\xi$

’ are given by Theorem 3.
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