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Abstract In this paper, using Cauchy variables, we get a new elementary proof of

¢(2) = Z-. Furthermore, as its generalization, using variants of Cauchy variables, we
get further results about (. We also get two different proofs of Euler’s formulae for
the Riemann zeta function via independent products of Cauchy variables. This paper
is a review of our previous papers ([3, 4]).
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1 Introduction

Consider the Riemann zeta function
OEDD = (for Res>1).
i=1

Many authors ([1, 6, 8, 9, 10, 12] ) have written elementary proofs of {(2) =

. The problem of finding this value is known as Basel problem ([5]). First,
1n th1s paper, we propose a new elementary probabilistic proof of this famous
result, using Cauchy variables.

After this, we investigate the following Euler’s formulae of the Riemann zeta
function, which is very classical (see for example [11]):

1 : 1 /m\2n+2 A,
) —_ ==(= —_ .
Euler’s Formulae (1 7anT3 ¥(2n +2) 5 ( 2) T(@n +2)

Here, the coefficients A,, are featured in the series development

n n w
00829 Z (2':1)'02 (181 < —2—)'

The most populé.r ways to prove Euler formula make use of Fourier inversion
and Parseval’s theorem, or of nontrivial expansions of such as cotan. In this

1This paper is a review version of our previous paper (3, 4].



paper, we show that Euler formula is obtained by simply via either of the fol-
lowing methods: In section 3, we compute in two different ways the moments
E((log C;Cz)?") with C; and C; two independent standard Cauchy variables.

e One one hand, these moments can be computed explicitly in terms of ¢
thanks to explicit formulae for the density C;C,.

e On ntahe other hand, these moments are obtained via the representation
E(CI*)= ks  (AeR).

In section 4, we derive the formulae for {(2n) from the explicit calculation
of the density of the product C;Cj---Ci of k independent standard Cauchy
variables, by expoiting the fact that the integral of this density is equal to 1.
In section 5, we get further results involving Y po, Tn_ﬂc%-?i’ using variants of
Cauchy variables, also derived in an elementary manner and made several re-
marks.

2 Basel Problem and Products of Independent
Cauchy variables

a) We first review the density function of the multiplicative convolution of two
independent random variables from elementary probability theory.

LemmaZ2.1.
Consider two independent random variables X, Y such that P(X > 0) = P(Y >
0) = 1 and with density functions fx(z), fy(z).

Then, fxy(z), the density function of XY is given by:
o z, 1
fxy(@)= | [fx(u)fy(=)=du
0 uu
Proof.

Forz >0, P(XY <) = [ [, .. fx(w)fy(v)dudv = [5° fx(u)du fo5 fy (v)dv.
Then differentiating both sides with respect to z, we get the result.

b) Applying Lemma 2.1. for fx(z) = fy(y) = 21kwlz>0 ie: X ~ Y ~ |C]
where C is a Cauchy variable with fc(z) = % s, we get , forz > 0:

4 [ 1 1 1
fxy(@) = Ffo Trd Ar @D a™
—-—2—- ” 1 du
a2 fy (u+1)(u+z?)
2 [ 1 1 du
_;5,/0 (u+.1r:2'—_u.+1)1—:z:2
2[4 1 1 | du
=Ah-101¢130-1-|3,/(; (u.+:c2-_u,-i-l)l—-:z:2
4 logz

T 221



c) Since 1 = [ fxy(z)dz, we have:

72 * logzx
74"/0 :v’—ldz

The righthand side R is equal to

R= /1 log:c /‘” log:z:
:1:2—1 a:2—1

_ logz 2%
_2/0 l_zzdx 2/( 1ogz)§:x dz

k=0

=2E / (- log z)z?*dzx = 22 / ue~2*ue—Ydy

k=0 k=0

‘22/ 2k+1 2k+1 211(2)2(2“1)"’

Thus, we have obtained:

2

Z 1 _=
< (2k+1)2 " 8

1
Noting that {(2) = g w3 Z (2k+ )2 §§C(2),
we obtain the desired result, 1 e

2 4 1!'2

‘@ = 3Z (2k+1)2 - 'ETE -6

This is a probabilistic solution of Basel Problem.

3 Euler’s Formulae via Cauchy variables

In this section, considring even moments of log C;C;, we prove the Euler’s
formulae of the Riemann zeta function.

Proposition 3.1.

8 1
E((log C;C3)*") = Fr(zn +2)(1 - 22—Mq)g(zn +2).
Proof.

The proof relies on the same computation as section 1.



Using this proposition, we obtain the following Euler Formula:
Theorem 3.2. (Euler’s Formulae)

1 1 /m\2n+2 An
(1-smm)(n+2) =3 (5) T'(2n+2)

where, the coefficients A,, are obtained in the series development

ﬂ 2n _7[
S (18] < 2).

n=0

Proof.

We only need to prove that E(|Cy| ™ = =¥ because by this, we can easily
get that E(efr % 1081C:Cal) = {esh 37> Which is equivalent to E((log |C1C2))3%") =
( )2n A,.

Noting that C, ~ -ﬁ,- where N and N’ are two independent standard normal

random variables, we get that (C;)? ~ -agfyg ~ M where 7, /2 and 7] /2 are two

independent gamma variables with parameter 1 / 2, i.e. its density f,,,, () =
-1/2 _ :
—e~ % (z>0)

Then we get that

E(|c1| 2) = B((11/2) ) E(mp) ™) = -‘1‘1%;,;3—’%7;,— o =
—L+ (XA €R), where we used the fact : I'(s)['(1 — 5) =

z

sin w8’

Remark3.3.
In (3], furthermore, we prove the Ly, case considering E((log C1)?").

4 Explcit density function of independent prod-
ucts of Cauchy variables and the Riemann
zeta function

In this section, we give the density of the law of C;Cz -+ Cy for any k¥ 2 0,
where Cy, . ..Cy are k independent Cauchy variables.

Proposition 4.1.

.Thedensityof C1Cz - - - Cr isequal to

2n—1 n—1 2
fC1C2“'C2n(w) ”2(22"’ 1)' (H( + (loi|;3|) )) :;g‘l_wl

j=1

22n 1 1
fC;Ca---Ca,..,.;( 1r(2n)! (H(J2 (Og ‘KL") )) - +$2



Proof.

1)Flrst we note that E(|C,|*) = cos_ﬁg —= and E(|C; ---Ci|®) = m—l%ﬁ-y,; (le] <

Then we get that E(|Cy - - - Cx|*log|Cy - - - C|) = (—k)(cos Z2)~*~1(—gin Z2)Z
and E(|C; - - Ck|*(log|Cy - - - Ci|)?) = (§)2(k(k+1)(cos ) ~*~2—k?(cos Z2)~*)
= (5)*(k(k + 1)E(|Cy - - Cyy2|*) — K2E(C, - - Ci[*).

Then by the uniquness of Melin transformation, we get that
2 g2 -
fe16a--Cta(T) = ey ( lo 0~ + &) fe,c,--c. (z). This gives the results.

O

We note that 1 = [*°_ fc,c,.-Can (T)dT gives the recurrence relation between
¢(2n)’s and we see that this recurrence relation is equivalent to Euler formulae.
(see [3].) Furthermore, in (3], using 1 = [ fc,c,-Canss (T)dz, We prove the
the L,, case.

5 A two-parameter generalization and remarks

a) In order to generalize the former arguments, we take fx.. .(Z) = cmn == +x,, 1,>o
for n > m + 1 instead of the Cauchy density. In Remark 5.2., We realize X
as a power of the ratio of two independent gamma variables.
n and m are not assumed to be integers, although, for the applications, the
integer case is often most mterestmg

Putting u = T3 +z,. , we get :

o0 zm 1 1 __i-_ 1
dz = — 1- d
/0 zh +1 n/o ( u)™ u
m+1 m+1 m+1l._..m+1
= -I‘(l— ( )
n n n
T
=_E____
sin 2ty

where we used the formula of complements I'(s)['(1 — 8) =

ain a8’
sin tly

Thus, the normalizing constant ¢, , is given by : ¢ n = ——
Similarly, if Y is an independent copy of X = X, , then for z > 0:

™ ()™ 1
—ul____4
1+ur 1+ (E)nu “

| fxy (@) =chn /000

cz 00 m
_ Smn / Z du
n Jo (u+1)(u+zn)
z™logz
™ gn 1




b) Again, using: 1= [;° fxv(z)dz, we obtain

( z )2_/°°:z;"‘log:z:d:c
sin @ty ) T Jy zn -1

z2 -1 1 zh-—1
1 m 1 -m-2
—~z™logz u~"M=¢logu
—/o T —on dz + A T du
o0 o0
1
_Z 2+2 -
k=0(nk+m+1) = (nk+n-m-1)?

Then we get the following :
Theorem 5.1.
Forn>m+1:

x 2
Z(nk+m+1)2 E(nk‘”‘ m—l)2 (sin'—"n',itlvr)' 1)

which is equivalent to:

2
Z (nlc+m+1)2 (sin-"—‘}l'rr) - @

S i

2
c) The following examples of (1) are interesting:

1 z \?
Z(5k+1)2+z(5k+4) (singn) |

T 2
Z (5k+2)3 +Z (5k+3)2 - (sm5§7r> '

Combining these, we get :

1 1
e+ g =
(sin )2 * (sin Zr)3

Similarly
S SR U
(sinir)? * (sin37)?  (sin 2n)2

2In the case of m = 0, K. Yano and Y. Yano obtained the higher moments of this equality
similar to Euler’s formulae.



More generally we obtain in this way:

Z _2n(n+1)
i— (sin 5—;"_-‘371')2 3

We note that in [1, 6], a proof of this formula by trigonometric arguments led

to ¢(2) = l:—. In (2], this formula is also obtained by considering the Parseval
identity of some finite Fourier series.

Remark 5.2. Using two independent gamma variables 7mﬂi1,7;_,,.|, , it is
easily found that:
1/n
(law) [ Tmid
Xm.n = -
GBS

where f.,(z) = %%;e"”l,»o.
Remark 5.3. We see easily that formula (2) is equivalent to

w2

Z (,1+:z:)2 smf(mr) (3)

jm=—c0

for ¢ Z. Indeed, in [11], p.149, the formula

1rcot1rz——+2( ik) (4)

z+k

is recalled; formula (3) may be obtained by differentiating both sides of (4).
Moreover, as shown in [11], p. 148, Euler’s formulae for {(2n) follow easily from
(4). To summarize, Theorem 1.1. provides an elementary probabilistic proof of
(3), and therefore of Euler’s formulae for {(2n).

Remark 5.4. We may also write formula (3) as:
2 oo
T _ 1 ,
(sin(mz))? ~ kz-o (k+ :z:)2 Z ‘< (k+ 1 k+1—z)? (3)
On the other hand, Binet’s formula for \F(z) = (logI'(2))’ is known :

1 1 _uz—l

IIl(z)=-'y+/0 ———du

l—-u

Starting from this classical formula, we have:

1 ur= -1
V'(z) = "_/(; log‘u z (z +l)2

Now, (3)’ writes: .

7r
‘I” T \I’I l1—2)=
(z) + ¥'( ) sn?(nz) |
which is easily seen to be a consequence of the complements for the gamma
function.



Remark 5.5.
We note that , under the condition: n > m + 1,

P gm -1 w  sinZrw T (m+ i1
dz: — L =l G t T ——— - -
/o zn -1 n sin X sin 2ty n( cot( n )+c°t(n)) (5)

zn—-1

This may be obtained from (ﬁ—) =[5 £ 1082 4s by integrating both

sides with respect to m since £ (% cot Z(z + 1)) = m'f—é'%%%ﬁ
Using (5), doing the same thing as before, we get:

Z Z 1 _ sin 27 (6)
(nk+1)(nk+m+1) £ (nk+n-—m—1)(nk+n—1) nmsinZsin Ztly

We also note that (6) is equivalent to (4).

Remark 5.8. Putting dp,, = _,_,nsin—einﬁ—L

Yo nwith density fy,, .(z) = dmaZ=t ’;'::1 1:50-
Then we have the following moments results:

T Consider a random variable
n

. o L gm— 1 1
BV ) =t [ T de = d - ).

n(
' dk+m,n dk,n

Remark 5.7. If we take two independent random variavles X and Y such that
fx(*) = G as (0 <2 <a)and fy(z) = i e 0 <z <b),

b
Then we get that fxy(z) = Toa(iTa) logl(l HE=D) 108 %m—%%:—_*_g)’f (0 <z < ab)
and from this, similar computations give that the following intersting identity:

log(l + a) log(1 + b)

Las LAY N (a(l +b) Yett (b(l + a))k+1 + (ab)*+),

l14+a 1+b

Z:(k:+1)2((1+a 1+b

In the case @ = b = 1, this identity is equivalent to

C(og2)?+ oS~ L
D

which is already known (see [7]).
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