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Generalization and randomization of some
number-theoretic special functions

Hiroshi SUGITA
Department of Mathematics, Graduate School of Science, Osaka University

1 Introduction

There are many special number-theoretic functions around the Riemann zeta function
¢(s) =33%2,k7% Re s > 1, such as

(s, ) = i(k +z)"% Res>1 x>-1, (Hurwitz zeta function),
k=1
Ma+a)™ = (O -¢0,2) [¢0,2) = 5¢0.2)]? M

o0 n
= e""’kl:[l (1 + %) e~k [ where v = nl_l_'rlgo (Ei— - logn)]

k=1
n
= lim n® (1 + E) ,
n—o00 k
k=1

Y(x+1) = (logl(z+1)) = FF(({—E-%)-
= - nli.ngo (g k——_—i—; —log n) . (digamma function) (2)

As we see in the above infinite sum or infinite product formulas, these special functions
are related to the sequence of natural numbers {k}$2 ;. In this article, we study what we
get when {k}32, is replaced with other positive increasing sequences, including random
sequences.

The most popular method for generalization of number-theoretic special functions is
the so-called zeta regularization.

Definition 1 ([4, 6]) Let a positive sequence a = {ax}32, satisfy 37 a;® < oo for some
a > 0. Then we define the zeta function

o0
z(8) = Za;s,
k=1

%Slightly different from the traditional definition.
2This notation will be used for any functions of two variables in this article.
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which is holomorphic in Re s > a. If 2(s) is analytically continued to a meromorphic
function which is holomorphic at s = 0, a is said to be zeta reqularizable. Then we write

z- ﬁ ar = exp(—2'(0))
k=1

and call it the zeta regularized product of [[3~.; ak.

But, for our purpose, this notion is too strong, indeed, it is quite unlikely that random
sequences become zeta regularizable. We therefore assume a rather mild condition (As-
sumption 1 below) which random sequences can satisfy.

This work is somewhat an experimental one. We are not sure that it is a promis-
ing research. However, we think that some of results, such as Example 2, Theorem 6,
Theorem 7,and their extensions in § 4.1 are fully interesting by themselves.

2 Deterministic generalization

2.1 Zeta regularized product

In this article, we consider real sequences which satisfy the following condition.
Assumption 1 (i) a = {ax}§2, is a positive non-decreasing sequence diverging to oo.
(ii) @ is uniformly distributed in the half line (0,00) with the same density as N in the

following sense: Setting
F(z) := #{k € N; ax < z},

there exists some § > 0 such that
F(z)z™! = 1+ 0(z7%), z— oo 3)

Remark 1 As we will see later, Assumption 1 alone does not assure a = {ax}2,, to be
zeta regularizable.

Throughout this section § 2 (except Remark 4), we consider everything under Assump-
tion 1.

1

Lemma 1 For any € > 0, we have 32,4, ° < o0.

Proof. Since k < F(ax), we see that ka;' < F(ax)ay' — 1 as k — oo, which implies®
limsupy_, o, Ica,:1 < 1. From this, the assertion of the lemma easily follows. Q.E.D.

Lemma 2 The following limit exists:

. .
Jim [Z a;! —logx} = lim 2—:1a,:1 —logn] =: q. (4)

ar <z

31n fact, we have limk—.o kag! = 1 ([5]).
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Proof. Take 0 < € < a1, and note that F(¢) = 0. By integration by parts formula,
x T T
/ (Fit ' =1t dt = / F(t)t™2dt — / t~ldt
& £ £

= —F(z)z7 '+ F(e)e™! + /z t~1dF(t) — (logz — loge)

—F(z)z™! + (Z a;! - log:z:) + loge.

ar <z

i

Since Assumption 1 implies [ |F(¢)t~! — 1|t~'dt < 0o and that lim; oo F(z)z~! = 1,
the term limg.o0[Y g, <z 65 - — logz] of the last right-hand side of the above also has a
limit as £ — oco. We thus have

*® —1_ qyp-lgs — : -1
/; (F(t)t 1)t7'dt = —1+logs+zl_1_.ng° Z a, —logz|. (5)

ar <z

Since we have

. -1
hzn_z’g}f [Z a; —log F(x)

ap<z

n
.. -1 _
< hnn_l’ 1°r.}f §=1 ag log n]

n
lim sup [Z a;! —log n]

IA

n—oo k=1

IA

=0 | 12

lim sup [Z a;! —log F(z)] ,

and since (3) implies

hzrr_l’long [Z a;t - logF(:c):I = lim sup [Z a;l — log F(a:)}

ap<z T—o0 ar<z

= 1 -1 _
= zlirgo I:Z ag 1ogm] )

ag ST

we know (4) is valid. ' Q.E.D.

Proposition 1 (cf. [4] Theorem 2) z(s) is analytically continued to a meromorphic func-
tion in Re s > 1 — § with a unique single pole at s = 1, whose residue is 1. In addition,
the ‘finite part’ of z(s) at the pole is equal to q, i.e.,

3131 [z(s) - ] = q. (6)
Proof. Let 0 := Re s > 1 and let 0 < € < a;. By integration by parts,

Y et = / : t™*dF(t) = F(z)z™*+s / ) F(t)t—*1dt

an<z

s—1

= O %) +s / z(F(t) )t ldt + s / "t
[ [

T —s+1 —-s+1
= Oz %) +s / (F(t) — t)t=*1dt + = -z
€ s—1 8— 1
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Letting z — oo, we have

~84+1

ws) = = — 43 / (F(t) — t)t—°"1de
S — 1 £
1 se—s+1 _1 0 -1 —s
- = +s/€ (F@)e! — 1)t

This expression and Assumption 1 implies that z(s) is analytically continued to a mero-
morphic function in Re 8 > 1 — § with a unique single pole at s = 1, whose residue is 1.
Moreover

. 171 _ . °° -1 -1
lim [z(s) 3-1] = 1—loge + / (POt — 1)t-dt.
Then (5) shows that

. 11, . o _
sl - o e -

ap <z
Q.E.D.

It is easy to see that the corresponding Hurwitz zeta function

o0

2(s,z) == Y (e +2)™°, z>-ay,
k=1

is also analytically continued to a meromorphic function in Re s > 1 — § with a unique
single pole at s = 1, whose residue is 1 (cf. [4] Theorem 1).

However, in general, 2(s) and 2(s,z) do not necessarily become holomorphic at s = 0.
Indeed, for the existence of 2/(0), the integral [>°(F(t) — t)t~1dt should be convergent,
which Assumption 1 does not assure. Nevertheless their difference becomes holomorphic
at s =0.

Proposition 2 For each x > —ai, the difference function g(s,z) := z(s) — 2(s,x) is
analytically continued to a holomorphic function in Re s > —6.

Proof. Since Proposition 1 implies that sz(s+ 1) is holomorphic in Re s > —4, it is enough
to show that

h(s) := g(s,z) —sz(s+ 1)z

is holomorphic in Re s > —4.
First, h(s) is expressed in the following series in Re s > 1.

oo o0 o0
h(s) = Y a;® = (ak+z)™° - > eyt la
k=1 k=1 k=1

Suppose |z| < ak,. Then applying the Taylor expansion (negative binomial theorem)

(ax +2)7° = GES§(8+J:_1> (:—m)J

j=0 J ax

) . —\J
= a,‘c"+,\sa;s‘1+a;aZ(s+‘;' 1) (—x) k2 ko, @
j=2
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which converges absolutely, we see

ko-1 ) 0 . ; .
e s NS ()t s S g S 8D+ (s 1) [~z (ar)
h(s) = kgl( k+ T) ;/:ko ; ; 7 (a1> (ak) (.
8)
Since
o= | —snm 8+ 1) (s+2)---(s+3—-1) (—z\ fa1\?
,E,;o a" Jz=:2 J! (a1) (ak)
=N es [ Q & (3+1)(s+2)"'(3+j_1) —z\’
< L (@) X 7 &)
= &Y gRety (s+1><s+2)j-!--(s+j-1)’(ilg)f
v k=ko =2

is finite in Re s > —1 by Lemma 1, h(s) becomes holomorphic in Re s > —1. Q.E.D.

Definition 2 We define the zeta regularized product of [TgZ,(1 + Z) by

o0

z- H (1 + a—i—) = exp (¢'(0, z)) . 9)

k=1

Remark 2 If a = {ax}}2, is zeta regularizable, we have

= z\ _ zllizi(ax+2z) _ Yoy
z-’g(1+a:) = z-kffi‘;l = &P (7'(0) - (0, z)) .

2.2 Generalized Wallis formula
Proposition 3 (Weierstrass’ infinite product formula, [4] Theorem 2, [6])
o0 oo
z-H (1—{--‘”—) = eq‘”H (1+2>exp<——:€-).
k=1 Ok k=1 Gk Ok
Proof. Noting lim,_,g 82(s + 1) = 1, we first calculate h’(0).

sz(s+1)-1
x

K@) = J(0,z) - }in(’) A
1
— , — 1 — —
= 0.9 -lig[se+1)- 5]
= g(0z)—gqz  (cf (6)). (10)
On the other hand, (8) implies h(0) = 0 and so that h'(0) = lims—.q h(8)/s. Therefore

o - EEUSU () - E[E1E) -3

- Elm(2)-2]

k=1 Ak
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This and (10) imply that _
—~ T T
'(0,z) = qz + [lo (1+—)——]. 11
g0,z) = g k{:l e\lto )~ o (11)

Plugging this into the exponential function, we finally obtain

0 x (o ] T =z
z-H (1+—-—) = e"‘”H (1+—)e a
k=1 G k=1 Gk
Q.E.D.

‘Theorem 1 (Generalized Wallis formula)

=11 (1+:—k) = lim n~® 1 (1+i). (12)

k=1 k=1 Ok
Remark 3 For the special case where ax =k, k =1,2,..., and z = —1/2, we have
1 1 1 1/2
z-'!;_[l(l-ﬁ) = T2 = =172,
n 1 2n
1/2 _ = = 1/2 =2n_
n kI=]1 (1 2k) n ( - )2

So (12) implies now the classical Wallis formula.

Proof of Theorem 1. From (4) and Proposition 3, it follows that
e A ) _ _ - i z\ -=
z-H(1+_) = nlggoexp((all+a21+...+an1_logn):t:)H(1+E’-c->e o

k=1 Gk k=1
i z
= lim n7® [] (1+——>.
n—o0 k=1 ak

Q.E.D.

By definition, z-[J(1 + %) is neither 0 nor infinite. Consequently, Proposition 3 and
Theorem 1 have substantial meaning.

Example 1 The square of the classical Wallis formula is in fact a zeta regularized prod-
uct:

1 ﬁ( 1\? ﬁ 1
T T = Z- 1——-) = Z- (1—._)’
k=1 2k k=1 Ok
where%-—-};-z%,or
1 1 1
ap = =k+-+—e, k=12...,
Tl 47 4k -1’ ré

which satisfies Assumption 1. Then let us show that

\ 1 w2
7= E—%(z(s)—s—l) =TT
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Since

we must have

namely,
2L (1 1 = 1 ™
q—nkm[g(rrm)‘bg”] =1l T

Remark 4 In case 332, a; ' < 00, 2(s) becomes finite at s = 1, so that its ‘finite part’ q
at s =1 is, of course, 332, a;'. Then it holds that z- [TR>,(1 + & o) =IIE21(1 + ). Let
us show it.

(i) For a finite sequence a = {ax}_,,

N N
2(s) =Y az’, z(s,z):=) (a+2)™°, 0<A<ay,
k=1 k=1

which are entire functions, it is easy to see that exp(2/(0) — 2/(0,z)) = [Th_,(1 + =
(ii) For an infinite sequence a = {ax}§2, such that 22, a;! < oo,

o0 =]
z(8) = Za;’, 2(s,x) := Z (s +2)7°, 0<A<ay,
k=1 k=1

are finite at s = 1, but we do not know whether they are analytically continued beyond
Re s > 1. Nevertheless their difference g(s, z) := 2(s) — 2(s, ) is analytically continued to
a holomorphic function in Re s > —1, which is shown in a similar way as Proposition 3.

Indeed, by (7),
(s:c)—-—z "’Z(Hﬂ_l)(ak) ,

from which it follows that
o0 = EEUTH () EELE) - Fuclir2)
Thus o
exp(¢’(0,z)) = H (1 + —) .
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2.3 Generalized digamma function

If a = {ar}ze, satisfies Assumption 1, so does {a; + z}§2; for each £ > 0, and hence we
can define

. " 1
q(z) = lim (kgl T logn> , x>0.

Comparing with (2), we can say that —¢(z) is a generalized digamma function.

Suppose that unit electric charges are located at each point of {ax}?2, on the real line
R. Then g(x) can be regarded as the renormalized Coulomb potential at ~z caused by
those electric charges. Indeed, we see

d lim Zn: 1 —logn
n—oo k=1x+ak g
( 1 o k+1)
T+ ay 8 k

( 1 1o k+1)
T+ a & k

1 —
(z +ar)?

d(z) =

&l IM8 1

dzn
d
dz ¢
o0
o

|
Ms

-z(2,z).
k=

By (11), we have

a(a) = - = (a(5,7) ~ 2(5,2 ~ 1)

8=0

+i{—1——+lo (1-—1-)] (13)
=l +ak € z+ag/]’

Applying this formula to the sequence {a; = k}$2;, we have

~Y(z+1) = —1ogm+k§=:1[m+log (1——-ﬁ)], (z > 0), (14)
because 4 P
8; (C(s’m) - C(s,x - = a"s' (_z—a 3=0‘= log z.

Theorem 2 For any sequence a = {a}32, satisfying Assumption 1 and
ark™ = 1+0(k%), k- 00, &>0,

we have
g(z) = —logz +O0(z71), z— .

Proof. From (14) it follows that
—p(z+1) = —logz + O(z~ ™)) 7 — oo,
On the other hand, for z > 0, we have

q(z) +¥(z +1) kz:(g;—q—k_x-}-ak)

i

- Z t (z+k) (:c+ak)

had O(k=%) _ 4
B kz=:1(x+k)(x+ak) =06, s




2.4 Generalized Gamma functions

The following lemma is easily derived from Theorem 1.

Lemma 3 For eachn € N,
o0 n [o )
z-H(1+£)=H(1+£) z [] (1+—ai).
k=1 Ok k=1 Gk k=n+1 Ok

Now, recalling z- [[32;(1 + §) =T'(1 + z)~!, Lemma 3 implies

n

n I ¢ +2)
Fn+l+z) = Tl+z)[[(k+2) = k=1

k=1 z- ﬁ (1 + %)

k=1

Therefore

I'(z) =

We consider an analogy of this.

Definition 3 For each n € N, we define

G(n+1) (.’E) = k=1

Obviously, we have

G(ﬂ+1)(an+1) - H ag
k=1

n
o H (ak + )
z k=1
- 1+—) = n=12,..
’ ;:1;11 ( " ak) G+ (ant1 + )’

Q.ED.

(15)

(16)

(17)

(18)

By (15), when ax = k for each k € N, G"*1)(z) = I'(z) holds for any n € N. In
general, for a = {ax}{2, satisfying the following assumption, the corresponding G+l

has a Gamma function-like property.

105
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Assumption 2 There exists some o > 0 such that axr1 —ax = 1+ 0 (k™%), k — oo.

Theorem 3 If a = {ax}72, satisfies Assumption 1 and Assumption 2, it holds for any
Jj € N that

n—j
G("+1)(an+1_j) ~ H Qg, N — 00. (19)
k=1

Here “~” indicates that the ratio of the both hand sides tends to 1 in the specified limit.

Proof. For j < n,

. n
[la
k=1

G("+1)(an+1—j) = = o1 — i)
n n+1—j
= 11 (1 B a )
k=n+1

n—j

I1 o
k=1
n o0 ¢
- — Gntl ~ Ontloy
I &'= ]I (1 —ontiod)

k=n+1—j k=n+1

Therefore it is sufficient to show that
n (o <)
— a —_a
im ] aglz ] (1 — i"il——ﬂi—l) = 1. (20)
n—00 k= . = ak
=n+1-j k=n+1

By Proposition 3, we have

(o =]
Gn+1 — an+1-—j)
- ] Tnrle
= 11 (1-225
= exp(—gn+1(an+1 = Gnt1-j))

[= ]
G+l — Qptli Gntl — Qnilmi
< I (1_ n+l = Gnil J)exp( n+l — Qn+l ])’

k=n+1 ak Gk
where
N
1 -1
Gntl = 1}1_1'1100 Z ag” —log(N —n+1)
k=n+1
n
= g-)Y a;' = —logn+o(l), n - oo.
k=1

Then Assumption 2 implies that
exp (=qn+1(Gn+1 = Gny1-5)) = ni=0(n"%) (=3 +0(n=%)
~ n!, n—o.

The following is obvious.

00
__a —_— —— —_
II (I_M)exp(a_ni_ﬁn:_l_i) ~1, n- oo
k=n+1 Gk Ck
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From these, it follows that

o0
a —Q —7 ;
= I (1__"'*'1_”‘*‘_1.._1)~n1’ n — oo.

k=n+1 Gk
And hence
n o0
. Qn+1 — Qn4-1—j
tg, 11 o 1 (1-Sengesd)
=n+1—j k=n+1
n Jj-1
= 1 . J = H -1 -
| I ax)-n' =TT (Jimaztun) = 1
k=n+1-—j k=0

Q.E.D.

If a = {ax}32, satisfies Assumption 1 and Assumption 2, the expression (18) and
Theorem 3 can be used for numerical evaluation of z-[[Z;(1 + Z) in some cases. The
method is as follows: First, for a suitably large n and jo < n, construct a Lagrange’s
polynomial h{™¥)(z) of degree (jjo — 1) that interpolates the points

n—j
(:Uj,yj) = (an+1_j, Zlogak) , 3J=0,1,...,50~-1.
k=1

Substituting A (z) for log G™+V(z) in (18), we calculate

n'—1
II (ak + =)

(u,n’,jo)( ) = k=1
c z) = .
exp (h&"’m) (@ + .'z:))

as an approximated value of z-[Jpe,(1 + Z). (In doing this, to prevent overflow or
underflow, all calculations should be done by taking logarithm, i.e., we calculate

n'—-1
> log(ax +z) - h{90) (s + )
k=1

then plug the result into the exponential function.) Here n’ is a suitable integer between
n—jo and n. Probably, it is better to pick up n’ from the middle of the interval [n+1—jp, n].

Example 2 Let us consider the square of the Wallis formula again. The sequence dealt
in Example 1, i.e., ay = k + :} + T(ZEl——_l)' satisfies Assumption 2 for a = 2, so that we can

apply the above method to get an approximated value of z- [Tie;(1 — a‘;)
For n = 30, 300,3000, we constructed Lagrange polynomials hf;"'s), and calculated
c{mn=25)(1), which are listed in the table below. Since the true value is

1/m =1/3.14159265...,

roughly speaking, the error decreases at the rate of O(n=2).
For comparison, we also calculated w(n) := n[]f_;(1 — -;1;) as approximated values
due to the Wallis formula. This time, the error decreases at the rate of O(n™1!).
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n cmn=29)(1) w(n) ]
30 | 1/3.14059 1/3.16788
300 1/3.1415789 1/3.14421
3000 || 1/3.141592468 | 1/3.14185

In this way, c(®"~25)(1) is much better than w(n). But this example may be a special
case, and since we have not established a precise error estimate, we do not know if our
method is valid for general cases.

3 Randomized special functions

By randomizing the objects in the previous sections, we can find a new type of limit
theorems in probability theory.

3.1 In the case of Poisson process

Let {&}32, be a positive i.i.d. random variables whose common distribution is the expo-
nential distribution with parameter 1, i.e.,

t
P(Eisx)=/0 etdt=1-€e"% x>0,

and set
X = {Xe}pzr ={&+ -+ &}

Then by virtue of the strong law of large numbers, the sequence {b + Xi}32,, b > 0,
satisfies Assumption 1 almost surely. Note that

n(t) := Fx(t) = #{k|Xx < t}, t>0,

is a standard Poisson process.

3.1.1 Randomization of the Wallis formula

First let us calculate the distribution of the following random variable.

A
w =z [] (1+ > — .
(b9A) Z P (1 b Xk) , A b, b>0

Theorem 4 The n-th moment of 2(b, \) is calculated as follows. °

b=, n=1,

EWOA = § p-mexp (Z": (Tr‘) G—_)ir)'b—r-_1>’ n=23,...

r=2

Lemma 4 (Durrett[1], (5.1) Theorem, Chapt.3.) Under the conditional probability mea-
sure P(-|n(t) = N), t > 0, the distribution of {Xi}i., coincides with that of the order
statistics of N independent uniformly distributed random variables in [0,t].

4P stands for probability.
5E stands for expectation.
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Sketch of Proof of Theorem 4.
Step 1. Let {X;x}?2,; be independent uniformly distributed random variables in [0, ¢].
First, we define a random variable

N

A

4% = I I 1+ , NeN.
L k=1 ( b + Xt'k)

and calculate its moments.

E[(Wina)"
N n g N
- ,QE[(I b+Xue)] 1+'b_i_y) 'tg)
n 1 .
- O L ot)
n 1 ~1 £\
4 o v+ 5 (0 [ =rarrh)

1 [n 1 1 Ry
(1+—(log(b+t) logb) + ?‘;(T)T_l[b,_ (b+t),._1])

. N
1+ —(1og(b+t) logd) + 7 Z ( ) ,;)b"l +O(t_2))

nA log(b +1) nAlogb+ C’
t

N
1+ +O(t‘2)) , t— o0,

where

> (n by
C = Z(r)m

r=2

Step 2. Since P(n(t) = N) = tNe~t/N!, Lemma 4 implies that

E [n(t)‘"*ﬁ (1 + 1 +/\xk)n] f: E [N’"" II (1 +1 :‘X )n s n(t) = N}

N=0
o) N ,—t
NZOE [N_M Il (1 *1 +AX ) n(t) = N] : N
(o ] N -
= Y N™E [(WtNA)n}t :
N=0

A change of variables u := N/t shows

ttue—t

o n(t) A n n n
E [ﬂ(t) '\kl;Il (1+ 1+Xk) ] = Z (tu) *E [(VVt,tu,z\) ] (tu)' .

uE%N

Since the distribution of 7(t)/t is convergent to the Dirac measure 6;(du), we see

n(t) A n
—_— im —nA
EW(® N = E LLW”(” ,E(1+ 1+X’=> ]
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n(t) A n

- el )]

ttue—t

= tl—if& Zl: (tu)""’\E [(Wt,tu,A)n]m
MGTN

= lim t B [(Wyea)"] = 5eC.

The above calculation can be rigorously justified. Q.E.D.

In case b = 1, if |A| « 1, then the n-th moments of W (1, \) is approximately equal to
exp( E122"—12,\2), which is nothing but the n-th moment of a log normal distribution, more

precisely, the distribution of the random variable e¥ where Y is distributed as A (—-’\;, A2),
Hence when || < 1, the distribution of W (1, )) is close to that of e¥. 6

3.1.2 Random digamma function

Proposition 3 implies that

> A A
= ] -
log W (1, ) Qf\+’§[og(l+1+xk) =%

N
, 1
Q= Jim LZ=11+Xk ‘1°3N}'

where

This limit exists a.s.
Now, we have
E[Q] = 0, E[Q?] =1,

which is shown in the following way. First, it is easy to see that

o A A1
g[log(uka) 1+Xk]._O(,\), A= 0.

Hence we see
Eflog W(1,))] = ~E[QIA+0(\?), A—0.

On the other hand, since the mean of log W (1, )) is approximately equal to —2/2, we see
E[Q] = 0. And the 2-nd moment of log W (1, )\) is approximately equal to A2, so we see
E[Q* =1.

Suppose |A| « 1. Since —QX is the main part of log W(1,}), and logW(1, ) is
approximately distributed as A (—-'\;-, A2), one may well expect that Q is distributed as
N(0,1). But although its distribution is close to A(0,1), it is not exactly distribute as
N(0,1). In deed we have E[Q3] = 1/2.

Let us investigate a little bit more general case. Let

N
. 1
Q((L‘) = 1\}}_!%0 Lizlm —logNJ , >0,

Comparing with (2), we can say that —Q(z) is a random digamma function.

$This may hold in any case where {Xx}52, is the partial sum of positive i.i.d. random variables with
mean 1.
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Theorem 5 The mean of Q(x) is E[Q(z)] = — logz, and the centered moments of Q(z)
are

2] 1
BIQE@) +loga)] = ol P oy X

2<n) <--<np
kyng+-- +kpnp=n

=2,3,...(21
H k. '('n,')k-" n _l)k y N 3 ( )
More concretely, the centered moments of order 1,2,...,6 are
1 1 3 1 5 1 15 15 1
© 2w 2T AT ATt

Sketch of Proof. As in the previous section, let {X;x}_, be i.id. uniform random
variables in [0,¢]. Define

N
;N = k{_:l (:c +1Xt,k - c(t)) , c(t)= %—(log(m +1t)—logz).

Then, when t — 00, we have

B [(m + X c(t)) ] - { __r o(t™**¢) (n>2) (22)

z1l(n - 1)t

Here € > 0 can be arbitrarily small. Indeed, if we write the L.H.S. of the above expression
by integrals,

AR

n

- Z( )( ) [ +uyTay

B (- =0)
P> (Z)(-c(t))"-' x { eft) (r=1)
r=0

;@ =@+ )T (r22)

SRCIRLECIEDY ( ) ~OTE = Dt (7= e +1t)"‘1) '

r=2

Here we have ¢(t) = O(t~1+¢), t — o0, and hence we obtain (22).
Under these preparations, we see

B[V ]

" e Z P L (5 0) )

ni+nz+--+ny=n k=1

- E fele)]

ni+n2+-4ny=n k=1
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_ i N Z 1 n! X
p=1 (N -p)! 2<n) < <np kilkl -« kp! - (nal)®1(ngl)ka .- (nyl)ke
k1n1+k2n2+m+kpnp=n

fie[(e ) ]

= f:N(N—n.--(N—pﬂ)x
p=1

1 n!
Z kilks!--- kp'. ' (nﬂ)kl ('ng!)’"2 see (np!)"r' X

2<n1 < <np
kl ny +kgn2+---+kpnp=n

£ 1 ~24¢ g
H (a:"i"l(n- - 1)t ot ))

- 5085 ()

p

1 1 n!
. . X
zsﬂl;“p gh—(kitkatethp)  kylkol. . kpl  (ny!)k1(ngl)kz ... (np!)ke

kin)+kgng+--+kpnp=n

P kj
1

||( +0(t-1+€)> :

From this, it follows similarly to the previous theorem that

n(t) 1 ™

I-I..I& (k;l (a: + Xx B c(t)))
n(t) 1 ™

- 22| (5 Ex0)

tN ~t

= E‘&ZE[ o]

= tn 3 B[] G (= mme(al)
t

E[(Q(z) +1ogz)"] = E

o

t—o0
= i Z n—(k +11c Todkp) <
Pl asmcocnp T LTTTRR
kiny+kgng++kpnp=n
1 . n! IPI 1
Rkl Kl (il (ng)F - (mph)ee 1 (g — D7
Now it is easy to get (21). Q.E.D.

The following theorem is an easy consequence of the law of iterated logarithm and
Theorem 2.

Theorem 6 For any e >0, Q(z) = —logz + O(z~(1/2+€), 2 — 0, a.s.
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Regarding this theorem as a law of large numbers, the following corresponds to the
central limit theorem.

Theorem 7 The distribution of \/z(Q(z) + logz) converges to N'(0,1) as z — oo.

Proof. The n-th moment of \/Z(Q(z) + log z) is

= nl
[(\/_(Q(x) + log w) ] n: pg 2<n]§: <np wn/z_(k1+.,,+kp) j=I11 k]!(nj!)kj (nJ _ l)k.'l .

kinyi+-+kpnp=n

In the sum Eéﬁ—'” of the R.H.S., the sum for p such that n/2 > k14 - -4+kp converge to 0 as

z — 00. Therefore as £ — oo, what survive are the terms for p such that n/2 = k1 +---+kp
(from this n must be even), that is, for p = 1, k; = n/2, n; = 2. Hence we see that

. n!
Jim E [(\/E(Q(m) + log a:))"] T (21’ ( n: even).
This is nothing but the n-th moment of N(0,1). Q.E.D.

Suppose that unit electric charges are located at each random point of {X;}32,, the
renormalized Coulomb potential Q(x) at the location —z is distributed approximately as
N(-logz,1/x) if z is large.

Another proof of Theorem 7. Since the distribution function F{,, x,}(t) corresponding to
the sequence {x + X;}32, is exactly n(t — z), (5) implies that
o0 dt
Q) = —10ga:~+1+/ (n(t —2) — 1) 5
x

- —1oga:+/0°° (n(t) - t) (—t".%)—z'

Since E[n(t) — t] = 0, we readily see E[Q(z)] = — logz. From the following expression

V2 (Qa) +loga) = [ (n(e) ~ ) Loyt (29

let us derive Theorem 7 by using the Lindeberg - Feller theorem ([2] Chapt.2 (4.5) Theo-
rem).

First, note that 7(t) := n(t) — t is a martingale with mean 0. The Fubini theorem (or
integration by parts formula) implies

|y ot = [ (16)+ [[an) o
/T ( /T(T%dt) di(s) + A(S) f: (t£)2dt
= /S (22 - 22 )i+ (325 - 22 ) o)

|

il

s+zx T+

(" L2 o) - 222 H(T) + S(S).




114

Letting S — 0, T — 0o, we have the fallowing expression.

- vz - /
VE Q@) +loga) = [ i)Yy Lot mdn(t), as.
Now put X

m ﬁ .

Un,m = /(m_1)2 m—dﬂ(t), m = 1,2,...,1‘),— 1,
00 \/_

Unn = .

: o di(t)

Let us the triangular array {Upn m}1<m<n,1<n satisfies the Lindeberg - Feller’s conditions.

Step 1. Since {n(t)}:>o is an independent increment process, {Unm}%~; is independent
sequence for each n.

Step 2. It holds (without letting n — oo) that

n n—1 ,.m2 n 2
2 E[Uz'm] = 2 -/(‘m—1)2 (t_\-I/—;n> dt+

m=1 m=1
0o (t+n)?

Step 3. Now, to prove the theorem, it is sufficient to show the last Lindeberg - Feller’s
condition: for any € > 0 we have

()«
(n—-1)2 t+n

dt = 1.

n
lim 3" E [U,{m; Unm| > a] = 0. (24)

m=1

Lemma 8 If a random variable U has the 4-th moment, then

E[U%; U > ¢] < e 2E[UY).

Proof.
E|U%; |U < E|U? U2-U < lefv
U5 1Ul>¢] < E|U2. ;5 UI>¢| < SE[UY.
Q.E.D.
Since
2
o0
2 1 _ vn ="
ElUnal = /(.n—1)2 (t+n) dt n-1)2+n — 0 n=oo
it is sufficient to prove
n—1 .
Jim > E[UL] =0 (25)
m=1

to show (24) by Lemma 5.
Let us estimate each of E[U, ] Putting

Un(t) = /(:n vn dij(s), m <t,

~1)28+n
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and applying the Itd formula, we have

m2 4 =
E [U;:,m] = E [ /( oy ((Um(t) + z%) —Un(t)t - 4Um(t)3ﬁ_‘/;n) dt]
B m2 \/ﬁ 2 \/ﬁ 4
L2 (et () () )
m? n n n n?
- /(m—l)ﬁ (6 ((m -1)%+n t+n) (t + n)? + (t+n)4) at
_ m? t— (m—1)2 1
= /(m_nz (6 =12 n)trne | G+ n)4) a
m? om — 1 1
< /wm (6 m=-1r+mi T (m=12+ n)'*) a
(2m — 1)2 R om —1
m=12+np T (m=D2+n)

2. 6(2m—-1)2+2m -1
((m-1)? +n)t

= 6n?.

From this, we derive

n—1 —1\2
S nfo,] <my CMoIAMIL | oi, oo
m=1 ' m=1 ((m - 1 + n)

thus (25) holds. Now the proof of Theorem 7 is complete. Q.E.D.

3.2 In the case of random walk

We next consider the case where {£;}$2, is a Bernoulli sequence with P(§; = 0) = P(§ =
2) =1/2, and X, := Y., &. Again by the strong law of large numbers, {z + Xi}32,,
z > 0, satisfies Assumption 1 almost surely.

3.2.1 Random digamma function

Defining G by
Gr :=#{neN; X,=2k}, k=12,....

{Gk}52, is an i.id. sequence with a geometric distribution P(Gx = n) =2, n € N,
and we have

G1+§GN 1 i Gk
= 2+ Xe etk

Let us first look at the law of large numbers. Since E[Gi] = 2, for sufficiently large N,

log(G1+G2+---+Gn) = log( ZGk>+logN log 2 + log N.
k=1

"For this estimate, use n f°° z2/(2? + n)dz = 7/(32v/n).



Therefore, with probability 1,

Qx) = hmoo [ 3 G% }

kO

converges. Theorem 2 implies that with probability 1,
Q(z) = —logz+0(z™Y), z— .

The mean of Q(z) is computed as follows.

X Gy
EQ(z)] = légnwE [Z Yok (log2 + log N)]
= Jlim [Z — (log2 +1log N )]

N—oo

= —Y((z/2) + 1) - log2
1

k=0

= lim [Z(z/2)+k (10g2+logN)]

Next, let us look at the central limit theorem. We put

Y, Gy
Qn(z) = Z :c+2k — (log 2 + log N),

and calculate its characteristic function (Fourier transform). Noting that

) Leit
E [exp(itGy)] = 1 j I
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we have
itQ N (x) M G
wYN T e 4 . —_
E[e ] = ’I:I()E[exp(zt a:+2k:>] exp (—it(log 2 + log N))
N [ Lexp (it i
= H 51 ( _z+ 1) exp (—it(log2 + log N))
i _l—gexp(zt-m)_
N [ Llexp —it - =it ] N
= H 2 - ( _z+1) exp[—it(—z—iﬁ+log2+logN)].
k=0 Ll—gexp(%t'mk')_ k=0 T+
Thus

¢te@] — T exp (=it - o) xp [—it (~3((z
E[t ] kI=Io|:2—exp(z't-$E) exp [—it (=¥ ((x/2) + 1) +log2)] .
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Let us take the limit £ — oo of the infinite product

0ty - i
2 —exp (ztﬁ) B k=0 2exp(’it--z_,_—12;)

Developing the denominator, we see

1 2
2 it . - it .
P (zt T+ 2k) exp (zt T+ 2k-)

1
——exp(z’t;—_%;)} .

k=0

= oof14y2t__1 t2 +.. 142t 1 4¢? L

B z+2k 2 (z+2k)? z+2k 2 (z+2k)?
t2

= +m+-..’

and hence

o | exp (-—it~ ;:12-5) 00 ( £2 )-1
= 1 — e
kl;Io [2-—-exp (z’t : 5:—_;1-55) kI_IO - (z + 2k)?

2
~ Hexp( @ +2k)2)

k=0

= e"p( 2 2,;__%((1:/2)+k)2)

From the above, when z > 1, the distribution of Q(z) is close to the normal distribution
with mean —((x/2) + 1) + log2 and variance 1 322, W;W)’ Since we have

T — OQ.

——w((w/2) + 1) +log2 = —logz+O(z7Y),

3 Z ((z/2) T = @ toE™),

as £ — 00, in the long run, we proved the following convergence in distribution.

Vz(Q(z) +logz) — N(1,0), z — oo.

That is, the assertion of Theorem 7 holds in this case, too.

4 Further discussions

4.1 Extension of Theorem 6 and Theorem 7

Recently, Theorem 6 and Theorem 7 have been much more generalized by S.Takanobu.

Theorem 8 ([5]) Let {£}2, be an i.i.d. sequence with & > 0, E[§;] = 1, and E[Ef ] <o
for some B > 1. Then we have Q(z) = —logz + O(z7!), £ — o0, a.s..

Theorem 9 ([5]) Let {£}32, be an i.i.d. sequence with & > 0, E[§] = 1, and v :=
V[¢}] < co. Then, for X = {Xi}2, = {&1+ - +&}2,, it holds that the distribution of
VZ(Qx(z) + log z) converges to N'(0,v) as ¢ — oo.
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For i.i.d. sequences {£}32, with & > 0, E[&] = 1, but V[£2] = oo, we have following
limit theorem.

Theorem 10 ([5]) (i) If [0,00) > s — E[¢?; & < 5] € [0,00) is slowly varying at oo,
there ezists a positive sequence {Bn}5%, such that

I—;E"‘ (Qx(z) +logz) — N(0,1), z— 00, in distribution.
L=

(ii) If there exist a B € (1,2) and an L(-) which is slowly varying at oo such that
P& > )~ L(z)z P, z— o0,

then there exists {Bn}22., such that

Jim B o (VETH0 - 1) 22 @x(0) +10g) |

o0
- VI _ /Ty
= exp (B/o (e 1 lby) yﬁ+l) .
These results with proofs will be written in a paper in near future.

4.2 The case of two dimensional random array of electric charges

We mentioned about the electro-static interpretation of random digamma function in
§ 3.1.2. In this context, a natural question arises: Suppose that unit electrical charges are
located at random in an unbouded domain of R2. Then, can we define a renormalized
Coulomb potential as a random variable?

Example 3 Suppose that the distribution of the unit electrical charges are described by
a Poisson random measure on the out side of centered circle B(O, z)°¢ with the Lebesgue
measure as the intensity. Then the Coulomb potential at O will be expressed as

[o -2

by a standard Poisson process N(t), which is of course divergent. The renormalized
potential would be

N dlf’/g_ﬂ, N() =N - t,

but it is not well-defined because
o dN(t)\> _/wg_t_éo
2 \/i - z32 t
To look at the situation closely, let us observe the following deterministic case.: The

sequence a = {\/E}ggl is zeta regularizable, because the corresponding zeta function is
2(8) = {(s/2). Hence by Theorem 2 in [4] and Theorem 1.8 in (3], we have

z-l!_j(1+%)=exp((<%)x—l?)g(l+—%)exp(—%+;—z),

E
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where
1 _ 1
¢ (5) = lim L}zjl - wa] = ~1.46035...

For X = {Xk}32, = {& + - + &}§2,, partial sums of i.i.d. random variables,
Assumption 1 is satisfied with § < 1/2, and then the corresponding zeta function

2(s) = 3 X5
k=1

will become meromorphic in Re s > 1/2, but Z(1/2) may not be defined. This fact has
something to do with the non-existence of the limit

> ——1——2\/17+21: :
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