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On the structure of the critical set in the minimax
theorem without the Palais-Smale condition!
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Abstract

In this note, we are concerned with the variational problems of
minimax type relating to the mean field equation appears in the vortex
system in two dimensional fluids. The variational problems are not
known to satisfy the Palais-Smale condition and solutions are obtained
by using an indirect method called the Struwe’s monotonicity trick for
each cases. Our interest is to discriminate between the critical points
obtained by different variational problems. To this purpose, we try
to study the local structures around the critical points, but standard
methods seem not to be applicable also because of the lack of the
‘Palais-Smale conditions. Under these situation, we noticed recently
that the abstract refinement of the Struwe’s monotonicity trick by
Jeanjean is applicable to study the local structure around the critical
points. We review here some known facts on the existence of solutions
rather in detail and describe our result and scopes.

This is based on the joint work with Prof. Takashi Suzuki of Osaka
University.

1 Preliminaries

We are concerned with the following equation:

~Agv =\ (fo;dvg - ll\lﬂ) , (1)

where (M, g) is a two-dimensional compact orientable Riemannian mani-
fold without boundary and X is a non-negative constant. Ay, dv,, and |M)|
are the Laplace-Beltrami operator, the volume form, and the volume of M,
respectively. The equation (1) is invariant under the replacement of v by
v + (constant), and henceforth we take the normalization

/M vy, = 0. @)
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The equation like (1) is sometimes called the mean field equation because
it appears in the mean field limit of the equilibrium states for the statistical
mechanics of the vortex system of one species [5, 6, 18], see also general
references of this field [24, 21, 27]. Associating —\ and v/ with the inverse
temperature of the state and the Hamiltonian of the system, we are indeed
able to see that the non-linear term of (1) resembles the canonical Gibbs
measure as follows:

ev e"(‘A)§
Tuedvy  Jype T %dn,

We note that there are many other roots of the equation (1), for exam-
ple, the conformal changes of metrics on surfaces [2], the self-dual gauge
field theories [36], and describing the stationary states of chemotaxis or self-
interacting particles [34]. We also note that similar problems are considered
on a two-dimensional bounded domain 2 under several boundary conditions
according to the motivations of the problems [10, 9, 32, 28, 23, 22], but to
simplify the presentation we only consider on (M, g) under (2).

In this note, we are concerned with the variational solution to the problem
(1) and (2). To this purpose, we take

E={v€W1’2(M)l/ vdvg=0},
M

which forms a Hilbert space with the inner product (v, w) = [, Vv-Vwdy,

and the norm |- ||z = {({,-)}*/*>. From the following fact, that is one version
of the Trudinger-Moser inequality, the right-hand side of (1) is well-defined
for each v € E:

Fact 1 ([12, Theorem 1.7]). There is a constant C' determined by M such
that

/ 64"”2dvg <C
M
holds for every v € E satisfying ||v|lg < 1.

The problem (1) and (2) is the Euler-Lagrange equation of

1 1
1) = 3ol ~ Mog (3 [ e,

defined on E. The elementary inequality

2
@) < o= ol + 4 (”ﬁﬁ)
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implies
VT 2
/ e'duy < e'fé?”"“%/ 8477(7“’%7%) dvg.
M M
Therefore, Fact 1 assures that

1fggb‘(v) > —00

for 0 < A < 8. On the other hand,

A 1 A 9
B(0) = grln(®) + 3 (1= 321 ) 1ol
holds and hence the functional I,(-) is coercive on E if 0 < A < 87. There-

fore we have the following from the standard direct method of calculus of
variations:

Fact 2 (cf. [5, Proposition '7.3] or [18, Theorem 3]). If 0 < A\ < 8, the
minimization problem inf,cp I (v) is attained.

On the contrary, I(v) becomes not coercive on E when A > 87 and even
unbounded from the blow when A\ > 87. Moreover [ is not known to satisfy
the Palais-Smale condition (see Section 2) for A > 8, see [20, 28, 29] and
the references therein. Therefore finding solutions to (1) and (2) becomes a
delicate problem when A\ > 8.

In this note, first we review several known variational schemes to the
problem (1) and (2), all of which are based on the combinatorially use of the
so-called Struwe’s monotonicity trick (see Section 4 for detailed description)
and the blow-up analysis of the solution sequence to (1) and (2) (see Fact 5).
The main interested to us is in the differences between the solutions obtained
by different variational schemes. To this purpose, we are now try to study
the local structure around the solutions as the critical points of I, such as
the Morse indices of them. There are indeed several standard method, but
they seems not to be applicable to our cases also because of the lack of the
Palais-Smale conditions. Under these situations, recently we noticed that
the abstract refinement of the Struwe’s monotonicity trick by Jeanjean [16]
is also applicable to study the local structure around the critical points.

In the following, we review several variational schemes to the problem (1)
and (2) and present our recent result and scopes on the local structure of the
critical points of I,.
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2 Minimax variational schemes

We review here the following two variational solutions to the problem (1)
and (2) obtained by the different variational schemes:

o Struwe-Tarantello solution based on the mountain-pass theory [33].
e Ding-Jost-Li-Wang solution based on the linking theory [10].
Struwe-Tarantello solution First, we recall the standard mountain-pass

theorem, given a real Banach space (X, |I‘I), a C* functional I : X — R
and ug, u; € X with ug # u;. Then, taking the path space

I':={y € C([0,1], X) | 7(0) = uo, ¥(1) = w1}

joining ug and u;, we assume (I, ug,u;) is a triplet satisfying the mountain-
pass structure,

’

cr > max {I(up), I(u1)}, - (3)
where c; is the mountain-pass value of I defined by
cr = inf max I(7(2). (4)

We call {ux} C X a Palais-Smale sequence if
I(ug) ¢ and  I'(u) —0in X*

for some ¢ € R, and such a sequence is called the (PS). sequence in short.
The Palais-Smale condition, denoted by the (PS) condition, indicates that
any (PS). sequence admits a subsequence converging strongly in X, where
c € R is arbitrary.

A form of the mountain-pass theorem originated by Ambrosetti-Rabinowitz
[3] is stated as follows:

Fact 3 ([13]). Suppose the mountain-pass structure (8) and the (PS) condi-
tion. Then, the mountain-pass value c; defined by (4) is a critical value of
I, i.e., there is v € X satisfying I'(v) =0 and I(v) = ¢;.

We can wesken the above required (PS) condition to the local Palais-
Smale condition denoted by (PS),; any (PS)., sequence has a strongly con-
verging subsequence, see, e.g., [35].

Obviously we have a trivial solution v = 0 to the problem (1) and (2),
and we are able to observed that

A A
III 0 V,0) = ||v 2 _._./ vzdv 2 (1 _ ______) 2
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for each v € E, where 13 is the second eigenvalue of —A, because we assumed
Jys vdvg = 0 on E. Therefore the trivial solution v = 0 is a local minimum
of Iy when A < vp|M|. On the other hand we know that I, is unbounded
from the below if A > 87. Consequently (I, 0,v;) for some v; € E satisfies
the mountain-pass structure

c(A) > max {I,(0), Ix(v1)}, (5)
if 87 < A < | M|, where c()\) is the mountain-pass value for (Ix,0,vq):

o(A) = inf mex L(v(®))- (6)

The case 87 < v, |M| needed here actually arises when M is a flat torus
with the fundamental cell domain [0, 1] x [0, 1], i.e., 2| M| = 472, and hence-
forth, we are always concerned with such (M, g). There is, however, the other
case of 87 > 15| M|, e.g., the example attributed to Calabi, i.e., the dumbbell
surface homeomorphic to $? with a slender pipe, see [8].

Since ([,0,v;) for some v; has the mountain pass structure, the only
requirement is the (PS)(») condition: any sequence {u} satisfying

I\(ug) ¢ and  I{(ux) — 0in E*. (7

has converging subsequence. Unfortunately, our I, is not known to satisfy
(PS)¢(x) condition.

To overcome this difficulty, the followmg fact is observed. From the
Jensen’s inequality

A . 1 1
——— u > WTf u=
log'(IM|/1;46 ) 2 logeMiet=0 ®)

and hence A — I,(v) is non-increasing for each v. Therefore the inequality
(8) implies also the uniform mountain-pass structure, i.e., we obtain (3) for
any A € A, A1] with fixed v; € E, where 87 < \g < A\; < V2|M | are arbitrary.
Consequently, A — c(}) is non-increasing, and ¢/(A) = fc()) exists for a.e.
A

The existence of ¢/(A) induces the existence of a bounded (PS)c) se-
quence [33, Lemma 3.5], see Section 4 for more details. Then, we can use
the bounded Palais-Smale ¢ condition denoted by (BPS), condition satisfied
by I,; every bounded (PS). sequence to Iy has a convergence subsequence.
This (BPS). condition to I is a consequence of the Trudinger-Moser inequal-
ity (Fact 1) and the elliptic estimate. In this way, we obtain the following
theorem.
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Fact 4 ([33, Lemma 3.3)). If A — ¢()) is differentiable at X € (8, vy |M]),
then this ¢(\) is a critical value of I. -

These arguments are sometimes called the Struwe’s monotonicity trick
- [16]. Concerning the existence of the non-trivial solution, the residual set of
A is compensated by the blowup analysis [20, 19] originated in [26, 4]. One
conclusion of these results is as follows:

Fact 5 ({19, Theorem 0.2]). Let {A,} be a sequence satisfying A, — A >

0 and {(vn, An)} be a sequence of solutions of (1) and (2). Then {vn} is
relatively compact in E if A & 87N.

Consequently, any X\ € (87, v, |M|) \ 8N admits a non-trivial solution.

Ding-Jost-Li-Wang solution Another variational scheme to get a solu-
tion to (1) and (2) is based on the following observation. Take an isometric
embedding (M, g) into RY with sufficiently large N by Nash’s theorem, see
[2, Theorem 4.34] for example, and let

m(v) =

denote the center of mass of v € E. The following lemma, which is essentially
used in [10], describes the concentration of a sequence in E satisfying Iy —
—00:

Fact 6 ([7, Lemma 1]). Let {v,} C E satisfy In(vs) — —o00 and z, =
m(vy) = Too € RY for X € (87,16m). Then o € M and
e'n

fM vn —_ 5m°°

weakly-*x in M(M) =C(M)'. (9)

The origin of this fact is in the notion of the improved Trudinger-Moser
inequality established by Aubin [1]. Fact 6 says that I '(—oo) represents
the topology of the base space M and we are able to use the linking theory
if genus(M) > 0.

Suppose genus(M) > 0 and choose a Jordan curve I'y C M and a closed
curve T's C RY\M that links I';. We denote the two-dimensional unit disc
as D= {(r,0) |0 <r < 1,0 <0 < 27} and consider a family

D, = {h € C(D;E)‘
m(h(-,-)) can be extended continuously to D,
m(h(1,-)) : S* — I'; has degree 1,
lim sup Ix(h(r,8)) = —oo}.

r—1o<6<on



Figure 1: The linking structure

From Fact 6, we have

a(A) = hlean,\ (;g% I\(h(r,0)) > —©
if 8t < XA < 167 and genus(M) > 0, see Figure 1. On the other hand,
A — a()) is non-increasing and o'(\) exists for a.e. A similar to the case

of the mountain-pass value ¢()\). Using the Struwe’s monotonicity trick as
above, we get the following fact:

Fact 7 ([10, Theorem 1.2]). If A — a(}) is differentiable at X € (8, 167),
then this a(A) is a critical value of Iy.

The residual set of )\ is also compensated by the blowup analysis (Fact 5)
and consequently any A € (8, 167) admits a solution to (1) and (2). Never-
theless it may happen that this solution is the trivial one v = 0, the solution
obtained in Fact 4, or the other solution recently obtained by Djadli[11],
which we mention briefly in Section 3, see Fact 11. So the next objective is
the discrimination of these solutions.

3 The result and scopes

One method to discriminate between the solutions is to calculate the Morse
indez of each solution as the critical point of Ix. The Morse index is defined

17
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Figure 2: Critical points by Fact 4 and Fact 7.

for a critical point of a functional I(-) € C?(H,R) for a Hibert space H.
Assume that u is a critical point of I, that is, u satisfies I'(u) = 0, and the
Morse index of u is defined as the supremum of the dimensions of the vector
subspaces of H on which I”(u) is negative definite, see, e.g., [25, p.185].

In our cases, Fact 4 and Fact 7 seems to give generically critical points
with the Morse index 1 and 2, respectively, see Figuer 2. But the standard
argument, e.g., [13, 31], seems to require the Palais-Smale condition. So we
also need to overcome this difficulty here. To this purpose we get at present
the following fact (Theorem 10) for the solutions obtained by Fact 4.

For a general functional I € C'(X,R) on a real Banach space X and
c € R, we set

Cr(l,c) := {v € X|I(v) = ¢, I'(v) = 0},
IF'={ueX|Iw<c}, IF={ueX|I{u)<c}.

To describe the geometric structure around critical points, Hofer intro-
duced the following concepts:

Definition 8 ([13]). Given I € CY(X,R) and v € Cr(I,c), we say the
following: .

(i) v is a local minimum if there is an open neighbourhood V' of v such that
I(u) > I(v) for anyu e V.

(i) v is of mountain-pass type if any open neighbourhood U of v has the
properties that UNI® # O (that is, v is not a local minimum) and UNI°
is not path-connected.

Concerning the above concept, Hofer established the following fact for
I € C}(X, R) satisfying the (PS) condition:
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Fact 9 ([14]). Let c; be the mountain-pass value in Fact 8. Then, there exists
a critical point in Cr(I, cy), either a local minimum or of mountain-pass type.
If all the critical points in Cr(I,cr) are isolated in X, furthermore, the set
Cr(I,cr) contains a critical point of mountain-pass type.

Roughly speaking, the concept “mountain-pass type” seems to be a C!
version of the situation described by the Morse index < 1. Indeed assuming
that the functional I belongs to C?(H, R) for some Hilbert space H and I’
has the form identity-compact, Hofer proved the Morse index of the isolated
mountain-pass critical point is < 1, see the proof of [13, Theorem 2] (see
also [15, Thorem 2|). In general, the estimate is not improved to the Morse
index = 1 because we do not assume the non-degeneracy of I”. Therefore to
determine the exact Morse index of the critical point of mountain-pass type
is another problem. We note that in the same papers Hofer calculates the
exact topological index at the isolated mountain-pass critical point assuming
the spectral assumption that the first eigenvalue \; of I” is simple provided
A1 = 0, which seems not to be satisfied by our I,.

Recently we extend the above result to our cases I, for A > 8m not
satisfying the (PS) condition:

Theorem 10 ([30]). In Fact 4, if ¢()\) exists and X\ € 87N, then there
exists a critical point in Cr(Iy, c())), either a local minimum or of mountain-
pass type. If all the critical points in Cr(Iy,c())) are isolated, furthermore
Cr(I, c())) contains a critical point of mountain-pass type.

The Palais-Smale condition is used in twofold in the proof of the original
result by Hofer [14], that is, the compactness of Cr(Iy,c())) and the defor-
mation of the sub-level set of I,. We can avoid the first issue by the blowup
analysis (Fact 5) under the cost of A & 87N. The second issue is compen-
sated by the combination of the abstract setting of the Struwe’s monotonicity
trick by Jeanjean [16] (see Fact 12) and the quantitative deformation lemma.
of Willem [35] (see Fact 13), which is a deformation lemma not assuming the
(PS). condition a priori. In Section 4, we present this theorem in an abstract
form (Theorem 16) and sketch the proof of it.

The Hofer’s calculation of the Morse index for the critical point of mountain-
pass type seems to be applicable for Theorem 10 and we think that it is < 1.
Similar result seems to hold for the solutions obtained by Fact 7. These will
be discussed in the forth coming paper.

Recently we are informed that another variational scheme based on the
similar argument to Fact 7 is established, which is applicable to all XA €
(8m,00)\87N without any topological assumption like genus(M) > 0 [11].
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For every k = 1,2,3,--., assume
A € (8km,8(k + 1)m).
Let X be the family of formal sums of Dirac measures on M:
Bp = {ZhLds, | 120, EE =1}

This is known as the formal set of barycenters of M of order k£ and X,
represents nothing but M. It is observed that ¥ represents I;* for X €
(8km,8(k + 1)7) in an appropriate sense (cf. Fact 6) and that ¥ is non-
contractible for any k > 1.

Let Xy = Xi x [0, 1] be the cone over X, with X x {0} collapse to a single
point. Taking an appropriate family I C C (fk, H;(M)), the minimax value

D(A) = inf max Iy(y(m))

meXy

is proved to be finite and the following is obtained by Djadli:

Fact 11 ([11, Theorem 1.1}). If A = T'(X) is differentiable at A € (8km, 8(k+
1)7), then this T'()) is a critical value of I.

It seems interesting to calculate the Morse index of the critical point
obtained by this variational scheme, which seems to be < 3k.

4 Sketch of the proof of the main result

We start with recalling the Jeanjean’s abstract refinement of the Struwe’s
monotonicity trick [16]: |

(H1) (X,]l-1l) is a real Banach space and A C (0, c0) is a non-void interval,
(H2) {I\}»en is a family of C* functionals on X with the form
I\ (u) = A(u) — AB(u)

for A € A, where B(u) > 0 for any u € X and either A(u) — +o0 or
B(u) — +o0 as. ||ul| — o0,

(H3) The mountain-pass structure holds uniformly in A € A:

e(A) = inf max I,(7(¢)) > max{(uo), (1)},

where ug # u;.
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As we have seen in Section 2, the functional associated with the mean field
equation satisfies the above assumptions, where X = E,

1 1
A(u) = = || V|7, B(u) =log| == [ €“],
2 | M| J

up = 0, and |juq||z > 1.

Thanks to B(u) > 0, the function A € A — ¢()) is non-increasing and
d () exists for a.e A. Then, there is a mini-mazrimizing sequence accompanied
with paths of which tops are contained in a bounded set. We obtain, more
precisely, the following fact.

Fact 12 ([16, Proposition 2.1]). If d(\) exzists, then any A\, T A takes {yx} C
I' and K = K(c'(\)) > 0 such that

() @I < K if In(w(t)) 2 C()\A) — (A= Xk), where t € (0,1).
(1) maxseo,1) In(Vk(t)) < c(A) + (= (A) +2)(A — Ax).

Here, we confirm the difference between Fact 12 and the other arguments.
First, similarly to the original assertion [33], the above sequence {7} C T is
taken by

tern[(a):)l{] I,\k (’)’/c(t)) < C(Ak) + (A - )\k). (10)
In Fact 12, however, this mini-maximizing sequence {vx} C I is controlled in
accordance with I,. It follows from (10) that Iy < I, and hence c()\) < ¢( M),
but Fact 12 (ii) is more delicate. Actually, the derivation of Lemma 12 (ii)
from (10) is not trivial. Second, the monotonicity assumption (H2) and the
existence of ¢/(\) are not essential. These conditions can be replaced by the
existence of a strict increasing sequence Ay T A such that

C()\k) —_ C()\)

<
A— X - M()\)

with M()\) < oo under the cost of an additional assumption to I . Then,
Denjoy’s theorem is applicable to infer that the residual set of such A is
measure zero, see [17, Lemma 2.1].

Since the tops of {vx} obtained by Fact 12 are bounded, we are able
to make a meaningful deformation of them, using the (BPS) condition for
the (PS) condition. This is done by the quantitative deformation lemma of
Willem [35] stated as follows.
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Fact 13 ([35, Lemma 2.3]). Given a real Banach space (X, - ||) and p =
o(x) € CY(X,R), we suppose that S C X, c€ R, € > 0, and 6 > 0 satisfy

8e

o)l 2 5

for every u € ¢~ ([c — 2¢, ¢ + 2€]) N Sas5, where
S = {u € X | dist(u,S) < r}.

Then,.there exists n € C([0,1] x X, X)) such that

(i) n(t,u) = u if eithert = 0 or u & ¢~ ([c — 2¢, ¢ + 2€]) N Sy,

(i) n(1,***NS) C %,

(i) n(t,-) is a homeomorphism of X for everyt € [0,1],

(iv) ||n(t,u) — ul| < & for everyu € X and t € [0,1],

(v) ¢(n(-,w)) is non-increasing for every u € X,

(vi) e(n(t,u)) < c for every u € ¢°*NS; and t € (0, 1].

Under these preparations, we can show the following deformation lemma

& la Hofer [14, Lemma 2] (or [13, Lemma 1}, {15, Lemma 1]) suitable for our
case:

Lemma 14. Let I € CY(X,R) satisfy (BPS). for ¢ € R. Suppose that
Cr(I,c) is bounded and contained in an open neighbourhood W C Bg(0),
where R > 0 and 26 = dist(6W,Cr(I,c)) > 0. Then, each € > 0 and
6 € (0,0) admit € € (0,8] and n € C([0,1] x X, X) such that

(i) n(0,u) =u and I(n(-,u)) is non-increasing for every u € X
(%) n(1, (I\W) N Bgr(0)) C I*™*
(ii) |[n(t,u) —u|| < 8 for everyu € W and t € [0,1]
(i) n(t,u) = u for every t € [0,1] and u € I"*((—o0,c — E]) U I—l([
,00)) U Bry2s(0)°. |

Proof. Putting S = Bg(0)\W, we have S3snCr(I,c) = 0 and Sas C By, 55(0)
for 6 € (0,8). By (BPS),, on the other hand, there are £o > 0 and §, > 0
such that ||I'(u)]| = o for every u € I71([c — 2€q,c + 2€¢]) N Sps. Taking
e € (0, min(eop, 6od/8,€/3)), therefore, the conclusion is obtained by Fact 13
with these S, ¢, €, and ¢. : O
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If the (PS). condition arises to I € C*(X,R), then the (BPS). condi-
tion holds and Cr(7,c) is compact. This compactness of Cr(Z,c) implies its
boundedness, and also the positivity of 26. Lemma 14 has thus decomposed
the (PS). condition into the (BPS). condition, the boundedness of Cr(I, c),
and 26 > 0.

Now, we shall state the topological device that is used for the proof of
Theorem 10 and contains another necessity of the compactness of Cr(I,c).

Fact 15 ([14, Lemma 1]). Let (X,d) be a metric space and £, K C X be
non-empty subsets such that K is compact and K C . We assume that
there is an open cover {Uy}. . of K such that k € U, and U, N T is path-
connected. Then there is a finite disjoint open cover {V;},_,, ., of K in X
such that V;NX is contained in a path-connected component of U NX, where -

U= UKEK

We need to use this Fact with K = Cr(I,c) in the proof like Hofer [14].
We are now able to present the following abstract result that derives
Theorem 10 , because Cr(I, c())) is compact in (1) if A & 87N, see [33]:

Theorem 16. Suppose (H1)-(HS) and the exzistence of ¢(\). Then, the
(BPS).(n) condition implies Cr(Ix,c(X)) # 0. If Cr(Ix,c(N)) is compact,
moreover, there is an element in Cr(I),c())), either a local minimum or
a mountain-pass type. If all the critical points in Cr(Iy,c())) are isolated,
finally, then Cr(Iy,c(\)) contains a critical point of mountain-pass type.

Here we only sketch the proof of the special case to clarify the idea behind
the general proof; assuming Cr(l,c(\)) = {v}, we shall show that v is a
critical point of mountain-pass type. For this purpose we need not use the
topological Fact 15.

Suppose the contrary; v is not a critical point of mountam-pass type We
are able to find an open neighbourhood U of v such that U N I} 1°Y is either
empty or path-connected. We set, as in [13, Theorem 1] (or [15 Theorem

1)),

e = 2 (e(X) ~ max{Tx(uo), I(w)}), | (11)
3= -;—min {dist((OU) U {uo, us}, Cr(Ix, (M)},
W = {u € X | dist(u, Cr(Ix,c(N))) < &}. (12)

Given A T A, now we take {7} and K = K(c()\)) of Fact 12. We may
assume W C Bg(0) for some R > K(c/()\)). Applying Lemma 14 with these
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& ¢ =c(}), and W C Bg(0), we obtain € C (0,¢] and n € C([0,1] x X, X)
for each ¢ € (0,0/2). This 7 satisfies

n(l,W)c (W)s cU (13)
by Lemma 14 (iii).
It holds that. :
<
max I(w(t)) < e(A) +e (14)

for k£ > 1. Now, we derive a contradiction by deforming this ~y; into a path
in I;(’\), taking regards that W is a residual set of 7 in Lemma, 14 (ii). Thus,
we define

M :={t €[0,1] | w(t) € W} (15)
B:= (U n I;W) Un(177k(M)). | (16)

First, we confirm B C f,‘\’(’\). In fact,
(1, (M) N Bg(0)) ¢ IfM~¢ ¢ [§¥
by (14) and Lemma 14 (ii), while v(t) € Bg(0)¢ C Bk (0)° implies

L) < cV) — (A = M) < (M)

by Lemma 12 (i) and
(L, w(M)\Bg(0)) c If™

from the monotonicity of Ix(n(:,u)). This proves B C I'K(A).

Next, noting that B(D 1(1,v(M))) contains uy and u,, we take the path-
component of B containing ug, denoted by B. We shall derive u; € B(C B C
'ﬁ(’\)), which contradicts the definition of ¢(A). This proof is based on [13,
Theorem 1] (or [15, Theorem 1]).

It suffices to prove ty = 1, where

to :=sup{t € M | n(1,%(t)) € B}.

In fact, we may assume M # [0, 1], and therefore, if ¢, = 1, then it holds
that 7(1,7(t)) € B for a family of {t} converging to 1. We have I\(v(t)) <
c¢(A) — € for such ¢, and hence n(1,7x(t)) = %(t) € B. This fact implies the
desired u; € B, because B is path-connected and u; = (1) € B.
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MLy (4,)

Figure 3: Local deformation of mini-maxmizing path.

Let [t—,t"] denote the component of the closed set M containing ¢y, then
it follows that t; = t™ using some continuity argument. Therefore we are
able to picture v;(t) come into W at yx(to) € OW, see Figure 3.

On the other hand, we obtain £ € (tg,1) by to = t*, where

i = sup{t € [0,1] | (t) € W}. (17)

We have vi(f) € 8W C Bg(0) and we are able to picture 7x(t) leave W at
Yk (Q, see Figure 3. Consequently we have .

(1, () € W)s N E® c U n iV

by (13), (14), and Lemma 14 (ii). In partlcular, Uuni, 1¥™ is path-connected

because it it not empty. Similarly it follows that n(1,vk(to)) € UN I C()‘),
and thus, 7(1, vx(£)) and n(1,v(to)) are in the same path-component of B O
un I;O‘), see Figure 3. This implies {5 < t < to, a contradiction. O
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