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Asymptotic non-degeneracy of the solution to the
mean field equation?

FERRFHEME ¥ — £ KE (Tomohiko SATO)?
Computer Centre, Gakushuin University

1 Introduction

In this paper, we introduce the asymptotic non-degeneracy of the solution to the mean
field equation with Dirichlet boundary condition

V(z)e®
JoV(z)ev

describing the equilibrium of the mean field of many vortices of perfect fluid in Onsager’s
formulation (2, 3, 9], where 2 C R? is a bounded domain with smooth C? boundary 612,
V =V(z) > 0is a C* function defined on Q, and X > 0 is a constant.

We recall Ma-Wei’s result [11]. If {(As,v)} (kK = 1,2,...) is a solution sequence to
(1) with Ay tend to some positive value Ag and ||vg|lec — +00 then A\g = 8rm for some
positive integer m, and there exists a set S which is composed m-interior points, and
v, — 8 Zxoe s G(:, o) locally uniformly in Q \ S, and furthermore, it holds that

—Av =\ in Q, v=0 on 09, (1)

%VR(wo) + Z VG (zo, Tp) + 8iﬂ_'Vlog Vi(zo) =0
zp€S\{zo}

for all x5 € S, where G = G(x,y) is the Green’s function of —A in  with :lon = 0, and
R = R(z) is the Robin function. | .

We consider the case of m = 1, that is, the singular limit is v — 87G (vzo),and zg € S
is a critical point of R(z) + X log V().

We will introduce some results (8, 11, 12, 15] including the case of the Liouville equation
in Section 4 as the appendix.

Theorem 1. In Ma-Wei’s result, if m = 1, V(x) is C? near zo € S, and z, is a non-
degenerate critical point of R(z)+ 21; log V (), then the solution (A, vk) is non-degenerate
for large k, that is, the linearized operator

Vi, V Vi V Vg,
—-A =X ve — + A & Jal 62)
g Ve (JoVex)
does not have zero eigenvalue.

!This is a joint work with Professor Takashi SUZUKI(Osaka University).
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In order to prove theorem 1, we follow the argument the case of the Liouville equation
[8]. In this case, we assume the existence of wy = wy(x) satisfying

Ui V Uk V Vi .
—Awg — A Vel + Ak € fn ¢ 2wk = in Q,
Ve (Jo Ven)
wy Z0 in' Q, (2)
wy, =0 ondN

then we shall prove the theorem by leading a contradiction. (2) seems to be complicated
(See (17) in Section 4). Therefore, we use a transformation

Vevrw
Yr(z) = wi(z) — fnTnm—k ‘ 3)
called SW-transformation (see also [16]), then we have
( Veuk
=AY = Mtk in Q,
Jo Ve
fﬂ Ve”kwk
Yklon = —=F——-— =cx (unknown constant
4 o Jo Ve ( ) (4)
¥k _ 9
an Bu
“bk % 0 inQ)

where v = v() is the outer normal vector on Q. (2) and (4) is equivalent for the sake of
(8). Therefore, in order to prove theorem, it is enough to lead a contradiction concerning
to (4). '

2 Preliminaries

We confirm several assertions for (13) and (14) in Section 4 are valid to (1) again.
{(A&, vk)} is & solution sequence to (1) satisfying A\ — 87, and z; € Q) denotes a maximum
point of vy:

Uk (k) = [|ve]|oo-
We have zx — zo with § = {20}, and the blow-up point zo € Q is a critical point of
R(z) + & log V(z) (See also Section 4).

The following Lemma corresponds to Lemma 6 in Section 4. This Lemma is proved

by following the argument in the proof of Lemma 6 (in this case, we consider uy(z) =

ve(z) + log T‘;—"\,ﬁ).

Lemma 1. There is a constant C; > 0 such that

evk (k)

2
1y, V(zy)evk=k)

vk(z) — log <G (5)

forallzeQandk=1,2,....
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We define é; > 0 by
o Apevs (k)

¢ Jo Ve ’ : (6)

(similarly to Section 4). The next lemma correspond to Lemma 7 in Section 4.

Lemma 2. It holds that 6y — 0 as k — oo.

We assume the existence of wy = wy (z) satisfying (2). By using SW-transformation
(3), we have the problem (4) with normalized L* norm

( Vv .
—Awk = Akmwk in Q,
Q
fQ Vel wy
= " —0 nk onstant

: wklzx;w [Ven x (unknown constant) ™

[ % _

an 61/
;II¢kI|LN(Q) = 1.

We show a contradiction. Now, we put

Uk (Z) = vk (Ok + 1) — ||k o
sz(x) = Y (dz + zx)
Vi(z) = V(6kz + 1)

where z € Q;, which is defined by Q% = {z € R? | 8pz + x4 € Q}. We have
— Ay, = Vie™, @ <0=5(0) in €,
| / e* < Oy
o

with a constant C; > 0 independent of k, and

—AP(z) = Vie™ iy, in Ok, ¥r=cx on %,

O -
«['u ok 0, [lrlleo=1.

Concerning ¥, we can apply [1]. Passing to a subsequence, it holds ¥ — @ in Cf;g‘(]Rz)
for 0 < a <1, with @ = 7p(x) satisfying

—Ady =V (zo)e™, @ <0=1(0) inR?

/ e® < 400,
R2

and

1
o(z) = lo
o(@) & {1+ %V(arzg)lrclz}2
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by [7]. Furthermore, we have ¢, — 1 in C>%(R?) in a subsequence, with 9, = Yo(z)
such that ‘

~ Ay = V(zo)e™ e = Yo in R?
{1+ V(o) z]2}?
l|1%oll < 1. (8)
and therefore,
| &(w)“i aep. gl 9
RURP 2% Eurrhls s F A ®)

by [5] where a;,b € R, and ¢ = V(zo) > 0.
We shall show v, = 0 in R2. If this is the case, then we obtain that lyk| — +o00, where
v € Q satisfies Yr(yx) = ||¥k]lec = 1, & maximum point of Px. Now we use the Kelvin

transformation
. - T
Uk = Uk W ) ¢k | |2

Wl = e (22
N 1 -~ z
Aty = —V | 2
i :z|4’°(||

z
for large k. On the other hand, inequality (5) implies

and we have

)ww in B,(0) \ {0}

2

for z € O, and k = 1,2, ..., and then we obtain ¢%©) = O(|z|~*) uniformly in k, that is,
|z|~4€**@) = O(1) uniformly in k, and therefore, ¢ = 0 is a removable singularity of :

—A’(ﬁk = ak(x)'(f)k in B1(0)

with ax = ax(x) satisfying ||ak|| (B, (0)) = O(1). Then, the local elliptic estimate guaran-
tees 1 = ||9hk||Leo(B, 200 < |¥kllL2(B(0)), Where the right-hand side converges to 0 by the
dominated convergence theorem. This is a contradiction, and the proof of Theorem 1.

3 Proof of Theorem 1
In order to show &o = 0 in R?, we have only to show a; =a; =b=0in 9).

Lemma 3. If V = V(z) is C? near = zo in Q and z¢ is a non-degenerate critical point
of R(z) + = log V(z), then it holds a; = a; = 0.
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We can prove a; = a; = 0 by using the Lemma 9 in Section 4. The next Lemma is

shown shorter than Lemma 10. -
Lemma 4. Under the‘ assumptions of the Lemma 38, it holds b = 0.

Proof of Lemma 4: By Lemma 3, we obtain

Bele) = b- ‘: }Z n G20 (R2).

Now we assume b # 0. We have the following equality:

Ve?
AU fn Ve 1//k,
Vi
—-UkA'l,bk = Ver in Q,

M

and then, we obtain

VeUk/Ve”* (Vevk — ) = /ﬂ(kavk—valﬁk)

_ Oug Oy,
= o (w5 %)

Then, we have

fn euk/V ¢kvk— fQ 1)k‘/’Ve *1r + o(1)

as k — oo. To show (11), we use the following Lemma.

Lemma 5. It holds that ¢y — 0.

(11)

We put ¢ = V(z) > 0 (similarly to Section 4). Concerning the left-hand side of (11),

we have
f e”k / Vetug
n
- [ Vet~ s + 2228l [ ey
= fn evk k klloo f Vevr Yk
M / ~ - )\kﬂvk“oo
= . Wi Ok (Sez+x) 2 T
TVer Jo, x(x)e T (x)Pr(z)02dx + Vet
7 O~ T Ak:H'Uk:”oo
= Uk —r——
. Ve Upiy, + fn Ve
c 1 2|l Ak || vk [l oo
= ———— log b £ dz +
r {1+ 51zPE 7 (14 gap)® T4 T L Verdn
= 8mb+ ﬁM& + o(1)

Jo Ve

+ o(1)

(12)
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as k — oo, by the dominated convergence theorem.
From the equalities (9) and (11), it holds that

_ k(1 = [lvklleo) / e
8mb = [ Ven A Ve + o(1)

as k — oo. By (7), we also have the following equalities:

P e = [-se

9%k
mal/

for all k, finally it holds b = 0. ‘ O

4 Appendix -
4.1 The case of thé Liouville equation

In this section we introduce a fact [15], the asymptotic non-degeneracy of the solution
to the Liouville-Gel'fand problem

—Av =AV(z)e’ in(, v=0 ondQ, (13)

where Q0 C R? is a bounded domain with smooth boundary Q, V = V(z) > 0 is a C!
function defined on ©, and A > 0 is a constant. We shall extend a result of Gladiali-Grossi
8], which is valid in the homogeneous case of V(z) = 1;

~Av = )Ae’ inQ, v=0 on 9 (14)
based on the following fact [12]:

Theorem 2 ([12]). If (A, vx) (k = 1,2,---) is a solution sequence for (14) satisfying
Ak — 0, then we have a subsequence (denoted by the same symbol) such that

X = / ke’ — 8™m
Q

for some m =0,1,2,.-. ,4+00. According to this value of m, we have the following.
1. If m =0, then it holds that ||lvg||,, —

2. If 0 < m < +oo, then the blowup set of i (k= 1,2,---), defined by

8 = {zo € Q| there ezists =}, — zo such that ve(zi) — +o00},
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18 composed of m-interior points, and vy — 8w ) s G(-, o) locally uniformly in
Q\S, where G = G(z,y) denotes the Green’s function of —A in Q with ‘log =0. We
have —Avi(z)dz — 2206 s 8o, (dx) in the sense of measure on Q and furthermore,
it holds that
1 : ,
5 V(o) + > VuG(z0,35) =0 (15)
z€S\{z0}

for each Ty € S, where R(:c) = [G(z,y) + & log|z — yl],,=,, is the Robin function.

8. If m = +o0, then vy — +0o locally uniformly in Q.

Especially, zo € S is a critical point of Robin function R(z) if the case of m = 1.

Gladiali-Grossi [8] is concerned with the case m = 1, and study the non-degeneracy of
(A, vg) for large k. From the above theorem, we have S = {z,} if m = 1 and this z, € Q
is a critical point of the Robin function. What they obtained is the following theorem,
motivated by the study of the detailed bifurcation diagram for (14).

‘Theorem 3 ([8]). Ifm = 1 holds in the previous theorem and xy € S is a non-degenerate
critical point of R(z), then the solution (A, vy) is non-degenerate for large k, that is, the
linearized operator —A — Ape in Q with -|5, = 0 does not have zero eigenvalue.

Theorem 2, on the other hand, has an extension to (13). Although the results of Ma-Wei
{11] are presented in the mean field formulation,

A = 2V (@)e”
A Jo Viz)e

it is easy to translate them into the following theorem on (13), that is, setting

A= /\/QV(:L')e”,

in Q, v=0 on 9,

then we have
W Ve

JaVe
which is equal to (13) (See also [13].).

—Av=A

~inQ, v=0 ondN

Theorem 4 ([11]). If (A, v) (k=1,2,---) is a solution sequence for (18) with M\ — 0
and ||v|lc — +00 then for some positive integer m all the second alternative results in
the Theorem 2 holds, provided that i and (15) are replaced by

2k=/AkV(x)e”k
Q

and '
1 1
=VR(zo) + E V.G(zo, zp) + —Vlog V(zp) = 0, (16)
2 87
: zheS\{zo} :
respectively.
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In the case of m = 1 again, equation (16) means that zp € Q is a critical point of
R(z)+ & log V(z). From this point of view, it is natural to extend Theorem 3 as follows.

Theorem 5 ([15]). In Theorem 4, if m = 1, V(z) is C? near o € S, and zg is a non-
degenerate critical point of R(x)+ ;}-1; log V(x), then the solution (Ag,vx) is non-degenerate
for large k, that is, the linearized operator —A — AV (z)e in Q with -|5q = 0 does not
have zero eigenvalue.

To prove the above theorem, we follow the argument of [8], namely, the existence of
we = we(z) (k=1,2,---) satisfying

—Awg, = NV (z)e® w, in Q, wy =0 on 8N
lwelloo =1, (17)

implies a contradiction. w}, = %":‘i (¢ = 1,2) solves the linearized equation
—Awj, = \e™w}, in Q

(except for the boundary condition). This structure is useful to prove Theorem 3, but
obviously, does not hold in (13). We will introduce new arguments to compensate this
obstruction in the final section.

4.2 Preliminaries

In this section, we confirm that several assertions for (14) presented in (8] are still valid
for (13). Henceforth, (Ag,vx) (k= 1,2,...) is a solution sequence for (13) satisfying

Y= / AV (z)e’ — 8, A — 0, (18)
Q
and zx €  denotes & maximum point of vy;

Vk(Zk) = ||vkllo -

Then, we have zy — aéo with § = {20}, and this blowup point zy € Q is a critical point
of R(z) + X logV(z).
The first lemma corresponds to Theorem 6 of [8§].

Lemma 6. There is a constant Cy > 0 such that

eVk(Tk)

<q (19)

vk(z) — log <
{1+ IuV(@e)ene g — 2,2}

foranyzeQandk=1,2,.--.
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Proof: Putting uy = vi + log A\, we obtain
—Aug = V(z)e" in Q, ur =log Ay on 90

/Q e = O(1).

Passing to a subsequence, we shall show that ux(zx) — 400 holds. Then, Theorem 0.3 of
Y.Y. Li [10] guarantees the existence of C; > 0 such that

euk (mk)

212 =
{1 + 3V (zi)eu @) |z — x| }

ux(z) — log Gy

for any z € Q and k = 1,2,- -+, or equivalently, (19). _
In fact, if ug(zs) — +oo does not occur, then we may assume either ug(Zx) — —o0 or
ug(zx) — ¢ € R. In the first alternative, we have

/ )\ke"* i 0,
Q

which is impossible by (18), because there are a, b > 0 such that
a<V(z)<b (z€Q).

In the second alternative, on the other hand, the sequence {u;} is locally uniformly
bounded in 2 by Brezis-Merle (1], while Theorem 4 guarantees ux = vy + log A\ — —o0
locally uniformly in Q\ {zo}. Again, we have a contradiction, and the proof is complete.

Now, we define §; > 0 by
62N evr@r) = 1, (20)
The next lemma corresponds to Lemma 5 of [8].
Lemma 7. It holds that 6y — 0.
Proof: Inequality (19) reads;

ve(z) — vi(zk) + log {1 4 M |z - xkl2}2

<
862 <G

for z € Q and k = 1,2,..., and we have vy — 87G(:, o) locally uniformly in 2 \ {zo},
V(zx) — V(xo), and vi(zx) — +0o. These imply §; — 0, because otherwise we have a
contradiction.

We assume the existence of wy = wi(z) satisfying (17) and show a contradiction. For
this purpose, we put

Uk(z) = vi(zk + k) — vi(zk)
zbk(:c) = wk(mk + Jkl')
Vk(z) = V(.’L‘k + 5k:17),
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where z € S:lbk for f)k ={zeR?|zx+ &€ Q}. We have

—AD = Vie®™, G <0=0(0) in(y,

/ Bakv=/Akew‘ SC2
S 0

with a constant C > 0 independent of k, and
— A = Vie™ @, in Qk, We=0 on 8
Nkl =
Concerning g, we can apply (1]. Thus, passing to a subsequence, we obtain ¥y — % in

CE(R2) for 0 < & < 1, with 7 = Tip(z) satisfying

loc
—Afy = V(zp)e™, 7 <0=1(0) inR?, /R ; e® < o0,
and therefore, )
%% {1+ 3V (zo) |.’E|2}2
by [7]. This implies @) — @o in C2*(R?) for & subsequence, with Wy = (x) satisfying
- V(zo)

{1 + 1V (o) |]*}
ll oo < 1. ' (21)

’f)o(ﬂ)) =

—Adip = V(x0)e™1ig

2‘!1)0 in ]RZ

We shall show 1y = 0 in R?. In fact, if this is the case, then it holds that lyx| — +o0,
where y;, € () denotes a maximum point of W, = Wi(x); Wk(yk) = [[Wk||, = 1. We make
the Kelvin transformation

vk(x)—vk(u) u(z) = (H)

and obtain

. 1 - — : '
— Al = —? e (—“2-2-) ey  in By(0) \ {0}
for large k. On the other hand, inequality (19) reads;

2 |
54(z) + log {1 + V(@) |x|2} <a, (22)

for z € (% and k = 1,2, .-+, and we have %@ = QO (ﬁ;) uniformly in k. This means
Tj—;e"k(’) = O(1) uniformly in k, and therefore, z = 0 is a removable singularity of w;

— Ay = ag(z)Wy in B;(0)
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with ax = ax(z) satisfying |ax| (g, ) = O(1). Then, the local elliptic estimate guar-
antees 1 = ||| ;o0 B0 S C ||| L3(B,(0))» Where the right-hand side converges to 0 by
the dominated convergence theorem. This is a contradiction and we obtain the proof of

Theorem 5.

To prove wy = 0 in IRZ we put ¢ = V(xo) > 0 and v(z) = Wo(x/+/c) in (21). Then, this

v = v(z) € L®(R?) satisfies -
~Av=——"—(  inR?
{1+1=°}

and hence it holds that

az; 8 — |z
= _._+b.
v(z) ZS+| 2 8 + |z|?

y [5], where a;,b € R. Thus, we have only to derive a; = b= 0 in

£ — jaf

2
atzu
Wo(z) = Z B

)
r.=1c E+|.’E

We note that a;/+/c (a; in the formula for v(z)) is newly denoted by a;.
To show a; = 0, we use the following lemma, proven similarly to (3.13) in [8].

Lemma 8. In case (a;,az) # (0,0), it holds that

| > 3G
5 wi(z) =21 ) a;~(2,20) +o(1)

locally uniformly in z € Q \ {xo}.

Proof: In fact, we have

wn(z) = / G(2, 1) MWV (1) Dy (y)dy

G(z, Tk + 0kt ) Vi (y) ™ Wiy (y)dy' = I k() + Lop(z),

e
where
Lix(@) = /ﬁ Glz, 2k + 6t/ - Fuly)dy'
13
ha@ = [ G+ aa) -5 o
with

fe@) = Ve(@)e* D iy(y) -

*

: 8 _ 2
64 |y| WP,

64b ——Iyl
c (8 Iylz)

(23)
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We have

W) 54 | gy 8 _Jy)?
V;‘,(y)e”’c g (y) — c- E - +b- =1,
( IyI iy By

or equivalently, .
RN
fely) = foly) = e
i=1 ( ' ‘ )
locally uniformly in y € R?.
We have, on the other hand fly) =0 (I—j‘) uniformly in k = 1,2,... by (22), and

therefore, gr(y) — go(y) locally uniformly in y € R? by the dominated convergence
theorem, where

o 2 |
QY1 —aa axa a

9(y1,92) = — / re ¥ (a1t+%@,azt—_l_?—gl—l@) it
—ll&_'a—a 1 2 ai + 2

e1+e3
for £ =0,1,2,.... This gk, introduced in Lemma 6 of (8], satisfies

o) o]
ala—gk+ a2 gk = fx
Y1

and therefore, it holds that
ha@) = [ Glaon+ /) o
k

2
Ogr

= G:L',z+5'-§a'———’d’

&, ( k ky) ~ Jay/(y) Yy

J

‘< 2_ ' oG / A
= —&Za,f F(x,xk+5ky) - gk () dy

16 1 ,
{ZaJ 22— (, Zo) Az?-mdy +o(1)}
= 0k {27\';%5%(9:,%) +0(1)}

locally uniformly in z e \ {zo} by the dominated convergence theorem.
To study I5x(z), we note that u(y) = log & ————, satisfies

(8+17)

8 , . 0, . 128 E—yP
[ + —— _— e —..c*___,
ayl (yle ) 63/2 (yze ) o (% + |y|2)3
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and in this case we obtain

dy’

/

b 2.8
I2,k($) = 5 5 G(x,xk + 5ky,) - Z 5?;; (y]eu(y))
S k i=1

y=y
b < oG
= —0r=

'u(u)d
22+ Jo, B, = (z, 21 + ) - YV dy

oG ,
= == { 99; —(z, z0) /2 y;.eu(u Ydy' + 0(1)} = 0(d%)
=1

locally uniformly in z € Q \ {z0}, again by the dominated convergence theorem. Thus,
the proof of (23) is complete.

4.3 Proof of Theorem 5
We prove the following lemma, using new arguments.

Lemma 9. IfV(z) is C? nearz = zp € Q and o is a non-degenerate critical point of
R(z) + 4 log V(z) then it holds that a; = a3 = 0.

Proof: We suppose the contrary, and then obtain (23) locally uniformly in z € \{zo0}.

We note Ay Bux dlogV

A\ —— Ve ~ N Vk
A B2, AVe 5%, + M Ve Bz n
and define h;x = h; x(z) by
~Ahiy = 61805 v - AVe™ in Q, hix =0 on 99,
where ¢ = 1,2. Then, it follows that
a’Uk ka _ | | .
wr ( oz, h,,k) — Awy, - 5; = in

by (17), and therefore, we have

8 (Ov Owy, Ovg
L (n) -5 () fom

Here and henceforth, v denotes the outer unit normal vector on 8. Since wy=hip =0
on 0f), the above equation is reduced to

—1 ka 3’wk

—EZr 51 —
‘dk o0 B:c, o (5 /h,kAwk 5 /Ah,k W .

OlogV
=67t : T 24
5 /Q o MV -, (24)
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We have

v — 81G(: ,xo) in C2%(Q\ {z0})
5 Wi — 2 Z a, aG .’130) in Cloc (Q \ {xo})

j=1 0y

by Theorem 4 and the elliptic estimate, and therefore, the left-hand side of (24) converges

to
%G
| 16'"22:%/ (5 00) gy (@,20).

Jj=1
Now, we apply Lemma 7 of [8];

oG %G 1 &R

3931( , 0)6 v, (z,20) = —§m($o), (25)
and then obtain
| Ovy Ow 2 &R
. -1 k k 2 )
Wim % o OT; O ~8m ; % Oz;0z; (o)
We here note that (25) is shown by the Pohozaev identity [14].
Therefore, if we can show
i} alogv " 2 logV
k-l-l;r-}I-looé / - AVer - wy, = 2#2 % B oz, (o), (26)

then )
0’R 1 8%logV
d —_—— =
J}:‘la, {6:«:;6:0,-( 0) 4m Bz;0z; (@ )} 0
follows for i = 1, 2, and hence a; = a2 = 0 from the assumption.
For this purpose, we use the Taylor expansion around zy = (zx;, zx2) for large k and
obtain

logV OlogV
63051 (:12) Og (Z'k) + [($1 - :L‘kl) —_— + (.'1:2 :L‘kg) ai“]
31
ggv(a:k) + Rk(a:) |z — x| (27)

for z = (z1,x2) with |Rx(z)| < r(x, z&), where r(-,zx) is uniformly bounded on €, and
near zo, ‘
azlogV( ) - 6‘210gV(x )
0z;0z; ozdz; |

r(z,zx) = . sup
yeB(zk,lzf—zkl) i

Therefore, this r(-,zx) is continuous there, satisfying r(zx,zx) = 0 and converging to
(-, Zo) uniformly. We shall show that there exists C; > 0 such that

5" (@ - zk)w(=)| < Cs (28)
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forany r € Q and k= 1,2,.... Then, we have

/ Ri(z) |z — k| M Ve 6ty
Q ‘

< 03/ r(z,zk) M Ve™ — 0
Q

by A Ve**dr — 8md,,(dr) and r(zxo,zo) = 0, and therefore, the contribution of the
residual term of (27) is neglected in the limit of (24).
To show (28), we use,
wk(a:) = Il,k(:z:) + Iz,k(:r)

with

57 a(z) = }: A 6 (9E T + 0ky) - g(y)dy’

j=1

6 112 k(x E/ a (w Ty + 6ky) Y eu(y’)dyl.

J=1

There is C4 > 0 such that

oG _
e y)’ < Cilo -yl
J
for any (z,y) € Q x Q, and therefore,
b
6. lwk(z)| < Cy (al +a + 5)
: / |z — 8k’ — x| ™ (ng(y’)l + |9 e"(”')) dy’
R
holds true. It is obvious that
_3
|ok (W) + ly;| €@ < C5 (1 + |y[?) 2
with Cs > 0 independent of y € R%2 and k = 1,2,..., and hence
-1 b ’ -1 72 -3 ’
O Jwn(z)] < CiCs | a1 + a2 + ) /. |z ~ ky’ — T4 (1 +1v/] ) dy.
Qi
This implies
6t | (Or”) wi(zx + 0’|
b |z’| 2\ ~3
< CyCs (al +az+ = ) / m (1 + Iyll ) dy')

but we have

Ila:'| : (1+|y’|2)—% dy

R? |93 -

2n oo -3
=-/ dH/ |z’ (1 + Im' + re‘9|2) *dr < Cs
0 0
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with Cg > 0 independent of 2’ € R?. Hence (28) follows for z € Q and k = 1,2,.... Thus,
we have proven that the limit of the right-hand side of (24) is reduced to -

. - OdlogV Y )
Jim 57 | ai Ve -wp = lim {Tox+ e+ D},
where
| logV
Ih, = a;g zk)/AkVe”" 6 tw
1o V
IIx,k=3—z—1§— Tk) _/(Il-wlu) M Ve - 51wy,

0%logV o e
H2,.k = 91,01, (zx) ‘/Q (T2 — Tk2) AV E™ - §k Wk

First, we have -
31 |4 »
IIO,k = og k)/ 6]3 lAwk — alogv(xk)/ 5—1871)/6

Oz;

alogV BzG
Za,/ 81/,56,1;, %)

and

0*G / 082G /‘ 8G,
—_—(Tp) = —(, — 1
0 ayz‘ayj( 0) 8By (z0) Bu,,ayj( 1"0) 8By (zo0) vaay, ( .’to) + O( )

as r | 0, where Go(z,y) = 5= log Iw;-ul' Then, it holds that
0%Gy 1 z; — xy;
ayxayj (x’ zo) = _57‘1.' If’? _ -'170|3
for z € 8B, (zo), and therefore,
| el
xo) = 0.
-/Br(xo) ayzayj( 0)

Thus, we have proven hmk_.+c,° Iy =0.
Next, we have

/ (xe — Tke) - Ve - wy = __/ (Te — Tre) Awg,
Q Q

= [ 0w _ ) 2 _ Ow
~ Jo Oz, /an (ze = owe) o /an {erk ~ (2e — k) _6-1/_}

= | (- )@’_’“

for £ = 1,2, and this implies

& logV 6}
Iy =— 5%, g (‘tk)/ (e ~ ke) O 5 U:Jk

6210gV 5°C
— a$eaxz (-TO) . 27"‘7—21012 Ln (xe - SEog) m(., mo)'
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Here, we have

/an (me—xoe)‘a'crpTG(m, o) = / 8?/ {(we moe)-g-g(z, $o)}
= /63,(%) 3?/;; {( Ty — -’Eoe) 5%, (x xo)}

* o [ 50 2]
'.—'/63" _6__{( T¢ — Toe) 65(1' xO)}+2 i Fze5u. (& %o)

(@o) Wz O\B, (z0) OTeOY;

= 9 0Go } 0Gy
Ty — I z, 1
/;Br(zo) Ovg {( ¢ 02) Oy; By, @) 8B, (20) veg Oy; > (@,0) A o(1)

as r | 0, and the first term of the right-hand side is equal to 0 because

6?/, {(ZD[ — Zop) %—gj—(x zo)}

oG %G
r$0l [ 0 o 6 (z,mo)] =0

in terms of 7 = |z — xp|. On the other hand, the second term is equal to

I (ze — Toe) (T; — o) _ s 71 (=7
ABr(zo) rd . 61[ { 0 (e # .7)7

( -’Eo)+7‘

and therefore, ,

0%logV
0x,0x; (o)
holds for £ = 1,2. We obtain (26), and the proof is complete.

lim Il = 2ma,
pm Ll £

Once a;, = a; = 0 is obtained, then the proof of b = 0 is similar to [8].
Lemma 10. Under the assumptions of the previous lemma, it holds that b = 0.

The proof of Lemma 10 is omitted. See Lemma 3.2 in [15].

References

[1] H. Brezis, F. Merle, Uniform estimates and blow-up behavior for solutions of ~Au =
V(z)e* in two dimensions, Comm. Partial Differential Equations 16 (1991) 1223~
1253.

2] E. Caglioti, P.L. Lions, C. Marchioro, W. Pulvirenti, A special class of station-
ary flows for two-dimensional Euler equations: a statistical mechanics description,
Comm. Math. Phys. 143 (1992) 501-525.



46

[3] E. Caglioti, P.L. Lions, C. Marchioro, W. Pulvirenti, A special class of stationary
flows for two-dimensional Euler equations: a statistical mechanics description. Part
II, Comm. Math. Phys. 174 (1995) 229-260.

[4] S.-Y.-A. Chang, C.--C. Chen, C.-S. Lin, Eztremal functions for mean field equation
in two dimension, In; Lectures on Partial Differential Equations: Proceedings in
Honor of Luis Nirenberg’s 75th Birthday (ed. S.-Y. A. Chang, C.-S. Lin, and S.-T.
Yau), International Press, New York, 2003.

[5] C.-C. Chen, C.-S. Lin, On the symmetry of blowup solutions to a mean field equation,
Ann. Inst. H. Poincaré, Analyse Non lineaire 18 (2001) 271-296.

[6] C.-C. Chen, C.-S. Lin, Sharp estimates for solutions to multi-bubbles in compact
Riemann surfaces, Comm. Pure Appl. Math. 55 (2002) 728-771.

[7) W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations,
Duke Math. J. 63 (1991) 615-622.

[8] F. Gladiali, M. Grossi, Some results for the Gelfand’s problem, Comm. Partial Dif-
ferential Equations 29 (2004) 1335-1364.

[9) M.K.-H. Kiessling, Statistical mechanics of classical particles with logarithmic in-
teractions, Comm. Pure Appl. Math. 46 (1993) 27-56.

[10] Y.Y. Li, Harnack type inequality: the method of momng planes, Comm. Math. Phys.
200 (1999) 421-444.

[11] L. Ma, J.C. Wei, Convergence for a Liouville equation, Comment. Math. Helv. 76
(2001) 506-514.

[12] K. Nagasaki, T. Suzuki, Asymptotic analysis for two-dimensional elliptic eigenvalue
problems with exponentially dominated nonlinearities, Asymptotic Analysw 3 (1990)
173-188.

[13] H. Ohtsuka, T. Suzuki, Blow-up analysis for Liouville type equation in self-dual
gauge field theories, Commun. Contemp. Math. 7 No. 2 (2005) 177-205.

[14] S. Pohozaev, Eigenfunctions of the equation Au + Af(u) = 0, Soviet. Math. Dokl.
8 (1965) 1408-1411.

[15] T. Sato, T. Suzuki, Asymptotic non-degeneracy of the solution to the Liouville-
Gel’fand problem in two dimensions, Comment. Math. Helv. 82 (2007) 353-369.

(16] K. Sawada, T. Suzuki and F. Takahashi, Mean field equation for equilibrium vortices
with neutral orientation, Nonlinear Analysis 66 (2007) 509-526.



