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Asymptotic nondegeneracy of the least energy
solutions to an elliptic problem with the
critical Sobolev exponent

KRR - B ®#X (Futoshi Takahashi)
Department of Mathematics, Osaka City University

1 Introduction

This is an abbreviated version of the forthcoming paper [12].
In this paper, we consider the problem

| —Au = couf +ek(z)u  inQ,
(Pex) u>0 in Q,
u=20 on 02

where Q@ C RY¥(N > 4) is a smooth bounded domain, ¢¢ = N(N — 2),
p = (N + 2)/(N — 2) is the critical Sobolev exponent with respect to the
embedding H} (Q2) «— LP*(Q), and £ > 0 is a small positive parameter. Here,
k is a function in C?(0).

We are interested in some qualitative property of solutions to (P.x)
when ¢ > 0 is sufficiently small. First, recall that a solution u of (F.y)
is said to be nondegenerate, if the linearized operator around u: L, :=
—A — N(N — 2)puP~'I — ek(z)I with the Dirichlet boundary condition is
invertible. Equivalently, the solution u is nondegenerate if the linearized
problem

—Av = N(N - 2)pu?~ v + ek(z)v inQ,
(Le,k) UIOQ =0
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admits only the trivial solution v = 0.

The problem (P.x) lies in the limit case of the Palais-Smale compact-
ness condition, therefore the existence of solutions is not so straightforward.
However, when £ > 0 is sufficiently small such that —A — ek(z)I is coercive,
Brezis and Nirenberg [1] proved that if k(z) > 0 somewhere on 2, there exists
a solution u. of (Pe ) with the property that

Jo |Vue|?dz — € [, k(z)uldx — inf Jo |Vul?dz — € [, k(z)u?de
2 2 *
Unludride) w0 ( fupride)

We call u, the least energy solution to (Pex). In what follows, we consider
only the least energy solutions to (P ).
Since the best constant of the Sobolev embedding theorem

2d
SN = inf fn IVul z 3
u€H}(N) (fn lu|p+1dx) p+1

cannot be attained on domains other than RY, it is easily checked that
||te|| Lo () — 00 88 € — O for the least energy solution .. In the following,
we denote ||+ ||ze() by ||-||. Thus if z. € Q is a point such that u.(z) = [|uell,
we call any accumulation point 2o € Q of {z.} as € — 0 a blow-up point of
the sequence {uc}. It is also known that the set of blow-up points of {u.}
(more generally, of solutions minimizing the Sobolev inequality) consists of
one point in .

On the location of the blow-up point of the least energy solutions, the
following fact has been proved before.

Theorem 1.1 ([11]) Assume N > 4 and Q4 = {z € Qlk(z) > 0} # ¢.
Let 2o € Q1 be the blow-up point of the least energy solutions {u.} to (Pex).
Then we have xo € S, in particular xo is an interior point of Q, and o is
a mazimum point of the function F : Q — R, defined by

_ ko)
F(w)—R(x)w%, € Q.. (1.1)

Here R(z) is the (positive) Robin function associated with the Green function
G(z,y) of —A with the Dirichlet boundary condition:

R(z) = lim |z — y|>N - G(z,v)],

[ 1
y—z (N — 2)0’N

where o is the volume of the (N — 1) dimensional unit sphere in RY.



49

In this paper, we will show the following theorem concerning the qualita-
tive property of the blowing-up solutions.

Theorem 1.2 (Asymptotic Nondegeneracy) Assume N > 6 and Q, # ¢.
Let xo be the blow-up point of the least energy solutions {uc}. If zo is a
nondegenerate point of the matriz

kmtw- 2 Ra:w,)
~L — = | z), €y, 1.2
( k N-2 R ISM.SN( + (1.2)

then u. is nondegenerate for 0 < € << 1 sufficiently small.

Here we note that the matrix in (1.2) is different from the Hessian matrix
of log F' where F is in (1.1), since (Hesslog F)(x) is

k:z.-,zj _ 2 R.'L';',.’Bj _ kxik:cj _ 2 R:Z;¢ij (CL’)
k N-2 R kK N-2 R J)|igien

To prove Theorem 1.2, we need a precise asymptotics of the L™ norm
of the solution. This is achieved via the “blow-up analysis” as in Han [9],
and the proof of this proposition is omitted. We only note that since our
equation in (P, k) has a variable coefficient, we cannot use the Gidas-Ni-
Nirenberg theory [6] directly to control the blow-up point to be away from
the boundary. However, for more restrictive class of solutions, that is, for
least energy solutions, we can check that the blow-up point does not approach
to the boundary, from the energy comparison argument [11]. The argument
of Han works well once the fact that the blow-up point is an interior point
of ) is assured, See also [10] for another possible proof.

Proposition 1.3 (Asymptotics) Assume N > 4 and let z. € Q be a point
such that ue(z.) = ||ue||. Then after passing to a subsequence, the followings
hold true.

(1) There exists a constant C > 0 independent of € such that

u(z) <C el . vzeq). @3
4
(14 luel ™o — zef2) ©
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(2) .
|uellue = (N = 2)onG(-, zo) in CZ (2 \ {z0}), (1.4)
as & — 0. |
(3)
lim e lu || ¥ = (N2;N2) aNf((;”g)) (N>5),  (L5)
R(:L‘o)

lim & 10§ [Jucl| = 405 (N =9,

k(zo)

. oo rN-1
where aN = fO Wg’

When N > 5 and k = 1, Grossi [8] proved the above nondegeneracy result
for solutions satisfying

Jo |[Vue|Pdz — e [, u2dx
(Jo luelPtidz) 751

— Sy (e —0),

under the assumption that the blow-up point zy of the solution sequence
{u.} is a nondegenerate critical point of the Robin function, i.e.

| ( 0’R ) . : . :

(zo) is an invertible matrix.
0z;0z; 1<i <N

Theorem 1.2 can be regarded as an extension of Grossi’s theorem for the case

k # 1. However, note that we have to impose more restricted assumption on

solutions, that is, we can deal with only the least energy solutions. Also in

the course of proof, we need some new arguments which are not in [8].

2 Preliminaries

We recall some facts which are useful in the sequel.
Let G = G(z,z) denote the Green function of —A under the Dirichlet
boundary condition:

—AG(,2)=46, inQ,
G(,2)=0 on 05
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Lemma 2.1 (Pohozaev identities for the Green function) The identities

/6 (@=y)-) (a_%%y_))z dsg = (N — 2)R(y) (2.1)
" /ag (Zf,. ) 51 (SZ) (z,y)dss = ; 622: (¥) . (2.2j

hold true for any y € €.

Proof: See [2]:Theorem 4.3 for (2.1) and [8]:Lemma 3.2 for (2.2). |

Lemma 2.2 Let u. be a solution to (P.x) and v, be a solution to (L.y).
Then the following identities hold true:

((x—y)-v) 9us ) (Ove dsy =€ | ueve (2k(z) + (z —y) - Vk(z)) dz
e (2) ()

for any y € RY and

Ou, \ - .BvE ' B ok .
/;Q (6.’12,) (—517) dsg = 8/{;.“6”6 (6.171) de, i=12,---,N. (2_4)

Proof: Set we(z) = (z — y) - Vue + &52u,. Direct computation yields
that |

—Aw, = N(N + 2)uf we + ekwe + 2eku, + eue(z — y) - Vk(z).
Since v, satisfies —Av, = N(N + 2)uP~ v, + ekve, we have
(Avo)we — (Aw,)ve = 2eku v, + euve(z — y) - VE(z).

Integratmg this identity on €2, using integration by parts and noting w, =
(z — y) - v(%) on 069, we have (2.3).

On the other hand, differentiating the equation in (P.x) with respect to
z;, we have

-A (ng) = N(N + 2)up~! (g@) + ek(z) (aui) +€ ((%) Ue-
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Multiplying this equation by v, and the equation of ve by (%;’,-) and sub-
tracting, we obtain

Oue Oue (0K
@ () = (2 (52) e (5) v

Finally, integration by parts yields (2.4). |

Now, let us consider the scaled function

~ . 1 Y ' 2
U 1= Ug +ze |, € Qe i= llu||™2(Q —z.). (2.5
W Tl <Huenwg ) y luell ™5 (@~ o). (2.5)

We see 0 < i, < 1,4.(0) =1, and 4, satisfies

—A’&E = Co’llg + “u€"4€ 3 kg(y)as in Qg,
ﬂe = on aﬂe,

where k.(y) = k (ll ” + me)- Since ||uc|| = oo ase — 0, we see Q, — RV
Ue -
and k. — k(0) compact uniformly on R" as ¢ — 0. By standard elliptic
estimates, we have a subsequence denoted also by i, that
i, — U compact uniformly in RV (2.6)

as € — 0 for some function U. Passing to the limit, we obtain that U is a
solution of :

- ( =AU =cU? inRV,
0<U<1, U@ =1,
limlyl—voo U(y) =0.

Then according to the uniqueness theorem by Caffarelli, Gidas and Spruck

[4], we obtain
N—-2

v = ()
= (r5r)
Note that (1.3) in Proposition 1.3 can be written as
ie(y) < CU(y) forVye Q. (2.7)

We recall here the classification theorem proved by Bianchi and Egnell

3].
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Lemma 2.3 Let vy be a solution to

—Avy = cgpUP1ug inRY,
Vg € D1’2(RN)

where DY2(RY) = {v € L*N/IN=-2(RN) | fon [Vv[?dy < oo}.
Then there exist constants a; (j = 1,2,--- ,N) and b in R such that v,
can be written as ‘

ZaJ + b wl® (2.8)
= "+ |y|2 N2 (1 JyB)NR

Final lemma is a, well-known unique solvability result of linear first order
PDE'’s with the initial condition. Proof of this lemma is done by the standard
method of characteristics.

Lemma 2.4 Let a = (a1,az,--- ,ay) # 0 is a constant vector and f,g €
CYRYM). LetT, = {z € RN|a -z = 0} be the (N — 1)-plane perpendicular
to a through the origin. Then there exists a unique solution of the following
initial value problem of the linear first order PDE

a- Vu =0,
ulra = g'
More precisely, this solution is obtained as
¢(z)
u(z) = A f(ra+a(¥(z)))dr + g(a(¥(z))), z€RY

where
a-x

¢($) I |2 ) 1J)(w) = (wl(x)7 e 1’¢)N—1(m))7

lal*z; — (a - z)a;

¢j($)= ) 'Ialg a(j=1""’N'—1)

a(s) = (s,—— Za]s,) RN, s=(s1, -+ ,8n-1) ERVY
J—l

if we assume (w.lo.g) ay # 0. Purthermore, if f(z) = O(|z|P),g(x) =
O(|z|?) as |z| — oo, then u(z) = O(|z|P*?) as |z| — oo.



54

3 The asymptotic nondegeneracy result

In this section, we will prove Theorem 1.2. As noticed earlier, we mainly
follow the argument by Grossi 8], but some new argument is needed.

We argue by contradiction and assume that there exists a non-trivial
solution v, to (L ). Since the problem is linear, we may assume ||ve|| = ||luc||
for any € > 0, where u, is the least energy solution to (P ) obtained by Brezis
and Nirenberg. ‘

Let us consider the scaled function

~ 1 Yy 2
Te(y) == Ve ( — + xe) , Y E Q= [luf|TF(Q—z). (3.1)
[ ue|| 72

We see 0 < 0. < 1 and ¥, satisfies

Ve =0 on 0%, (3.2)

{ "‘Aﬁe = Copﬁi-’_lﬁs + "_ucuﬁ'fm—‘ﬁks(y)ﬁe in Qe,
||"76_”f4°°(9c.) =1

where ke(y) = k (Il | +x5). By ||T¢||z) = 1 and the elliptic esti-
Ue -

mate, we see there exists vg such that
¥ — vo uniformly on compact subsets of RV (3.3)

and v satisfies
—Avy = cgpUPlyy  inRY,

Now, we claim that
/ |V |?dy < 3C (3.4)
Qe

for some C > 0 independent of € > 0. Though the proof of this claim is the
same as in the derivation of the inequality (3.8) in [8], or the inequality (10)
in [5], we recall it here for the reader’s convenience.

Denote a.(y) = cop@if~}(y). By (3.2), we have

=129 € =2
Lc |V’U€| dy - Az(ac(y) + ||u€|I4/(N’2) ke(y))vedw'
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By the Poincaré inequality and the scaling property of the eigenvalue of
Laplacian A;(sQ) = s72X;(2), we see that

£ k(05 el|k|l N e|| k|| / i
J S —— ké‘ _ 2d < 52 — 52 .
s |, bt < et s [, 1V = 1) o e

From these, we have

U+o) [ 1Vofds < [ auly)idda
Q. Qe

Let 0 < 6 < 4/(N — 2). Then by the Sobolev inequality, we have

2/(p+1)
(1+0(1))Sn (/Q lf)s]”“dy) <1+ 0(1))/Q |V1"Je|2dy
< / ae(y)T2dy < / lae(w) 524 dy,
Qe Q.

here, the last inequality comes from the fact that ||T.||ze(q,) < 1.
Now, by the Hélder inequality and (1.3), we have

o ) (2-9)/(p+1) N - (p—1490)/(p+1)
/Q lae ()2 dys( /Q e dy) ( [ e V@-“dy)
) N ) | (p=1+6)/(p+1)
sc( / |'i5e|”+1dy) ( / U(y)@-“@“’/@-“")dy) |
Q. Qe

thus we obtain

é/(p+1) Dios . 6' (p—148)/(p+1)
([ 1rna) ™ <o ([ vaeeneag) .

Note that (N —2)/2)(p—1)(p+1)/(p—1+6) > N/2if § < 4/(N —2), so
the last integral is bounded by a constant. Therefore, we have ‘

[ sy <c. (3.5)
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Finally, again by the Holder inequality, (3.5) and (1.3), we have
(a+o) [ IVaPdy< [ ay)iidy
Q. Qe

2/(p+1) (p~1)/(p+1)
< ( [ Iﬁs‘l”“dy> ( / Iae(y)l(”“’/(”‘”dy)

(-1)/(p+1)
<C ( / U (y)"“dy)
]RN

This proves (3.4).
By (3.4) and Fatou’s lemma, we also have

<C.

f Vooldy < C.
RN

Thus by Lemma 2.3, we have (2.8), i.e.

N 2
— ) Yj b 1— !yl
"= L ST EE T TR (36)

In the following, we divide the proof into several steps.
Step 1. b=0.
Step 2. a; =0,5=1,---,N.
Step 3. vy = 0 leads to a contradiction.

We need the following pointwise estimate for the scaled function .. -

Lemma 3.1 Assume N > 5. Let U, be as in (8.1). Then there exists a
constant C > 0 independent of € such that

1 )(N-—2)/2

ma—z- (3.7)

sl <0

holds true for all y € Q..
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Proof. Since 2 is bounded, we see that there exists v > 0 such that
Q. C B(0,7|lu/|*N-2). We employ the Kelvin transformation of

—N ~ V] *
we(2) = |2|? NUE(W), z €,

here O := {z = Eﬁﬂy € Q.}. Note that 2} is a domain contained R \
B(0,1/(7||ue/l*N-2)). Then it is enough to show that

sup w.(z) <C
2€Q3NB(0,1)

to obtain the result, because by the fact that ||Del| Lo (e) = 1, we only have
to bound 9, for |y| sufficiently large. By the property of the Kelvin transfor-
mation, we have for z € 7,

1 N, % _ _ _
Bun(s) = (M), [ POz = [ )P Dy,

Set
€

1 z z
—_ ~p—1
%(2) = 1 (p“ R+ nueuv-lkeﬂzlz))

for z € Q2. Then w, satisfies

—Awe = a.(z)w,  in O,
we =0 on 9€2},

Then the same reasoning as in [5] p.107 leads to the fact that a, € L*(£2})
for some o > N/2 when N > 5. Thus by the classical elliptic estimate (for
example, (7] Lemma 8.17) and (3.5), we confirm that

1/(p+1) 1/(p+1)
sup |we(2)| < C (/ |w5|p+1dz) <C (/ |w€!1"+1dz) 4
2€0:NB(0,1) Q:nB(0,2) Q:

1/(p+1) "
=C (/ |175|p+1dz) <C.
Qe

By this pointwise estimate for 7., we obtain the following convergence
result: see [8] (3.26).

a
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Lemma 3.2 Let w be a neighborhood of Q) not containing xo. Then we
have
lluellve = (2 = N)onbG(-,z0) in CM*(w) (3.8)

as € — 0 for some o € (0,1).

Assume for the moment that the proof of Step 1 and 2 is finished. Then
the proof of Step 3 is as follows. By Step 1 and Step 2, we deduce that
the limit function lim,_0 9, = vo = 0. Since ||||z=(,) = 1, there exists
ze € Qe such that 9.(z.) = 1 and |z.| — oo because the above convergence

%e — vp = 0 is.uniformly on compact sets of RY. But this is not possible
because of Lemma. 3.1.

Proof of Step 1.
Putting y = o in (2.3) and multiplying ||u.||?, we have

[ (o myony () (Blelec) o,

= &l|ue||® /n ueVe (2k(z) + (z — zo) - Vk(z)) dz (3.9)

First, by Proposition 1.3 (1.4) and (3.8), the LHS of (3.9) tends to

—(N —2)%c%b /m((a: —Tg) * V) (Q_G_(a%ﬂl) ds; = —(N — 2)%0%bR(zo).

Here we have used (2.1) in Lemma 2.1.
On the other hand, set L(z) := 2k(z) + (z — o) - Vk(z) for z € Q. Then
L is continuous on 2 and L(Fly;’z’_ + z.) — L(zo) = 2k(xo) uniformly on
Ueg -

compact sets of RY. By a change of variable, the limit of the RHS of (3.9) is

2N ' - o~
elugl|¢ /Q LY+ zendy

”us” -
— (lim e |[2¥-9/N-2) / U(y)vo(y)dy
(N 2) ON R(CL‘o)
2aN k( ) 2k($0)><

1 (N-2)/2 ( N v 1= [yp? |
/RN (1 + |?J|2> jz___':‘aj (1 + |y|2)N/2 + b(l + |y[2)N2 dy. (3.10)
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Here we have used Proposition 1.3 (1.5) with the use of the pointwise esti-
mates (1.3), (3.7) and Lebesgue’s dominated convergence theorem.
Note that the integral

1 (N-2)/2 Y.
/ (—-———— 2 dy=0
rv \ 1+ |y|2 (1+ |y2)N/2

for any j =1,2,.-- , N by the oddness of the integrand,

1 \®22 1o D(N/2)T(N/2 - 2)
/R~ (1+|y|2) T+ WA = " TV -1)

‘and

o = /°° v _ DWV/2)T(N/2—-2)
N @Y T T (v —2)
Here we have used a formula

/°° r i = IM'(a+1)/2)T(B — (a+1)/2)

o TP
for o, 3 > 0 with 8 — (a+1)/2 > 0. Thus, we have
(3.10) = —2(N — 2)%0% R(z0)b.
As a result of the above, we obtain
~(N —2)30%bR(z¢) = —2(N — 2)%0% R(xo)b

which leads to an obvious contradiction if b # 0.
Thus we have proved Step 1.

Proof of Step 2. .
In this step, we prove a; = 0,5 = 1,2,--- , N in (3.6). For this purpose,
we need a lemma, which is not in [8].

Lemma 3.3 Assume b =0 and @ = (a1, - ,an) # 0 in (8.6). Then we

have N
_ oG
el /P — "”,;“f (5‘ (= z>)

in Ch(\ {z0}).

Z=T0
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Proof. For any zo € Q\ {zo}), the Green representation formula for the
solution v, to (Lek) implies that

ve(z) = N(N +2) /QG(:C, 2l (2)ve (2)dz + s/{;G(a:, 2)k(2)ve(2)dz
= 11(6') + I2(€). | (311)

By a change of variables, we see

L(e) = N(N +2) /Q Gz, 2 (2)ve(2)dz
NV +2)
el Ja,

:;hire Ge(z,y) = G(x, —T]V;g_; + z¢) for y € Q.. By (2.6) and (3.3), we know
a

Ge(x,y) T e (y)dy

a(y) — ”“l(y),

Pe(y) = v = Z“J(mylz)m - Z)Za’ay,

uniformly on compact subsets of R¥, thus

R~ Be(y) — Z“’ (ay, (N-iZ) p(y))

i=1

uniformly on compact subsets of RY. .
Now, let us consider the following linear first order PDE

Zag—-—*u’" 7.(y), yeRY

with the initial condition w|r, = mf_ﬁ—U (y), where I', = {z € RV|z -
a = 0}. By Lemma 2.4, we have a solution w, of this problem with the
estimate w.(y) = O(ly|~ (N‘*'l)) as |y| — oo, since W21%.(y) = O(UP(y)) =
O(Jy|~WN+2) by (2.7) and (3.7). Also we have

~1
(N+2)

w, — UP uniformly on compact subsets on RV
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and
-1

: -1
Py e = 4
'/RN we(y)dy - (N+ 2) /1;1\1 Urdy N(N+ 2) oN

by the dominated convergence theorem.
Using integration by parts, we have

N
Ii(e) = N(N+2)/ C.(z, y)z%awe
J=1
_N(N+2)
el ]Zl o a (z,y) - we(y)dy

oo We(y)dy.

e If’v"/:"zz’ f: / (523)

Thus we obtain

' =[0G
NP 1E) = ow Y as (G (22))
j=1 %

for z € Q\ {zo}.
Next we consider I(g).

g) = E/QG(:L', 2)k(2)ve(z)dz

8 -~
= T [/ /ﬂ ‘ Ge(z,y)ke(y) e (y)dy.

As before, consider the following linear first order PDE

luell V=

(3.12)

z=xg

5__;1% =) WERY), wir, =7 2)U<y)

Lemma 2.4 assures the existence of solution w, with the property thét we(y) =
O(|y|3~N) as |y| — o0, because 7 (y) = O(U(y)) = O(|ly|*~V) by Lemma 3.1.
Since

N

) o -1
Te(y) — Z%(l_{_l@;iz)mz Za, (6 (N -2) (y))

j=1




62

we have w, — =g U (y) compact uniformly on R¥.
Now, by 1ntegrat1on by parts, we have

L(e) = e l(N+2)/(N 2) Z%/ Ge(x

J-l

e ||(N+2)/(N—2) Z“a / By, {G’e(ﬂc Y)ke(y) } we(y)dy

J=1
_ €
”u ”(N+2)/(N—2)

Zay/ T ||2/(N - { 2 (G(w Z)k(Z))} z=( +w€> we(y)dy.
Huell V=

Since Q. C B(0, v||u||%™=2) for some v > 0, we have

N f we(y)dy] < C +C >N dy
Qe B(0,7]jue||2/(N-2))\B(0,1)

y)|ue |2/ (N=2)
N e
1
< Cllug %2,

On the other hand, Proposition 1.3 (1.5) implies that £ = O(||u,||-2(N-4/(N-2))
as € — 0 for N > 5. Thus we have

- - 1
[|uel| VN2 Iy(e)| < fuel| NV Z)EIIUE'I(N+4)/(N—2)CIL we (y)dy|
' N/(N-2 —2(N-4)/(N-2 1 6/(N—-2
< Ol e | 2N = O gy eV
< COllue|PE-N/WN=-2 = 4(1) (3.13)

as € — 0 when N > 6.
From (3.12) and (3.13), we see

el N Due = [lug | NN 21 + I)

N
oG
— ON E 1 a; (——62,’_7 (a:, Z))
J=

z=xg
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for any z € Q\ {zo}. Standard elliptic estimate assures that this convergence
also holds in Cj,.(Q2 \ {2o}). This proves Lemma. |

Now, we multiply both sides of (2.4) in Lemma 2.2 by |Ju || ™2 x ||u.]|.
Letting € — 0, we see

/ O||ue || ue 6”uEHN/(N_2)'Ue ds
on BIEz Ov » ¥

N
oG 0 [(0G
— (N —2)o% /m;aj (Z’Z) (w,xo)m (Ez_]) (z,zo)ds;

2 .
92z, (zo) (3.14)

for the LHS of the identity, here we have used Proposition 1.3 (1.4), Lemma
3.3 and Lemma 2.1 (2.2).

On the other hand, the RHS can be written as

ok
L T /n Ueve (a—) da

BN ok
= EHUEH-N/(N—z)“'LLs“s/ Us(y)ve(y) (3:0) ( y]vg‘g + x;)dy. (3.15)

[|ue || 7=

Qe

We know

e (y) — U(y)vo(y) = Z a;

Jj=1

= 8 1 1 )’”
_;a’ﬁyﬂ(z——N) I+ P

uniformly on compact subsets of RY. As before, we exploit the solution w,
of the linear first order PDE

N-2
Za, = L)% WERY), wir =35 - N) (1 +1|y|2)

j=1

(1+I |2)N‘

with the property that we(y) = O(|y|>~2") for |y| large and

1 1 N-2
T 22-N) (1+ Iylz)
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uniformly on compact subsets of RY. Note that w. € L*(RY) by our as-
sumption N > 5. Thus,

(.15) = elue] 3 | > ;75 (5 ) (L + wajay

Qe J=1 ”'LL “-N-:i
= —eflu | / we(y) ( ) Y )
Z 45 \ ;) g
. N
= —¢||ue| m/ e(y) ( ) o= ze QY
l e|| - Z1 ’Ba:, Oz; nuu?—;‘+

N

= el 0D [ W0 Pk Y2y
8505 a7

(N — 2)%0n R(z0) 5 %k
- 2aN UN k(a:j) X~ 2(2 N) / U (Z/)dyxzaya 01, (o)

_ (¥ —2)%% R(zo) i 8%k
4 k(z) & 8.1:,0:1:,

(3.16)

Here again we have used Proposition 1.3 (1.5) and the dominated convergence
theorem. Note that oxany = [pn Uldy.
By (3.14) and (3.16), we have

i”’"{k(io) (&f;x (“'°)) ey (82;; (“""))}

J=

Finally we obtain a; =0 for all j = 1,--- , N by our nondegeneracy assump-
tion of the matrix (1.2) at 0. Thus we have proved Step 2 and this ends the
proof of Theorem 1.2. O
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