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Representation and Asymptotic Formulas for Some
1-dimensional Linearized Eigenvalue Problems

Tohru Wakasa! (Waseda Univ./Meiji Univ)
Shoji Yotsutani (Ryukoku Univ.)

1 Introduction

In this article we consider the following stationary problem of a scalar reaction diffusion
equations

52uzz(x) + f(u(z)) = 0, in (0,1),
{ 2(0) = ua(1) = 0, (1)

and the corresponding linearized eigenvalue problem for each solution u(z) of (1.1)
20z2(x) + fu(u(z))p(z) + pwp(z) =0 = € (0,1), (12)
©z(0) = ¢5(1) = 0.

Here ¢ is a positive parameter. We are interested in the case that f is a function with
the balanced bistable nonlinearity: f has exactly three zeros 0, us such that u_ <0 < u,
fu(0) >0, fu(us) <0 and F(uy) = F(u_), where

Flu) = /0 " £(s)ds.

In other words, we can say that —F is a double well potentials of equal depth. For any
€ >0, (1.1) has two stable trivial solution u = u. and one unstable solution u = 0.

Since the pioneer work of Chafee and Infante [4], the solution structure of (1.1) and
stability of each stationary solution has been investigated by many authors (See e.g., [4],
Henry (5], Smoller-Wasserman [8]). In general, for any n € N, a curve of n-mode solutions
(they have exactly n zeros in 0 < z < 1) bifurcates from u = 0 at € = /f,(0)/(nn).
Furthermore, the Morse index of n- mode solution, the number of negative eigenvalues of
(LP), is n (see Brunovsky-Fiedler [1]).

In view of dynamical theory for the corresponding reaction diffusion problem, it is
important to consider the case when ¢ is sufficiently small. Then, for each nontrivial
stationary solution of (1.1), transition layers are formed in neighborhoods of its zeros.
Though any nontrivial stationary solution is unstable, precise analysis for (1.2) would be
also important to understand the behavior of a certain class of nonstationary solutions.
In (3] Carr and Pego have obtained estimates of negative eigenvalues of (1.2), to describe
the motion of transition layers for nonstationary solutions.

From the viewpoint of such pattern formation as above, we are interested in profiles
of eigenfunctions of (1.2). It is expected that some spike-layer like patterns are formed in
eigenfunctions of (1.2) as € — 0, although precise analysis has not been done yet.
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The purpose of this article is getting precise information on eigenvalues and eigenfunc-
tions of (1.2) in the following special cases of f:

f(w)=sinu and f(u)=u(l —u?).

In the first case it is assumed that the solution u of (1.2) satisfies —7 < u(z) < 7
because of periodicity of sinu. These functions are typical examples of balanced bistable
nonlinearities. It should be noted that any nontrivial solution of (1.1) can be expressed
explicitly with use of Jacobi’s elliptic function.

We will introduce a new method to give expressions of all eigenvalues and eigenfunc-
tions of (1.2). Suppose that u(x) is an n-mode solution of (1.1). From (1.2) we will
introduce an representation equation, a linear differential equation whose independent
variable is u = u(z), and it does not depend on n and . By using a particular solution
h(u; w) of the equation, we will obtain eigenfunctions of the following two forms:

@(z) = £/ h(u(z); #) (special eigenfunction)

(£ should be chosen suitably in several sub-intervals in 0 < z < 1) and

1 T /
o(z) = v/ h(u(x); ) cos (-— / ——ﬁg&df) (general eigenfunction).
e Jo h(u(€);n)
Here p(y) > 0 and it is determined by h( - ;) and u (see Section 3). The boundary
condition is reduced to a characteristic equation
Jjm
Alp) = —
(k) =5~
for some j € N U {0}. For both cases of f, the characteristic function A(u) consists of
the complete elliptic integral of the third kind. Each eigenvalue is determined by the
corresponding characteristic equation. By summarizing these results we will give repre-
sentation formulas of all eigenvalues and eigenfunctions. We will also derive asymptotic
formulas of eigenvalues when ¢ is sufficiently small. In particular, we will see the following
_two results (see Corollaries 1 and 2):

(i) If 0 £ j <mn, then
p; = —C cos® ;—% e + o(e™ %),
where C > 0 and d > 0 are constants.
(ii) There exists u* > 0 and lo € N such that if j > lon, then
pi =+ (§ ~ lon)’ne® + o(¢?),
where p; is the (j + 1)-th eigenvalue of (1.2). These asymptotic formulas enable us to

investigate profiles of eigenfunctions of (1.2) when ¢ is sufficiently small.

The organization of the article is as follows. In Section 2 we first introduce some
important functions and lemmas for characteristic equations, and give our main results.
In Section 3 we will introduce a method of representation equations to prove representation
formulas. In Section 4 we will give a sketch of proof of lemmas for charateristic equations
and asymptotic formulas of eigenvalues. As concluding remarks, asymptotic profiles of
eigenfunctions will be investigated in Section 5.
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2 Main Results

In this section we give our main results. For both cases of f, we will give expressions of
nontrivial solutions of (1.1) with use of elliptic integrals and Jacobi’s sn-function. Suppose
k € (0,1). We denote by K (k) and II(v, k), the complete elliptic integrals of the first kind
and the third kind (with a parameter v), respectively. For complete elliptic integrals, see
Section 4. The function sn(z, k) is defined by

sn(z,k) 1
- X =/ — ds
Jo V(1= 8?)(1 - k2s?2)

for z € [0, K(k)] and it is extended to a periodic function on R in a standard way. In
what follows, k € (0,1) will be used to parametrize arbitrary pair of u(z) and € of (1.1).

2.1 Case f(u) =sinu

In this subsection we assume that f(u) =sinu. For k € (0,1) and n € N, define

en(k) == and  u,(z; k) := 2sin~! [k -sn(K(k)(1+ an);k)].

1
2nK (k)

Then any nontrivial solution of (1.1) satisfying —m < u(z) < = is given by (g.(k), un(z; k)
or (en(k), —un(z;k)) with some n € N and k € (0,1). It should be noted that

. — . — sn—1 : . —_ 9 ain—1
U (0; k) = 0151:1% Un(x; k) = 2sin" 1 k, 01511;21 un(z; k) = —2sin™' k
and

en(zk) (dun( k)) —2(k2 2un(:z: k))

For each n € N, €,(k) — 0 as k — 1 and then u, has n layers in the neighborhoods of

= (2i—1)/(2n) (i = L...,m).
(@ (b)

i
U TR C

Figure 1: Graphs of u,(z; k) (k =1-10"2): (a) us(z; k), (b) us(z; k).

The linearized problems associated (e, (k), un(z; k)) is rewritten as

{ en(k)20zz(T) + cosu, (z; k)¢(m) + pp(z) =0, in (0,1),

‘Pm(o) = ‘Pz(l) = 0. (21)
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Hereafter, let arbitrary n € N be fixed. By u?(k) and ¢} (z; k) (j € NU {0}), we denote
the (j + 1)-th eigenvalue of (2.1) and its corresponding eigenfunction, respectively.

Set
ha(u; p, k) == (k2 — sin? g) —p, foru € [-2sin~!k,2sin"! k],
pr(p, k) i= p(u — k) (u — k* + 1),

and define the characteristic function by

1 2sin~lk . /——'—;k T

~ sin? g s (u; 1, ) R R

It is easy to see that hy(u;p,k) = —p > 0 for p € (k> — 1,0), hy(u; k) < k2 — p < 0
for u € (k?,+00) and p; > 0 for u € (k% — 1,0) U (k?,+00). Moreover, we can show the
following lemma for the characteristic equation.

Lemma 2.1. Let p € (0,400) \ {m/2}. Then there exists a smooth function u( - ;p) :
[0,1) — R such that

Ai(p(k;p);k) =p forall k€[0,1),

and for each k € [0,1), u(k;p) is an unique solution of A1(u,k) =p. If0 <p < /2,
then u(k;p) € (k®—1,0) and limg_,; p(k;p) = 0. Ifp > /2, then u(k;p) € (k?, +o00) and
limg—; p(k;p) = 1.

A
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Figure 2: Graph of A;(y, k) (k = 1/V?2).

Our representation formulas are given by the following two theorems.

Theorem 1 (Special Eigenfunctions). Problem (2.1) has the following pairs of eigen-
values and eigenfunctions.

0) W) =~(1- k), eh(e:k) = cos B (o /TR G R (R, ).

) k) =K, ohask) = poin IR (L2l T ), B).
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Theorem 2 (General Eigenfunctions). Suppose j # 0,n. Then, u?(k) = u(k; (j=)/(2n))
and the corresponding eigenfunction is given by

2@ ) = il (un@), w6 ) cos (s [ YR g),

n(k) 0 Ihl(un(f! )/‘,k)‘

Theorems 1 and 2 show us expressions of all eigenvalues and eigenfunctions. Fur-
thermore, we give asymptotic formulas of eigenvalues p}(k) ask — 1. Fixn e N a.nd
J € NU {0} arbitrarily. From Lemma 2.1 we see that if 0 < J < m, then limy_,; p?(k) =
and if j > n, then lim,_,; u} (k) = 1. More precisely, we can obtam the following theorem
by analyzing the characteristic equation A;(u, k) = (j=)/(2n).

Theorem 3 (Asymptotlc Formula of Elgenvalue) Fizn € N and j € NU {0}.
Then, the following (i) and (ii) hold:

()If0<3<n then u}(k) = — cos® (1 k*) +o(1 —k?) ask—1.

)2
(i) Ifj > n, then (k) =1+ Q——}%—W—
Assertions of Theorem 3 can be expressed in terms of parameter & (- en(k)). Fix

n € N arbitrarily. It follows from € = 1/(2nK(k)) and

K(k)"2+o(K(k)™?) ask—1.

lim (K(k) — log

1
—2log2) =0 2.2
Vi-k %8 ) (2.2)
(see Section 4) that
1 —k? = 16e ¢ +o(e" %) ase — 0.
Hence Theorem 3 implies the following corollary.

Corollary 1. Fizn € N and j € NU {0}. Then, the following (i) and (ii) hold:
(i) If0 < j <n, then u} = —16 cos? % e~% +o(e~%) ase— 0.
(i) Ifj >n, then p? =14 (j — n)?n%e? + o(e?) ase — 0.

2.2 Case f(u) = u(1 —u?)

In this subsection we assume that f(u) = u(1 — u?). Set

2k?
1+ k2

en(k) = and u,(z;k) = sn(K (k)(1 + 2nz), k)

2nv1 + k’K (k)
for n € N and k € [0,1). Similarly as in the case f(u) = sinu, it follows that any

nontrivial solution of (1.1) is given by (en(k), un(z;k)) or (en(k), —un(z;k)) with some
n€ N and k € (0,1),

0:k) = k) = _g.ki k) Lk.z__
un(0; )—-orsn%un(x, )= V1+i2 0<1glu,,(x 14 k2
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and

o (B aih)” = s -

for all z € [0,1], n € N and & € (0, 1).
The linearized problems associated (e,(k), u,(z; k)) is given by

n(k)20zz(z) + (1 — Sun(z; k)2)p(x) + po(z) =0, - in (0,1),
¢'(0) = ¢'(1) = 0.

In what follows, we fix n € N arbitrarily and we denote the (j + 1)-th eigenvalue of (2.1)
and its corresponding eigenfunction by u?(k) and ¢7(x; k) (j € N U {0}).

1 . )2 1 AT
2Un($,k‘) +Zun(ka)

(2.3)

For the sake of convenience, we introduce the rescaled parameter

1+ k2

o= (14 k? =
fp:=(1+k) and w T

———u € [-1,1],
and set

ha(w; i, k) o= 9(1 + k2)? [(—L N WA NI P
AR A+k2)z 2" 71 6 "
= (1 — 3)(f — 3Kk2) + 3k2(i — 3(1 + k?))w? + Ok4w*

= (& — 3)(3 — 3K3)(1 + v (5 K)w?) (1 + v_ (i k)w?) 24)
. _ 2
= 0= k(- )+ ok [FEE =B o]
and
pa(fi, k) = p(a — 3)(p — 3k%) [0% — 2(1 + K*)u - 3(1 — k2)?] 5
= (- 3)(p — 3K (& — puy (k) (i — fi—(k)), ‘
where
fa(k) ==14+Kk £2V1 k2 +k* (a_(k) <0, 3 < a.(k)) (2.6)
and
342 - |1 3(1+ k%) £ /=37 + 6(1  R2) + 9(1 — K)?)]
ve(f, k) = . r— = B '

6k?
f—3(1+k2)F/~-3u2+6(1+k?)u+9(1 — k2)2

One can show the'following properties on hy:
(i) if 4 € (2_(k),0), then hy > 0 for w € (=1,1) and —1 < v_ (B, k) < vy(D,k) <0,
(if) if 2 € (3k%,3), then hy < 0 for w € (—1,1) and —1 < v, (4, k) < 0 < v_(@, k),
(ill) if & € (A4 (k), +00), then hy > 0 for w € (—1,1) and va(ji k) € C.
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Moreover, we define the characteristic function by

i = [ e
3\‘;;2 (V+H(V+, k) — v_II(v_, k)) if o € (a_(k),0), 28
= 3:/@;2 (V_H(V_,k) _ V+1'I(V+,k)) if 4 € (3k2,3),
S (T )~ TG ) 8 € (i (8, +00),
where v+ = vy (fi, k) and
P=P(ik) = —p(a- 33— 3. (29)

The following lemmas will be proved in Section 4.

Lemma 2.2. Let k € [0,1) be fired and o € (i—(k),0) U (3k2,3) U (us(k), +00). Then
the following (1)-(iii) hold true:

' T
i) I Ax(f, k) =0, lim Ax(f, k) = —.
(@)  dim = Az(f k) lim 423, k) = 3
o . T &Ly
(i) lim Aa(a, k)—g, lim A5(R, k) = .
(iii) lim Ay(2, k) = 7.
A—py (k)

Lemma 2.3. Let k € [0,1) be fizred and fi € (i_(k),0) U (3k?,3) U (u+(k), +00). Then
0A,

9224, k) > 0.
37 (i, k) >0
A,
. /
/2¢----~--~ E E
1 2B o 3% 3 k) 0

Figure 3: Graph of Ay(u, k) (k = 3/4).
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By Lemmas 2.2 and 2.3, it follows from the implicit function theorem that for any
p > 0 with p # m/2, 7, there exists a smooth function 2( - ;p) : [0,1) — R such that

Ax(p(k;p), k) =p forall kel0,1),
and for each k € [0, 1), 2(k; p) is an unique solution of A;(u, k) =

The representation formulas of eigenvalues and eigenfunctions are given by the follow-
ing two theorems.

Theorem 4 '(Special" Eigenfunction). The Linearized problem (2.3) has the following
pairs of eigenvalues and eigenfunctions:

. .
0 u3<k)=f;";l, ot =1~ CEEVI-EA AR ) oy,

. k? gy [1HEE V , 1+k?
(i) wp(k) = 1+k2’ on(zi k) = —EkTu"(x’k) 1-k 572 ——un(z; k)2,

o o i+ (k n 1+ k2 4+ V1 k2 +k%)(1 + k2
@) gt = 28 o iy = 1 UER IV R RNALRY oy

Theorem 5 (General Eigenfunction). Suppose j # 0,n,2n. Then,
| nepy — B0k (GT)/(2m)
Kk == R
and the corresponding eigenfunction is given by

' . k
o (@ k) = \/|h2(un(a:; k), 3 (k); k)| cos ( p2(u}(k), k) )

en(k) Jo Ihz(un(E, k), u3(k), k)|

where ‘
1 & 1 + k2 2
ha(u, u, k) = mhz ( T R (1+&%)u, k)
and 1
S 2
p2(au’ k) - 81(1 + k2)5p2((1 +k ),LL, k)

Combining Theorems 4 and 5 we have all eigenvalues and eigenfunctions to (2.3).

Similarly in the case f(u) = sinu, all eigenvalues are determined by the characteristic

equation Az(f, k) = jn/(2n).
Now we give asymptotic formulas of eigenvalues. We can show that

0 if0<j<n,
e my ) 3 . .
chl-{ﬁ”j(k)_ 3 ifn<j<2n
2 if 7 > 2n.

In the case of j > 2n, the assertion follows from the following inequality:
IT _ g k) > YE2BK) K( )= B3k (R — A-(k) (@B~ B (8) g (1)
2n ’ ho(1; fi, k () ’

where i = ju(k; jm/(2n)). Moreover, we have the following theorem.
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Theorem 6 (Asymptotic Formula of Eigenvalue). Fiz n € N and j € N U {0}.
Then, the following (i)-(iil) hold:

(i) If0<j<n, then ,u;-‘('k) -3 cos? ;—Z c(1=K)2+0o((1-k%?) ask—1,

8
. . n 3 38 LU-mr 2 2
(i) Ifn<j<2nm, then,uj(k)=§——2-cos T-(l—-—k)+o(1—k) as k — 1,
i — 2
(i) If j > 2n, then 3 (k) =2+%(1T2n) 2K (k)2 +o(K (k)2 ask— 1.

FixneN arbitra;ily. Then, it follows from (2.2) that
1-k*= 16e‘7§7e+0(e—7§5) as e — 0.
Therefore, the following corollary comes from Theorem 6.
Corollary 2. Fizn € N and j € NU {0}. Then, the following (i)-(iii) hold:
(i) If0 < j < n, then u} = —96 cos® 22% e R 4o (e"vg) ase — 0,
(i) If n < j < 2n, then uj(k) = -2— — 24 cos? (J—;-T—?)E e T 4o (6-751;) ase — 0,
(iii) Ifj > 2n, then u?(k) =2+ (4 — 2n)*n%% + 0(e?) ase— 0.

3 Probf for Representation Formulas

In this section we introduce a method of representation equation and prove representation
formulas. For both cases of f, proofs are done by similar argument. So we only prove
Theorems 4 and 5 for the case of f(u) = u(1 — u?) (for the case f(u) = sinu, see [12]).

We begin with the following initial value problem

€20za(2) + fu(u(z))p(z) + po(z) =0,  in (0,1),
©(0) =1, ¢(0)=0,

for general f € C?(R). From (3.1) we will derive the representation equation. By using a
particular solution of the equation, we will give expressions of the solution of (3.1). Except
for some special cases, the boundary condition ¢,(1) = 0 is reduced to the characteristic
equation. We will show that each eigenvalue is given by a solution of characteristic
equation. These results with Lemmas 2.2 and 2.3 give proofs of Theorems 4 and 5.

(3.1)

3.1 Method of Representation Equation

Let f € C%(R) and let (e, u(z)) be a nontrivial solution of (1.1). In what follows, we use
notations o := u(0), ap := maxocz<1 u(z) and apm, := ming<z<; u(z). Note that f(a) # 0,
a € {om, ay} and that u(z) satisfies

ua(@)) + Fula)) = F(@) for o € [0.1] (32)
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By (3.2) am and oy, are characterized as follows: F(ap) = F(am) = F(a) and
F(a) — F(u) >0 for u € (am, anm).

The essential idea of representation equation is found in [10]. By the change of variable
p(x) = ®(u(z)), the first equation in (3.1) is led to the representation equation of the
second order: :

2(F(@) = F(w))Puu(u) — f(u)®u(w) + (fu(w) + p)@(w) = 0 (3.3)

for u € (am,an). Special eigenfunctions of (1.2) can be obtained by using solutions of
(3.3). The above change of independent variable is a useful idea for solving (3.1).

Now we introduce the represenation equation of the third order. Set R(z) := ¢(x)?,
where  is a solution of the first equation of (3.1). Then it satisfies the following linear
differential equation of the third order

€° Rozo (z) + 4(fu(u(2)) + 1) Ro(2) + 2fu(u(z))ug(z)R(z) = 0. (3.4)

Here we apply the change of variable to (3.4). Assume that (3.4) has a solution R(z) =
h(u(z)) = h(u(z); u). From (1.1) and (3.2), we have

%(h(u(z))) = hu(u(z))us(2),
g?(h(u(z))) = huu(u(x))(uz(x))2 + hu(u(z))um(:v)
- EIE[Q(F("‘) = F(u(2))) huu(u(z)) = f(u(@)) hu(u())]

and

4 @) = =2 [2(P(0) - P(@) hu0(2)) - 37(u0) o (u(2)
— fulu(@)hu(u(@))] -
The corresponding equations for h to (3.4) is given by
AF(@) = F() huu(0) = 3F (whan () + (3fu(w) + 4)hu(u) + 2fun(wh(u) =0 (3.5)

for u € (am, apr). By multiplying h(u) with respect to (3.5) and integrating, we see that
h satisfies the following equation

(F(e) — F(w) (2huu(w)h(u) = hu(u)?) — f(w)hu(u)h(u) + 2(fu(e) + wh(u)* = p (3.6)
for u € (am, apr), where

o(u) = —f(a)hy(a; u)h(a; u); 2(fu(e) + Wh(as ) 3.7

The following proposition shows us that solution of (3.1) can be expressed by use of
h(u), p(u) (and u(z)) as long as p(u) = 0.
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Proposition 3.1. Let o(z) be a solution of (3.1). Assume that (3.5) has a solution
h € C¥am, am] such that h(a) # 0. Then, the following (i) and (i) hold:

(i) If p(u) = 0, then there ezists § > 0 such that ¢(z) = hgz(x))) for z € [0,4].

(i) If p(u) > 0, then

_ @) (17 ow
) = Thi) ('/ h(u(e»dé)'

Remark 3.1. By (3.6), we can assume that h is positive if p(u) > 0 and that A is non
negative if p(u) = 0 without loss of generarity.

Now we con51der the boundary condition ¢, (1) = 0 for ¢(z) as in Proposition 3.1. In

the case p(u) = 0, ¢(z) = y/h(u(z))/h(c) depends on z only through u,(z); it is called a
special solution of (3.1). For special solutions, the boundary condition will be checked in a

standard way. In the case p(u) > 0, the condition ¢,(1) = 0 is reduced to a.characteristic
equation as follows. A direct calculation shows us that ¢,(1) = 0 if and only if

1Y el
) meem =i

for some j € N. In what follows we assume that u(x) is n-mode solution; n is the number
of the sign-change of u'(z) in (0,1). We introduce a characteristic function

an Vo(p)
A ds. .
=3 .. JoF@ -Fohen) (38)

It follows from (3.2) and symmetry of u(z) that

/h p(# i} = v/p(w) de

=1 h(un(§); 1)
/ \/p(u € s
) V2(F(a) - F(s))

= 2nA(p
Then, we can show the following proposition.

Proposition 3.2. Assume Proposition 3.1 and p(u) > 0. Let u(z) be an n-mode solution
of (1.1) and let ¢ be a function in (ii) of Proposition 8.1. If i satisfies the characteristic
equation

Alp) = o~
for some j € N, then ¢ become the (j + 1)-th eigenfunction of (1.2).

For proofs of Propositions 3.1 and 3.2, see [11] and [12].
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3.2 Proof of Theorems 4 and 5

Now we give a sketch of proofs for Theorems 4 and 5. In the case f(u) = u(l — u?), the
represenation equation of the third order is given by

k? 1 1
2 (—-——————(1 e §u2 + Zu“) Puwu — 3u(l = u?)hyy + (3 = 9u? + 4p)h, — 12uh = 0, (3.9)

for u € (—/2k%/(1 + k2), /2k?/(1 + k?)). A standard degree argument for polynomials
shows us that any polynomial solution h must satisfy degh = 4. By putting the following
polynomial of the form

- k? 1, 1, - .
h(u) = ((—1':’;2-)—5 - §u + Zu ) + ph(u,p; k), degh <4
into (3.9), we have a particular solution
o o KR 1, 1.\ u,, 1,
ha(u; p, k) = (m — U+ gu ) + -é(u -2) +g#"

Moreover, the corresponding p(u) = pa(u, k) defined by (3.7) is given by

1 3 3k? 2 3(1 — k?)?
)= = 25 - ) o - 30 =8

| 1 [ 1k
ha(u; p, k) = mhz ( % (1 + k?)u, k)

—_ 1 A 2
pg(/.t,k) = 81(1 T k2)5p2 ((1 +k )tuﬂ k) )

Recall that

and

where hq(w; i, k) and pa(f2, k) are given by (2.4) and (2.5).
Proof of Theorem 4. We see that ps(u, k) = 0 if and only if

h=0 3k? 3  jx(k)
14k 1+Kk2 14 Kk2’

where (k) is given by (2.6) and see that

() = o= )

when u = 3k%/(1 + k?), f+/(1 + k2). Moreover,

2
B 1+ Kk £v1 -k +k%)(1+Kk?)
() =1 - g

2k2?

and 3k? 2k?
1 —————— =(: 2 — 2
h2(u’1+k2’k> e (1+k2 ")
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where C] and C; are positive constants. Suppose that p = 3k%/(1 + k2) and p = j(k).
For each case of p, it follows from (i) of Proposition 3.1 that

SO(:L' = \/lh2(un .’L‘; k)’ﬂa k)l
is a unique local solution of the corresponding initial value problem to (2.3). Moreover,
it can be extended to a global solution on 0 < z < 1 and it satisfies (2.3). Hence we

have three special eigenfunctions as in Theorem 4. Finally, the standard Sturm-Liouville
theory completes the proof of the theorem. O

Remark 3.2. \/|hz(un(z; k); 4, k)| is not an eigenfunction of (1.2) when u = 0, 3/(1+k2).

Proof of Theorem 5. Suppose u € (%,f}, ) (ﬁ_—"kg, ﬁ—,—;) (&lﬁ-}, +oo) Then we see
p2(u, k) > 0 and it follows from (ii) of Proposition 3.1 that

) __ 1 [ pa(p,k)
‘P($) = \/th(un(z’ k); i, k)l €08 (En(k) ] h2(un(§; k);ﬂa k) dg)

satisfies the first equation of (2.3) and ¢,(0) = 0. Proposition 3.2 implies that ¢(z) is the
(j+1)-th eigenfunction if A(u) = jm/(2n), where A is the characteristic function defined
by (3.8). By the change of variable w = /(1 + k2)/(2k?), we have

Aly) = / \/E Ve, k) du

2
(——nlf;’c —u?+ %u“hg(u;u, k)

/ v p2(u, k) 1t k2
2k2 2k’ 2 1 Zlc2 2k?
T+2 w) +§( T+57 )h2( 1+kw“’k)
o VI-w)d= k2w2)h2( 2 i, k)
= Aa (i, k),

where i := (1 + k?)u. Therefore, the proof is completed by combining Lemmas 2.2 and
2.3. O

4 Analysis for Characterisitic Equation

In this section we will prove key Lemmas 2.1, 2.2 and 2.3 for characteristic equations, and
will prove Theorems 4 and 6. We only will prove Lemmas 2.2, 2.3 and Theorem 6 in the
case of f(u) = u(l — u?) (for Lemma 2.1, see [12]). Our analysis is based on the method
which is introduced by Kosugi-Morita-Yotsutani [7].

4.1 Elliptic IntegraiS

Let £ € (0,1) and v € C. The complete elliptic integrals of the first, second and third
kind are defined by

! 1 Y 1—k2%s?
K(k) == /O Nier (e RO /0 —*
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and

1
1

(v, k) := / ds, 4.1

(%) 0 (14+vs?)/(1—s?)(1 — k2s?) (4.1

respectively. For K (k) (and E(k)), many results have been already known; for example,

K is monotone increasing in k, hmk_ao K(k) = /2 and limy_; K(k) = 4+00. Moreover,
the change of variable 7 = s/v/1 — s2 leads us to

Kk +o0 1
( )—/o \/1+72\/1+(1—k2)1-2d7’

and (2.2) comes from the above expression of K.

On the other hand, we need to analyze II( - k) because the characteristic functions A;
and A, consist of TI( - , k).

Now we introduce some lemmas for II(v, k).

Lemma 4.1. Let k €(0,1) and v # 0,—1, —k?. Then

B_H(V )= — K (k) 4 E(k) (k* — ) (v, k)
o T w(l+v) 2 +w)(k2+v) | (1 +v) (k2 +v)

Lemma 4.2. Let k € (0,1) and v > —1. Then

hm Vi+v (v, k)= - and hm Vi+vIl(v, k) = ————

v—+00 ( ) g (V ) m
The above formulas are seen in the handbook by Byrd and Friedman [2]. We does not
prove these two lemmas here (for proofs, see [11] and [12]). The following expressions of
IT will be useful to derive some asymptotic formulas in Lemma 4.2, and Lemmas 4.3 and

4.4 below: .
(v, k) = / Vitr dr (4.2)
o [I+Q+v)r/1+ (1 —k?)r2
and

(v, k) = /+°° Vit 412

1

Vi+vJo (1+82)/1+v+ (1 -k

_ /+°° Vi+v+i2 dt (4.3)
\/1--!--1/\/1—]{:§ 0 (1+t2) 1+u Atz 4 g2 ' '

These expressions are derived from (4.1) by changing of variable 7 = s/4/1 —s? and
t=+v14+vT.

Lemma 4.3. Assume that 1 + v(k) = q(k)(1 — k?) as k — 1, where q is a continuous
function in k satisfying q(k) € (0,1) for k € (0,1) and g(k) — ¢* € [0,1] as k — 1. Then,
for each ¢* € [0,1],

hm va(k) (1 —q(&))(1 — k¥*) - TI(v(k), k) = = — tan™1 , /. q

1-¢*
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Lemma 4.4. Set J(V?.k) =1+ vII(v k) - \/11~+-—1/K(k) Then,
+o00
J(v, k) = — / dt
vl (14 \/1+ Hl_yt?\/l + K
and in particular,
V—»ig)nkql J(V k) 2
The above two lemmas will be used to show Theorem 6.
Finally, consider an elliptic integral of the form:
II(a, b, k) / L ds
VA= 82)(1 = k2s%)[a + (b — s?)?]
_ / \ 1 ds
o V(1 —s52)(1—Kk2s?) [a + (b — s2)?] (4.4)
1
1

ds
V(1 —8?)(1-k2s?)[a + (b— s2)?]
= Iy(a, b, k) + I5(a, b, k),
where a > 0 and b € (0,1). It is easy to see that [T can be expressed with (b +

v—=a)/(a+b?),k) and TI((b — v/=a)/(a + b%), k). To avoid a treatment of elliptic integral
with complex parameters, we derive some asymptotic formulas for II as follows.

Lemma 4.5. Suppose a > 0 and b,by € (0,1). Then for all k € (0,1),

- T
li Ii(a,b, k) = .
B, Vell(ab k) 2/Bo(1 — b0)(1 — k2bo)

Lemma 4.6. Set J(a,b, k) := /all(a, b, k) — W\/E_b)z}((k). Then, under assumptions

lim  J(a,b,k) =
a—0,b—bgy,k—1

in Lemma 4.5, .
2vbo(1 — bo)
4.2 Proofs of Lemmas 2.2 and 2.3

Now we will give sketches of proofs of Lemmas 2.2 and 2.3. For more details, see [11].

Recall (2.6)-(2.9). In the case of i € (4 (k), +o0), Aa2(f, k) has another expression

aapk) = 2B LGB k.0, (@5)

where 1T is given in (4.4) and

(b= RN —p(R) . BL+K) =
* 12k4 ;b k) = ——5—

a(d, k) =



82

Sketch of Proof of Lemma 2.2. Fix k € (0,1) arbitrarily. Note that assertions in (i) and
(ii) of the lemma are proved in the same way. For simplicity, we only prove lim;_,3 A,(i1, k) =

7. In the case of /i € (3k%,3) we have —1 < v, < 0 < v_, and in particular
Ov. 1

i i,k) = =1, lmv_(,k) =+oo, lim —(4k)=—=—.
ﬁlirgw(u, ) lim v (8, k) = +o0,  lim BA (B, k) = ~55

Then, by Lemma 4.2 and the standard I’Hospital’s formula, we have
lim A2 (/:L, k)
A—3

L VAR
= }}_1{;4 N R }}_Ig V- (i, k)(3 — i) - u_lirgx_w T V31+v (v, k)
 VEGE3 |

3—4 .
A S NS AEE

_VI-E V32 V1I-—k? VakE . T
T OVEk2 I k2 V/3k2 2v/1 — k2
= T.

L
3

Finally, we show the aésertion in (iii) of the lemma. We can apply Lemma 4.5 to (4.5);
so that

. A 2 —P(i‘\l”k) . 1
lim Ay(i,k) = i S AL (a,b, k
it (8 2(f k) ine®)  3y/3K2 a—»ofr?-»bo‘/a (a,b, k) (1)
-V "P(ﬁ+(k)’k) m -

5 ———

3v/3k? Vbo(1 —bo)(1 — k2b)’

3(1+ k%) — (k) _ 1+k2—V1-k2+ 12
6k2 B 3k2 ’
After some calculations, we are led to that

bo(1 — bp)(1 — k?bo) = L [(1‘+ k®)(2k* —1)(2 - K*) +2(1 — k2 + k‘)%] (4.7)

where

bo =

27k
and that '
~P(i(k), k) = [(1 + k?)(2k% — 1)(2 — k?) + 2(1 — k2 + k4)%]. (4.8)
By (4.6)-(4.8), we obtain lims_,s (k) A2(ft, k) = 7. Thus, it completes the proof. 0

Sketch of Proof of Lemma 2.8. In the case of & € (4_(k),0), it follows from by Lemma
4.1 that :

84z, .. /P 1 =
Ba Bk = - 3ma [2(1 +vs) 201+ V-)] K
) \/P v V.
* W [2(1 + U+)-Zk2 +vy) B 21+ v ) (k2 + V‘):| B

1 P(k2 —_ U_%_) aV+
+37p [P {2 o i | ] e

P(k* —v2) Ov_.
v | 3| T-b)

[\
"3

4 —= [Pf,u_ + {2P+

3
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where P = P(ji, k) and vy = v(ji, k). After some calculations, we conclude that
%(ﬂ )= (0% — 3k%f1 + 3k% — 3)K (k) —3(a — k? — 1)E(k)
op " 2VP/—(i — (k) (@ — fo-(k))

For the other two cases of ji, 04;/0ji are given similarly as in (4.9).
Set '

(4.9)

G(i; k) == (* — 3k + 3k — 3)K (k) — 3(jx — k* — 1) E(k)
for i € R. Then, we can show the following facts (see [11]):
(i) Gi(k) := G(0;k) = 3(k? — 1)K (k) + 3(k? + 1)E(k) > 0,
(ii) Gz(k) := G(3k* k) = 3(k* — 1)K (k) — 3(2k% — 1)E(k) < 0,
(iii) Ga(k) = G(3;k) = 6(1 — k*)K(k) — 3(2 - k2)E(k) <0,
V) G G (K); k) |
Gyk) = —E===2 -k +VI-E +k)K(k) —3E(k) >0
(IV) 4() 2m ( + +)() ()—
for k € (0,1). These facts implies that dA;/9/: does not vanishes in
{(a,k) | k € (0,1), p€ (i-(k),0) U (3k%3) U (s (k), +00)}.
Thus it completes the proof.

4.3 Sketch of Proof of Theorem 6

Sketch of Proof of Theorem 6. Throughout the proof, we denote (k) := (1 + kz)u;.'(k)
for simplicity. L
(i) Set (k) = r(k)p—(k). We see from j_(k) < iu(k) < O that r(k) € (0,1). Note that

3(1 — k?)?

3
o (k) = — = ——(1- k%2 + o((1 — £2)?).
SR TRy e cE i LS
Then,
14 ve(h) = 2EVIZTR) \’12""(’“)(1 — 1) +o(1 — k?)
and ~

VPEE),E) _ V) s 2
= 1—-k%)+o0(1 —k°).
e = YT - ) + o1 - )
Now we choose a monotone increasing sequence {kn, }3_; such that k,, and r(k,,) converge
to 1 and r* as m — oo, respectively. From Lemma 4.3,

Jm Aa(alln), k) = ~ i YT 021G ), B

m—oo 2

+ lim _______r(km)
m—00 2

_ T _ tan-l 1++y1—1r* 1 -1 [1=y1—1*

= —|z—tan 'y — X —— | + |2 —tany/ — Y —
) 2 1-vV1-7* 2 14+/1—17r*

— otap-l, itVi-rT 7
- 1-VI=r 27

(1 = K2 (km), k)
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Therefore, by solving the following equation

9tan-! 1+~\/1—r*_z Jm
1-Vi=r 2 2n

with respect to r*, we obtain r* = cos? jm/(2n). It also implies th at limj_,; r(k) =
cos? jm/(2n) and it concludes the assertion of (i).
(i) In the same way as (i), set (k) = 3 — 3r(k)(1 — k*). We see that 0 < r(k) < 1,

1+ ve(k) =r(k)(1 — k?) + o(1 — k?)

and

——’;Z,%{Z:—k) = Vr(k)(1 —r(k))(1 - k%) + o(1 - k?).

From Lemma 4.4, we have
X NZOD VPGERE)
a8 K) = Y2 TR (T (0, 1) - O (M (),
v-  /P(j(k), k) Vv Pak), k)v_(k) | v_(k)
1+ 3v/3k2 K(k) + 3/3k2 T+ v_(k) J(v-(k), k)}

PR, E) .
- WV+(’C)H(V+(’C), k).

In the same way as in (i), we take {k;,} and r(k,,); so that

) . _Z E_ -1 ™ o -1 ™
JE’éoA2(“(km)’km)‘2+(2 tan 1—r*)‘” e T

By solving the equation

1 r* _771’
1—r  2n’

we have r* = cos?(j — n)m/(2n). It concludes the proof of (ii).
(iii) Note that 2(k) — 4 as k — 1. By Lemma 4.6,

o _ 2/ PGELR) AGON)
AERD =" a@w) R + 0 - b ne

42 ;’}‘g’,ff 28 Fa(a(h), b, b(AR), k), )

T —tan”

(4.10)

and it leads us to that
3v/3k? T
VAR = AR (k) = ( (A8 B0, )+ 5B %)

2vBk2[a(a(k), k) + (1 - b(a(k), k)3
a(k) — (k) '

By letting k¥ — 1, we have

tim /AR — Az (R (k) = L2207

Thus, it completes the proof. ]
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5 Concluding Remarks

At the end, we give some remarks on profiles of eigenfunctions @7 when k is sufficiently
close to 1 (¢ is sufficiently small). Fix n € N arbitrarily, and denote zeros of n-mode
solution u,, by

2i—1
%= (i=1,2,---,n).
In the case of f(u) = sinu, we give a conjecture on profiles of eigenfunctions below.
@ j=0 1@ =2
A k ﬂ \\ //
\ 7
\\ I/
o A A
\ , 1
\\\ X y
\ . //
\ /
N\ /
\\ '/
-1 -1 s
1®j=3 ) j=5
-——_\ r—_j 1 AT~ L~
. \ ﬁ \\ /f
N\ /
_ \ /
‘\\ \\ /
0 ‘ 0 \\\ \‘\A
1 \\ AY 1
X \ x \
b /I/ K \ Al
’ AN
// \\
-1 L—J L | - g T

Figure 4: Graphs of eigenfunctions for case f(u) =sinu (n =3 and k = 1 — 10~20): (1)
wi(; k), (2) w3(z;k), (3) pi(z;k), (4) wi(a;k).

Profiles of two special eigenfunctions ¢§ and ¢ are given in (1) and (3) of Fig. 4; they
have spikes and transition layers in neighborhoods of {z;}, respectively. An observation
on Theorems 2, 3 and numerical simulations shows us formally the following asymptotic
formulas:

(i) if 0 < j < n, then @}(z; k) ~ ¢f(z;k)cosjnz (Fig.4 (2)),
(ii) if j > n, then ¢} (z;k) ~ ©p(z;k)cos(j —n)rz  (Fig.4 (4)),

where A ~ B means that A is close to B in a certain sense. In the case of 0 < j < n,
E. Yanagida shows us a conjecture for general f(u) that o7 has spikes in neighborhoods
of 2z (i = 1,2,---,n); the height of each spike is proportional to cos jmz;. The above
formal result 1mp11es that Yanagida’s conjecture holds for f(u) = sinu, since ¢f(z; k) =
cos(un(z; k)/2) has spikes with the same height at z; (i = 1,2,--- ,n).
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We also show a conjectures on profiles of eigenfunctions in the case of f(u) = u(1—u?):

(i) if 0 < j < n, then p}(z; k)

(ii) if n < j < 2n, then @} (z; k)

~ @} (z; k) cos jrz,

~ @n(z; k) cos(j — n)rz,

(iil) if j > 2n, then @} (z; k) ~ ¢5,(z; k) cos(j — 2n)me.

(1)

J\ |
| i
X 1

0
‘\“ ' X “V 1
-1 -} —
(3) C))
1 H-...
’ X /' N i 0 i
-1 _ | | D
&)
1 w ( \ ( 1
0 0

-1

8|

Figure 5: Graphs of eigenfunctions for case f(u) =u(l —u?) (n =4 and k=1 — 10-10);
(1) @b(z: k), (2) wi(mi k), (3) 204(z; k), (4) 208(5 k), (5) wi(zik)/2, (6) pholz;k)/2.

For a certain class of f (u), we suspect that similar properties as in two cases hold for
eigenfunctions arising from linearized eigenvalue problems. In the forthcoming papers, we
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will show asymptotic formulas of eigenfunctions rigorously and consider the above general
conjecture.

References

[1] P. Brunovsky and B. Fiedler, Connecting orbits in scalar reaction diffusion equations
I1. The complete solution, J. Differential Equations, 81 (1989), 106-135.

[2] P. F. Byrd and M. D. Friedman, “Handbook of Elliptic Integrals for Engineers and
Scientists”, Springer-Verlag, 1981.

[3] J. Carr and R.L. Pego, Metastable patterns in solutions of u; = £2uzy — f(u), Com-
mun. Pure Appl. Math. 42 (1989), 523-576.

[4] N. Chafee and E.F. Infante, A bifurcation problem for a nonlinear partial differential
equation of parabolic type, Applicable Anal., 4 (1974/75), 17-37.

(5] D. Henry, “Geometric Theory of Semilinear Parabolic Equations”, Lecture Notes in
Mathematics, Vol. 840, Springer-Verlag, Berlin/New York, 1981.

[6] J. Kovacic, An algorithm for solving second order linear homogeneous differential
equations, J. Symbolic. Comput., 2 (1986), 3-43.

[7] S. Kosugi, Y. Morita and S. Yotsutani, A complete bifurcation diagram of the
Ginzburg-Landau equation with periodic boundary condition, Commun. Pure Appl.
Anal., 3 (2005), 665-682. :

(8] J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differ-
ential Equations, 39 (1981), 269-290.

(9] K. Takemura, The Heun equation and the Calogero- Moser-Sutherland system I: the
Bethe Ansatz method, Commun. Math. Phys. 235 (2003), 467-494.

[10] T. Wakasa, Exact eigenvalue and eigenfunction associated with linearization for
Chafee-Infante problem, Funkcialaj Ekvacioj, 49 (2006), 321-336.

- [11] T. Wakasa, “Study on Pattern Formation Problems Related with Reaction-Diffusion
Equations (disseri;ation)”, March, 2007, Waseda University.

[12] T. Wakasa and S. Yotsutani, Representation formulas for some 1-dimensional lin-
earized eigenvalue problems, submitted in Commun. Pure Appl. Anal.



