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Degenerate parabolic equation derived from
kinetic theory
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Abstract

We study a degenerate parabolic equation derived from the kinetic
theory using Rényi-T'sallis’ entropy. If the exponent is critical, we have
the formation of collapse for the blowup solution in finite time. This
result is regarded as a higher-dimensional version of our previous work
on the non-stationary Smoluchowski-Poisson equation associated with
the Boltzmann entropy in two-space dimensions, and actually, we use
the mass quantization of the blowup family of stationary solutions in
the proof.

1 Introduction

The purpose of the present paper is to show the formation of collapse for the
blowup in finite time solution to a degenerate parabolic equation with the
space dimension greater than 2. This equation describes the motion of the
mean field of many self-interacting particles, and is derived from the kinetic
theory [2].

In fact, this theory induces the parabolic-elliptic system

pe = V[D, - (Vp + uV))
Ap=pu in Q x (0,7) (1)
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as the hydrodynamical limit of self-gravitating particles. Here, u = u(x,t) >
0 is the function describing particle density at (x,t) € Q x (0,T), @ c R"
a domain, ¢ = ¢(z,t) is the Newton potential generated by u, and p > 0 is
the pressure determined by the density-pressure relation

p=p(,9). (2)
If ©2 has the boundary 9, the null-flux boundary condition
(Vp+puVy)-v=0

is imposed with v denoting the outer unit normal vector so that the total
mass

)\=/u(m‘,t)da:
Q

is conserved during the evolution.
In more details, if 0 < f = f(z,v,t) is the density of particles at (z,t) €
Q2 x (0, T) moving at the velocity v, then it satisfies the kinetic equation

fov-Vof — Vo -Vof = —V, - j

with the general dissipation flux term —V, - j. This flux term is determined
by the maximum entropy production principle, that is, f maximize the local
entropy S = [g. s(f(z,v,t))dv under the constraint |

wz,t)= [ flevdd,  pet) =+ / f? f(z, v, t)dv.
R» n R" )

Averaging f over the velocities v € R™, and then the passage to the limit
of large friction or large times leads to (1) in the (z,t) space, see [2]. We
have, thus, several mean field equations according to the entropy function
s(f) subject to the law of partition of particles into mezoscopic states; e.g.,
the entropies of Boltzmann, Fermi-Dirac, Bose-Einstein, and so forth.

System (1) with (2) is still under-determined, and there are two main
theories to prescribe the temperature 6. First, the cannonical statistics takes
iso-thermal setting, and hence the temperature 8 > 0 is a constant. Second,
6 = 6(t) > 0 is the function of ¢ in the micro-cannonical statistics, where

n 1
E=-— dr + =
2/p:c 2/,w,odx



166

is the prescribed total energy independent of t.
If Rényi-Tsallis’ entropy
-1
== | 7= pan

is adopted, then (2) becomes
p=r"F pM,

where k > 0 is a constant and J = 13 + 3, see [3, 1]. By normalizing
constants and assuming 2 = R", then we can reduce (1) to the degenerate

parabolic equation

m—1

U = Au™ -V (uVl*u), v=>20 inR"x(0,T) (3)

in the 1so-thermal setting, where the new unknown u is a positive constant
times p, —= 1 = 1+2,and

1
wn-1(n — 2) |z

[(z) =

n—2

with wp_; denoting the area of the boundary of the unit ball in R".

When n = 3 and ¢ = I, the case m = 2 — 2 = £ actually arises to (3).
Equation (3) of this exponent m is, mathematically, a higher-dimensional
version of the Smoluchowski-Poisson equation associated with the Boltzmann

entropy in two-space dimension. This two-dimensional equation is given by
=Au—V-(uV1"*u), u>0 inRZx(0,7) @)
defined for I'(z) = 3; log 177, and thus, is a relative to the simplified system
of chemotaxis,
= V- (Vu—uVv), v-u—lQlfudw in 2 x (0,T)

ou Ov Ov
E_ua;_g;_o . on 92 x (0,T), (5)

associated with the total mass conservation ||u(t)||; = ||u0|| 1 and the decrease
of the free energy,

F(u) = / u(logu — 1)dx — -/ G(z,z')u ® udzdr’,
Ox
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where @ C R? is a bounded domain with smooth boundary, v the outer
unit normal vector, u ® u = u(z,t)u(z’,t), and G = G(z,z’) is the Green’s
function associated with

Ov

1
—~Av=u-— 9] Qudsc in Q x (0,7, B 0 on 89 x (0,T).

We have the formation of collapse. for the blowup solution in finite time to

- (5), i.e., »

| u(z,t)dr — Z M (20)0z,(dz) + f(z)dz (6)
ToES

ast T T in M(Q), where T < o0 is the blowup time,
S ={z € ﬁl there exists zx — g, tx T T such that u(zg,ty) — +oo}
denotes the blowup set,

8 €
m(zo) = { i §ﬁ§ e as)w)

is the quantized mass, and 0 < f = f(z) € L*( Q)N C(Q\ S).

Similarly to (5), there is a collapse formation with quantized mass of
the blowup solution in finite time to (3), provided that up = u|,_o € X =
LY(R?, (1+]|z|?)dz)NL°(R?)NH(R2). In fact, (3) is well-posed in this func-
tion space X locally in time, and it follows that lim sup,;r [ga |z|?u(z, t)dz <
+00. This guarantees the boundedness of the blowup set in R2, and then
we obtain an analogous result of (6), see later arguments of this paper. We
study the question whether or not this is also the case of (3) with m = 2— 2,
n > 3.

The solution to (3) which we handle with is the weak solution obtained
similarly to (7, 9, 8]. First, given the initial value

0 < up € LY(R™) N L=®(R") with Uy € H'(R"), (7N
we take the approximate solution u. = u.(z,t) satisfying

Uet = _mT; 1'A(u,s +&)™ = V- (ue VI * u) in R" x (0,T)
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for 0 <& < 1, where

0 <uge € L!NW2P(R™)  for any p € [-2,n + 3]

l|uoelly < l[wollp, for any p € [1, o0]
Vugellz < [lug'll2 |
Uge — U strongly in LP(R™) as & | 0 for some p € [-25, 00).

The construction of this approximate solution assures its several uniform
estimates with respect to 0 < e <1 locally in time, and then, passing to a
subsequence, we obtain their convergence to u = u(z, t) satisfying

u € L*([0, T}; L(R™)) N L5, ([0, T); L= (R™))
Vu™ € L*([0,T]; L*(R™)
I'*xue L([0,T); H'(R™))

and T
/ / (Vu™ - V&€ —uVT x u - V€ — ué)dedt = / uodz
0 n n‘
for 0 < T <« 1, where £ € H*(0,T; L*(R™)) N L?(0,T; H*(R™)) is the test
function such that {(,t) =0for 0 < T -t < 1.

Remark 1 The potential I'(z) used in [7, 9, 8] decays exponentially at
0o, and is different from ours. In our case, however, the Calderon-Zygmund
estimate is applicable and it holds that T xu € L2.([0,T); W3P(R™)) for any
1< p< oo byue Le([0,T); LL(R™)) N LE ([0, T); L2(R™)).

Henceforth, u = u(z,t) and T = Tpax € (0,+00] denote this weak so-
lution and its existence time, respectively. The first theorem shows that
there is a threshold of ||up||1 for the blowup of the solution in finite time,
and this value )\, is associated with the Sobolev constant S = S(n), that is,

Av = (mS)n/2 ‘
= inf{[|[ V€3 | € € CP(R"), [|€]| 2o, = 1}. (8)

An analogous fact is shown by [9, 8] for the equation which they studied, see
the above Remark 1, while a different argument using the Trudinger-Moser
inequality will be provided here.
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Theorem 1 If ug = ug(x) is the initial value satisfying (7) and ||uol|y <
A, then T = +oo holds in (3) for m =2 — 2. There is, on the other hand,
up = uo(x) with (7) such that ||ully > A\ and T < +00.

The blowup solution constructed in the above theorem is constructed for the
case of

/ |z|? uo(x)dz < +00. | 9)
R"

Actually, formation of collapse of the blowup solution to (3) is associated
with this class.

This paper is composed of four sections. In the next section, we describe
the scaling property to (3) and explain why the exponent m =-2 — 2 and
the value )\, are selected for the L*-threshold of the blowup in finite time to
arise, and then prove Theorem 1. In section 3 we show that the formation
of collapse arises when the free energy does not decay so fast. Section 4
deals with the related questions on the blowup rate, finiteness of the isolated
blowup points, mass quantization, and so forth.

2 Preliminaries

For the moment, we take a formal argument concerning the scaling prop-
erty of (3). The first observation is that it is a model B equation, see [12],
associated with the free energy :

um

F(u)=/n7z~dx—%(1"*u,u).

In fact, we have

= (v,u™ =T xu),
8=0

OF (u)[v] = Ed;}'(u + sv)

where (, ) denotes the L?-inner product, and identifyiing F(u) with «™~1 —
" x u, we can write (3) as

u=V- {m; 1Vum —uVT * u} =V -uViF(u) in R™ x (0,T). (10)

From this form of (10), it is easy to infer, at least formally, the total mass
conservation

lu()lls = lluolls = A (11)
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and the decrease of the free energy

ng(u) - / u |VSF @) da

— -—/ ulV(um"l—F*u)IzdeO. (12)
Rﬂ

In fact, justifying (11) for the weak solution is rather easy. As for (12),
on the other hand, we write, again formally, its right-hand side as

"‘/,,

noting that u!/2VI'xu € L2 ([0, T); L>(R™)) holds for the weak solution u =
u(z,t). Then, the above described construction of approximate solutions and
the process of passing to the limit guarantee u™ /2 € L ([0,T); H*(R™)),
and furthermore, equality (12) is justified as

d
&=/
for a.e. t. .‘

We go back to the formal argument again. Regarding (11)-(12), we for-
mulate the stationary state by

2
dz,

m—1

o 1/2Vum'1/2 — w2Vl x u

m-—1
m—1/2

2
Vum™Y2 29T xu| dz <0 (13)

u™ ! —T' % u = constant in {u > 0}, / udz = . (14)
Rn
If the above constant is denoted by c, then v = I' * u + c satisfies
—Av=1v% inR", / vide = ), (15)

where m =1+ %. (This constant may depend on the connected compent of
{u > 0} at this moment, which eventually becomes unique by the following
result.) Problem (15) is invariant under the scaling transformation

v(z) > vu(2) = uTv(ua) (16)

ifand only if y=n—2and ¢ = =25 = -2, ie, m = 2— 2, where p > 0

m-1 "~ n-2’
is a constant. If this is the case, conversel;, problem (16) admits a family of
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solutions, each of which is necessarily radially symmetric and has compact
support, see [15]. Then, we define the normalized solution v, = v,(z) to (15)
and the quantized mass A, > 0 by

-Av, =vl, v, <v(0)=0 inR" and Ae = /n v,‘.{fdx,

respectively.
- This profile of mass quantization of the stationary state on the whole

space R" is the origin of the quantized blowup mechanism for the family of
solutions to

—Av=v] inQ, wv=constant on 99, / vidz = A
Q

with ¢ = =25, where 2 C R" is a bounded domain, n > 3. An analogous
result to n = 2 arises to

—Av=-¢e" inQ, v =constant, on 9, / e'dr = . (17)
Q

The free boundary problem (17) is, actually, regarded as a stationary state
of (5), and its quantized blowup mechanism induces (6) similarly, see [13]
and the references therein.

Remark 2 The non-stationary problem (8) for m = 2 — % has also the
scaling property; if u = u(x,t) is a solution, then u,(z,t) = p u(uzx, u™t)
satisfies

m-—1
m

[ u,dz = / udx fort € [0,T,),

where p > 0 is a constant and T, = p~"T. This scaling is of course compat-
ible to (16) for the stationary solution.

Aui =V - (u, VT *w,), v, 20 in R® x (0,T,)

Lemma 1 It holds that
Je = inf{F(u) | 0 < u € L™(R"), u=MA}=0
Rﬂ

ifm=2-2
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Proof: Higher-dimensional Trudinger-Moser inequality is given by

n

jr = inf{F(u) | v > 0, supp u C Bg, / U= A} > —00, (18)

in the dual form, see [16, 15], where Bg = B(0, R). Here, it follows that
| Flw) = 4" F ()

. #
for u,(z) = p"u(pz) by m = 2 — 2. Since supp u, C By-1p if and only if
supp u C Bg, therefore, we obtain

Ju-1R = u"25r > jr
for p > 1. This implies jr > 0 and hence
Jx» 20

because R > 0 is arbitrary. We have
I = ll'n—zj*

again by the above scaling. This implies j. = 0. g

&=G%yﬂ (19)

Proof: Using Sobolev’s constant (8), we obtain

0 < (T u,u) = [|VE xul; < Sllull’a, < Slull3? lulo =

Lemma 2 It holds that

for ¢ + =2 = 1‘2‘—*3 Since m = 2 — 2, it follows that 2(1 — 0) = m, and this

implies the relation

F) 2 (-5 Il

for 0 < u € L™(R") with [, % = A.. Regarding the Talenti family [14], we
see that the above estimate is optimal, and therefore, it holds that

}__ §)\2—m=0,

m 2°

by Lemma 1. This means (19). 3
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Lemma 3 If A < A, then we have
[u@®)llm + (T *u(t), u(t)) < C1 (20)
with a constant C; > 0 independent of t € [0,T).

Proof: We have ||v||; = A, for v = 32u, and this implies

F(uw) = Flu)= —da:—%(l"*u,u)

by Lemma 3. Then, (20) follows from 0 <A< A, and 0 <m < 2. 4

Lemma 4 If the initial value ug satisfies F(ug) < 0 and (9), then T <
+00 arises.

Proof: Using the approximate solution, we can show that

te [0,T) > /R" o(z)u(z, t)dz

is locally absolutely continuous for ¢ € C§°(R"™), and it holds that

d m—1

1
— udr = —— u™Apdr + = / / pou ® udzdzx
dt Rn 14 m Rn 2 RrxR" ¢

for a.e. t, where u ® u = u(z,t)u(z’,t) and
bo = (2, %) = (Vo(a) - Vo(@)) - VI(z — 2.
Here, the inequality
lpe(z,2)] < (n — 2)[|Vellel(z — )

is made use of for this purpose.
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Under the assumption of (9), taking ¢ = |z|? is justified again, see [7].
Since

Mg, pyle) = ~2n—DFW) (21)
holds for this ¢ = |z|?, we can show that the function

£ [0,T) — / 1o u(z, t)dz € [0, +00)
R"

is locally absolutely continuous, and satisfies

d 2 m—1 m
EE/Rn'xl udr = - -Qn/nu dz — (n — 2) ([ * u,u)

| = 2(n—2)F(u) (22)
for a.e. t. Since F(u(t)) < F(uo), it follows that

/ |z|* u(z, t)dz < 0 fort>1

if both F(up) < 0 and T = +o0 occur, a contradiction. Thus, F(ug) < 0
implies T' < +00. 3

Proof of Theorem 1: We can apply Moser’s iteration scheme for the weak
solution to (3) with m = 2 — 2, see [8]. Thus, if there are p> 1 and C; > 0
such that sup,co 7 [[u(t)|lp < 02, then it holds that sup.ep 1 [|u(t)|leo < Cs
with a constant C3 > 0 independent of T. This implies T = +o0, see [9).
The first part of Theorem 1 is thus a consequence of Lemma 3.

Wang-Ye’s Trudinger-Moser inequality (18), on the other hand, is sharp,
and it holds that

n

inf{F(u) | w > 0, supp u C Bk, / u= A} =—00
for any R > 0 and A > A,. Each A > J,, in particular, admits an admissible
initial value uwy = wuo(z) with compact support such that |juplly = A and

F(ug) < 0. For this uyg, it follows that T < 400 from Lemma 4, and the
proof is complete. §

Remark 3 The first difference between (3) withm =2—2,n >3, and

(4) with n = 2 is the linearity of the diffusion, while the recursive property
(21) is the second difference. In fact, we have

(Vo(z) - Vo(@)) - VT(z - o) = —
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for o(z) = |z|?* and ['(z) = £ log .
2 ||

3 Collapse Formation
In the following theorem, |

S = {zo € R" | there exists zx — o, tx T T such that u(zx, ;) — +o0}
denqtes the blowup set. Here, we emphasize that T' < +o00 implies

lim sup [[u(t)[|ec = +o0,
1T

see 7,9, 8], while ||u(t)|| Lo (z)>R) is bounded for R > 1 as we shall show below
and therefore, the blowup set is always non-void in the case of T' < +oo0.

To see this, first, e-regularity is obtained by localized Moser’s iteration
scheme, i.e., localization of Lemma 1, see [8].

Lemma 5 We have ¢ > 0 and C; > 0 independent of xo € R"™ such
that

limsup/ u(z,t)dz < g
B(zo,R)

1T
implies
1int1T§uP [(®) ]| L= (B@0,R/2)) < Cr
for0< R« 1.

Next, we have

/ |lz|* u(z, t)dz < 2(n — 2)TF(uo) + / |z|? uodz = Cy(T, ug)
Rn

n

by (22), and hence
1
sup / u(z, t)dr < —Cy(T, uo). (23)
t(0,T) Jja|>R R
This implies

limsup ||u(t)||Lo@zi>r) < Cs  for R> 1 (24)
T
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by Lemma 5 with a constant Cs > 0 independent of t € [0,T). Then, it
follows that S C B(0, R). |

Here, we shall show the formation of collapse to (3), prescribing the be-
havior of the free energy.

Theorem 2 Given the initial value ug = uo(xz) satisfying (7) and (9),
assume T < +oo for the weak solution u = u(z,t) to (8) withm =2— 2,
n > 3 and also

/0 T — ) F () de > —oo (25)

for some v > 0. Then the blowup set S of this u = u(-,t) is finite and it
holds that

u(@ t)dz — 3 m(20)be(d) + f(2)d (26)

zoES

in M(R™) = C'(R"U {c0}) as t 1 T, where R™ U {0} is the one-point
compactification of R™, m(zo) > 0, and

0< f = f(x) € LR 1+ |z])dz)) N L (R U{o}) \ S).  (27)

Remark 4 Inequality (25) may be replaced by
T
/ a(t) F(u(t))dt > —oo,
0
where a = a(t) > 0 is a measurable function in [0,T) satisfying
/ LI
o [ ST a(t)dt
Remark 5 We have always f(;‘p F(u(t))dt > —o0 and

F(u(t)) =2 —Ce(T — )~ (28)

with a constant Cs > 0 independent of t € [0,T).
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Proof: The above relations are obvious if

1t1TIqr}.7:(u(t)) > —00. (29)
In the other case,
lim F(u(t)) = —oo, (30)

we have F(u(to)) < 0 for some t, € [0,T). We may assume to = 0 without
loss of generality.
First, (22) implies

%<0 for H(t)=/ |a:|2u(:z:,t)dm (31)

and therefore, there is H(T") = limy;7 H(t) > 0. Thus, we obtain
T
/ Fu(t))dt = H(T) — H(0) > —oo.
. Jo |

Next, equality (22) reads;

20-2FW) = g [ loPudo=- [ WV -Txw) Viaf

= —2/ uV(u™ ! =T xu) - zdz,

formally again, and then it holds that

d 2
E/Rnl.ﬂ udz

2

< 4 u|V(um'l—F*u)l2dz/ |z|? udz
Rn Rn

d 2
= —4d—t]~'(u)-/n|$| udz.

The above inequality is again justified through the approximate solution, and

we obtain . 2
dg d 1 9
“Z) <= — —
(dt) <@’ W= syt

for g = g(t) > 0 defined by

o(t) = { | |x|2u(w,t>dx}1/2,
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or equivalently,
99"+ (n—1)(¢')* <0

for a.e. t. This inequality is written as

d 99" — (9’)2 g 2 d 2
—_ =2 W/l <L < —_ — —
dt? logg 2 =n ( ) " (dt log g) ’

g g

or J

—_h < —nh?

dth_ nh
for h = —%logg > 0, recall (31). Thus, we obtain
| i
Zpl <
dth <-n<0,

and there exists A(T") = limr h(t) € (0, +00] satisfying
R~YT) — h71(t) < —n(T - t)

fort €[0,T).
Neglecting this term, we obtain

Rl (t) >n(T —t) forte[0,T),

and then it holds that .
1 1d
< — = —— —_

At < o= = @87 1

. d H()
— >
| e ) >0 )

for a.e. t. Then (28) follows from (22).

We shall follow the argument developed for Smoluchowski-Poisson equa-
tion (4) in two-space dimension [5, 10] to prove Theorem 2. The key lemma
is the following. |

Lemma 6 If (25) holds with T < +oo, then

ltlTl‘%l - o(z)u(z,t)dx (33)

exists for any ¢ € C}(R™).
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Proof: The formal calculation

2 2

_Ci / (pudx = / uV(um’_l —T'x U) . VSOd(L‘
dt Jgn n
< / uIV(um‘l—I‘*u)de’/ u|V<P|2da:
Rn Rn _
d
< = Vel Az F(w), (34)

is juStiﬁed by taking the approximate solution, i.e.,

2
N2 < __”vcp”ooA "
@y < Lty (35)

for a.e. t for A(t) = [g. oudz. In the case of (29), we obtain

T d N T d 2 1/2
/ g / pudz|dt < T/? / p / oudz| dt < +00
1] Rn 0 Rn

and then the existence of (33).

Thus, we may assume F(up) < 0 without loss of generality, and then it
holds that

/0 ! ( /3 ' a(t)dt> A(s)?ds = /0 i a(t)dt /0 t A'(s)2ds

T
< -G / a(t) H' (£)dt < +00
0

by (25), where for a(t) = (T —t)~" and C; = "Z:'_Z’\. We obtain

2

t2
A'(s)ds

t;

< /OT Fi%ﬁ; : /: (/:P a(t)dt) A'(s)2ds

for 0 <t <t2 < T, and hence the existence of (33). y

|A(t2) — A(t1)]? =
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Remark 6 We have the scaling invariant inequality

sup A(t) < A(t)
t/€[t,0t+(1-0)T]

—6)log 1  (HE) — HD)|Vel2A 72
{(1 )] n(n — 2) }

(36)
in the case of F(ug) <0, where 0 < 6 < 1.
Proof: Inequality (35) implies

[VeollgoA

t.t (¢ — &) A(s)ds < | =) - 1))

for0<t<t' «<T. Then, it holds that

2

ft+(1—-6t/
ABt + (1 B)t) — A(E)[ = / A(s)ds

6t+(1-6)t' t
<(1-9)- / (' —s)Yds- | (t' —s)A'(s)%ds
t t

2
< (1= 6)log - L= (1t) — ().

Varying t' € [t,T), we get (36). a

Remark 7 Inequality (86) combined with the argument [6] will be appli-
cable to the study of the blowup in infinite time. Namely, we expect that

1§%glf lu()|| Lo (B(zo,R/2)) < +00
holds if T = +oo and liminfii oo ||u(t)|| 22 (B(o,R)) < €0-
Remark 8 By Remark 5, we have
0<—H(@) < %(T — )-1H(0)

in the case of F(up) < 0. If the above inequality is improved slightly, i.e.,
0< —H'(t) S K(T —t)"™ (37)
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with K > 0 and 0 < v < 1, the assumption on the free energy of Theorem 2
1s valid. This implies also

0< H(T) - H(t) < Go(T — 1) (38)

Here, we note that if (38) holds, then there is £, independent of zo € S,
0<R<k1,andte€[0,T) such that

liminf | a0 r(@)u(z, t) > & O (39)
T R»

and therefore, the finiteness of S.

Proof: Inequality (37) implies with Cg > 0 and 0 < « < 1. Applying
(36) for § = 1/2, we obtain Cjp > 0 such that

sup A(t') < A(t) + Cio(T — t)°.
t'€lt, 5T

Now, we define t; 1T and ax by

1
T -ty = —(T - tk) - and ar = Sup A(t,),
2 t'€[tr thr1]

to obtain
A+ < ag + Cro(T — ty)F/2

for k = 1,2,.... Then, we obtain ax < & for £k = 1,2,--- by assuming
a; < €; for some 0 < g1 < 1. This is a contradiction, and we obtain (39). y

Proof of Theorem 2: Given zq € S, we take ¢ = @zr € CP(R)
satisfying 0 < ¢ < 1, ¢ = 1 in B(xy, R), and ¢ = 0 on R"\ B(zo, 2R). First,
S is a bounded set in R™ by (24). Next, Lemma 5 guarantees

lim sup / Pz, R(T)u(z, t)dx > €9 (40)
1T n

for each zo € S, where 0 < R <« 1. Then, relation (40) is improved by

liminf/ Pao,r(T)u(Z, t)dT > €0
tTr R
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by Lemma 6. Then, the finiteness of S follows from (11).
We have the convergence of u(z,t)dz — p(dr,T) in M(R") as t T T by
(11), (23), and the existence of (33) for ¢ € Cj(R™). There arises that

supp ps(dz, T) =S

and (27) if u(dz,T) = ps(dz,T) + f(z)dr denotes the Radon-Nikodym-
Lebesgue decomposition. Then, we obtain

ps(dz, T) = Z m(xg)dz, (dx)

ToES

with m(zo) > €0 and the proof is complete. §

4 Further Discussions

This section is concerned with the mass quantization, m(zg) = A, in (26).
First, we shall show the estimate of collapse mass from below. A blowup
point zg is called isolated if S N B(zo, R) = {zo} and non-degenerate if

liminf inf w(z,t) >0,
t'T  zeB(zo,R)

where 0 < R K 1.

Theorem 3 If T' < 400 occurs to (8) and zo € S is a non-degenerate
isolated blowup point, then it holds that

lim sup F(p*™u(t)) < +oo, (41)
1T

where ¢ = <Pm0R with0 < R < 1.

Proof: Given such zo € S, we apply the local elllptlc-parabollc regulanty
We may assume

S [u(t) | (B0 2rNBEoR/a) < +00 (42)
and
2[“ p) |T * U(t)Hww(B(zo,R)\B(zo,R/m) < +o0 (43)
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for 0 < R « 1. Taking ¢ = ¢4, g, now we define the local free energy by

m 1
Fo(t) = E—ﬂp — —pul’ x pu dz > ]’(gol/mu).
Re M 2
Using @ = ©g,r/2, thus we obtain
4 .
at o(t) = (u™ ! = T * pu)pudz

R'I‘l-

— / uVopu™ ! —Txpu) - V™! —T xu)dr

—/ upV(u™ ! =T *pu) - V(u™ ! =T xu)dz + O(1)
= — / upV(u™ ! =T xpu) - V(™! =T % u)dz + O(1)

because I * u(-,t) is bounded in W ¢(R") for 1 < ¢ < =Z-. Here, equality
(11) implies

l/ u@VIL * (1 — p)u- V(U™ —T * pu)dz

< Cn uP|V(u™ ! — T * pu)|dz
Rn

and hence
g—- o(t) < —/ up |[V(u™ ! —T % cpu)|2 dz
t Rn

+Cur | wp|V(u™! — T * pu)|dz + O(1)
R ’
1

< —5/ ucﬁIV(um-l -—l"*cpu)|2dx+0(1).

Thus, we obtain F(p™u(t)) < Cj with a constant Cj; independent of
t € [0,T) as is desired. The proof is complete. g

Remark 9 Ifxy, € S is isolated and non-degenerate, we have 0 < R K 1
and0 < f = f(x) € L'(B(xo, 2R))NC(B(z0,2R)\{z0}) such that anyt, 1 T
admits {t},} C {tx} and m(xo) > 0 satisfying

u(z, t})dz — m(zo)ds, (dz) + f(z)dz.
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If m(zo) < A, is the case, we obtain ||u(ty)||zm(B@s,r) < Cia, which, however,
does not imply lim infyp ||u(t)|| 2o (B(2o,r/2)) < +00. If (26) holds, then we can
follow the argument of [5]. Thus, we obtain m(zy) > A by the above theorem.

We proceed to the blowup rate, regarding the scaling described in Remark
2. In fact, the backward self-similar transformation is defined by

v(y,s) = (T — tu(z,t), y=(x—2z0)/(T - )", s = —log(T — t) (44)

- from this property of scaling, where zo € S. Then, we say that the blowup
point xg is type I if

1ir?T§up(T ~ &) [|uQ)| oo (B0 b(T—t)1/m)) < F00

for each b > 0, and type II for the other case. The next theorem shows that
any blowup point is type II if the free energy is bounded. A similar fact
is shown to the semilinear parabolic equation with critical Sobolev growth,
see [11]. We mention also that the Herrero-Veldzquez solution [4] for the
two-dimensional Smoluchowski-Poisson equation (4) has the same profile,
boundedness of the free energy and type II blowup rate.

Theorem 4 If (29) holds, then each o € S is type II. We have, more
precisely,

1t1T171,1(T — ) W)l oo (B0 p(T—ty11n) = +00 (45)

for any b > 0.

Proof: By the proof of Lemma 6, it holds that

;i
0

7 ‘/Q pudz

in the case of (29). Putting ¢ = @4, g, therefore, we obtain

T

)

— udx
/0 dt Jon ¥

with Cy4 > 0 independent of 0 < R <« 1. This implies

(50,8, ulE)) = (Peo.pr u(t))] € Crad/2RL(E — 1)

dz < Ci3A||Velleo (46)

dt < 014A1/2R-1
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for 0 <t <t < T, and hence

(20,8 u(t)) ~ (Puo,r, p(dz, T))| < CLaX/?R™Y(T — 1) (47)

for

w(de,T) = > m(20)dz,(dz) + f(z)dz
ToES

by (26). Given b > 0, we can take R = b(T —t) for 0 < T —t < 1 in (47),
and then it follows that

lin:éup |{@uo,p (1), u(t)) — m(zo)| < CraA/271.

Since b > 0 is arbitrary, this implies

/ u(z, t)dz — m(zo)
B(=0,b(T—t))

again for any b > 0. Under the transformation (44), inequality (48) reads;

lim limsup

=0, 48
Jim tims (48)

lim limsup / . v(s,y)dy — m(zo)| = 0. (49)
b1+ st4o0 |JB(0pe~"F?)
We have
/ v(y, s)dy = A for s > —logT, (50)
R-n

and therefore, any tx T T admits {s,} C {sx} for sy = —log(T — ti), such
that _
vy, sp)dy — ((dy)  in Mo(R™) = Co(R™), (51)
and this {(dy) satisfies
¢(dy) = m(zo)do(dy) (52)

by (49), where Co(R™) = {p € C(R" U {0}) | ¢(00) = 0}. Relations
(51)-(52) imply
klﬂf}o ”v(s;c)“L“(B(O,b)) = +00

for any b > 0, and hence (45). The proof is complete. 3
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We finally examine the possibility of mass quantization, m(z,) < A, for
the isolated zo € S. In fact, using the backward self-similar transformation
(44), we obtain

m—1

Vs =

2n
v>0 in R x (—logT, 4+00), (53)

m |y|?
Av™ —V - [ vV xv + —

and then it holds that the decrease of the free energy and its recursive relation
between the second moment. They are, formally, given by

i.ﬁ'(v)z_/ v |V vm‘l—l“*'u—m 2d <0

ds n 2n y=u

d N

4 nmwy=mn—afw»y/|m%@, (54)
S R» R

where

(o) = A R D
F(v)—{/"(m zn'u)dy 2(1"*1),1))}.
Equation (53) is actually written as

v =V - vVEF(v) in R” X (—logT, +00)

and hence the first equality of (54) reads;

d A
$F0 == »
Relation (54) now implies

d A
Eg/ ly[Pvdy < 2(n — 2)F (vo) +/ ly*vdy
n R"

- 2
vay-'(v)l dy.

and therefore, the assumption
2n — 2)F(v0) + f ly[?v0dy < 0
Rﬂ

induces the contradiction, fRn ly|>vdy < 0 for s > 1. Thus, it holds that

2m—mﬁwa+/ lyl?vody > 0,
Rn
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which must be translated in s:
2(n — 2)F(v) +/ ly*vdy > 0 for any s > —1logT. (55)
Rn

Thus, we obtain some unusual relation (51)-(52) with m(zo) > M. and (55),
which may suggest the possibility of m(zy) = A. for all zo € S in the case of
(29). The other interesting question is the construction of this type solution
with radially symmetry, provided with a sharp blowup profile.

References

[1] P. Biler and R. Stariczy, Mean field models for self-gravitating particles,
Folia Matematica 13 (2006) 3-19.

[2] P-H. Chavanis, Generalized kinetic equations and effective thermody-
namics, Banach Center Publications 66 (2004) 79-101.

[3] P.-H. Chavanis and C. Sire, Anormalous diffusion and collapse of self-
gravitating Langevin particles in D dimensions, Phys. Rev. E 69 (2004)
016116.

[4] M.A. Herrero, and J.J.L. Veldzquez, Singularity patterns in a chemotazis
model, Math. Ann., Vol. 306 (1996) 583-623.

[5] T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic

system of mathematical biology, Adv. Differential Equations 6 (2001)
21-50.

[6] T. Senba and T. Suzuki, Time global solutions to a parabolic-elliptic
system modelling chemotazis, Asymptotic Analysis 32 (2001) 349-368.

[7] Y. Sugiyama, Global eristence in sub-critical cases and finite time blow-
- up in super-critical cases to degenerate Keller-Segel systems, Differential
and Integral Equations 19 (2006) 841-876.

[8] Y. Sugiyama, Partial reqularity and blow-up asymptotics of weak solu-
tions to degenerate parabolic system of porous medium type, preprint.

[9] Y. Sugiyama and H. Kunii, Global ezistence and decay properties for
a degenerate Keller-Segel model with a power factor in drift term, J.
Differential Equations 227 (2006) 333-364.



188

[10] T. Suzuki, Free Energy and Self-Interacting Particles: A Mathematical
Approach, Birkhauser, Boston, 2005.

[11] T. Suzuki, Semilinear parabolic equation on bounded domain with critical
Sobolev exponent, to appear in; Indiana Univ. Math. J..

[12] T. Suzuki, Mean Field Theories and Dual Variation, preprint.

[13] T. Suzuki and F. Takahashi, Nonlinear eigenvalue problem with quanti-
zation, Handbook of Differential Equations, Stationary Partial Differen-
tial Equations 5 (ed. M. Chipot and P. Quittner), Elsevier, Amsterdom,
to appear.

[14] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 4
(1976) 353-372. .

[15] G. Wang and D. Ye, On a nonlinear elliptic equation arising in a free
boundary problem, Math. Z. 244 (2003) 531-548.

[16] G. Wolansky, Critical behaviour of semi-linear elliptic equations with
sub-critical exponents, Nonlinear Anal. 26 (1996) 971-995.



