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Waves in inviscid shear flows exhibit temporally and spatially complicated behav-
ior due to the presence of the continuous spectrum and the nonorthogonal property
of eigenmodes of non-selfadjoint operators. The non-selfadjointness of the linearized
systems is associated with the noncanonical Hamiltonian structure of ideal fluids and
plasmas. By imposing the kinematical constraint on disturbances, the adjoint equa-
tion establishes a formal definition of the wave energy for both point and continuous
spectra. Thls observation will serve for the bifurcation theory of various shear flows
in fluids and plasmas.

I. INTRODUCTION

The effect of flow in plasmas has recently attracted considerable attention in fu-
sion research and astrophysics. For the purpose of the magnetic confinement, the
stability of plasmas described by ideal magnetohydrodynamics (MHD) is the moet
fundamental problem. However, theoretical work on flowing plasmas is $quIt$ limited
in comparison with static plasmas. This fact is essentlally due to the non-selfadjoint
property of the linearized hydrodynamic equations. The fluid equation linearized
about an equilibrium state can be written in the form of the evolution equation
$i\partial_{t}\tilde{u}=\mathcal{L}\tilde{u}$ ( $\tilde{u}$:perturbation), where the linear operator $\mathcal{L}$ is non-selfadjoint due to
the inhomogeneity (i.e., gradient or shear) of the mean fields. In the ideal limit (no
dissipation), it is known that the spectrum of $\mathcal{L}$ includes the continuous spectrum ae
well as the point spectrum. In contrast with the Schr\"odinger equation, however, the
spectral theory for non-selfadjoint operator is generally unknown especially for the
continuous spectrum. Even for an Inviscid parallel shear flow, the Rayleigh equa-
tion [1] has the non-selfadjoint property, and its necessary and sufficient condition
for stability is still anontrivial problem [2]. Obviously, plasma inherits this difficulty
$8S$ afluid model.

Instead of the spectral analysis, one may adopt the variational principle, which
provides apriori estimate of stability without knowing explicit solutions. If one
finds aconserved quantity whose first variation vanishae at an equilibrium state and
whose second variation is posltive (or negative) definite there, such astate turns out
to be (llnearly) stable. Since the conserved quantity is usually acombination of the
Hamiltonian $\bm{t}d$ the Casimir invariants, this is called the energy-Casimir method.
If the conserved quantity was furthermore convex for any finite variation, one could
insist the Lyapunov stability [3]. However, it must be remarked that this estlmate
gives only sufficient condition for stability, and we do not have so many Casimir
invariants for three-dimensional fluid motions.

Electronic address: hirotaQmath. kyushu-u. ac. jp

数理解析研究所講究録
第 1592巻 2008年 24-40 24



According to the Krein’s theorem [4] (see also Moser [5]), the signature of the en-
ergy of each eigenmode is essential for understanding the loss of stability, namely, the
bifurcation of steady state. In canonical systems of finite degree of freedom, linear
instability is only possible when pairs of eigenvalues of positive and negative energy
modes collide. This bifurcation theory is, however, under development for contin-
uous spectrum of infinite dimensional systems, because the corresponding singular
eigenmodes require more mathematical techniques than the non-singular modes of
point spectrum. In Sec. II and Sec. III, we will associate the non-selfadjoint property
of the linearized MHD equation with the noncanonical Hamiltonian structure [6],
which will enable us to define the wave energy ($=energy$ of eigenmode) including
the continuous spectrum in a general manner.

In Sec. IV and Sec. V, we will formulate the wave energy as well as wave action for
both point and continuous spectra in the MHD case. The hydrodynamic case can be
derived by dropping the magnetic field and will be discussed elsewhere. Generally
speaking, the wave energy may be negative in the presence of mean shear flow. In
analogy with the Krein’s theory, the negative energy mode might cause instability
in cooperation with other positive energy mode. While the spectral resolution is
still nontrivial for the continuous spectrum, our formulation avoids this difficulty by
invoking the hyperfunction theory [7] to deal formally with the singularity.

II. LINEARIZED LIE-POISSON SYSTEMS

(1)

The noncanonical Hamiltonian structure of the MHD equation (including the
hydrodynamic equation) was uncovered by Morrison &Greene [6]. It was also
derived by the Lie-Poisson reduction from a canonical system for the Lagrangian
variables [8]. The MHD equation is, thus, regarded as a Lie-Poisson system on
the dual $\mathfrak{g}^{*}$ of the Lie algebra, $\mathfrak{g}=\mathfrak{X}Os(\Lambda^{1}\oplus\Lambda^{0}\oplus\Lambda^{3})$, where $\mathfrak{X}$ and A$n$ denote,
respectively, the spaces of vector fields and n-forms on the domain $D\subset \mathbb{R}^{3}$ , and
\copyright denotes the semidirect product. Denote an element of the dual space by $u=$
$(M, B,\rho, s)^{T}\in g^{*}$ , where $u$ is composed of fluid momentum density $M$ , magnetic
field $B$ , mass density $\rho$ and specific entropy $s$ . The velocity field $v$ is given by
$M=\rho v$ .

For any functionals $F,$ $G:\mathfrak{g}^{*}arrow \mathbb{R}$, the Lie-Poisson bracket is generically written
in the form of

$\{F, G\}=\langle u,$ $[ \frac{\delta F}{\delta u},$ $\frac{\delta G}{\delta u}]\rangle$ ,

using the standard pairing (, \rangle : $\mathfrak{g}^{*}\cross \mathfrak{g}arrow \mathbb{R}$ and the Lie bracket $[,]$ : $\mathfrak{g}\cross \mathfrak{g}arrow \mathfrak{g}$ . The
Hamiltonian equation $\partial_{t}F=\{F, H\}$ is posed for a prescribed Hamiltonian function
$H$ : $\mathfrak{g}^{*}arrow \mathbb{R}$ . The Lie-Poisson bracket for the MHD equation is explicitly given in
Ref. 6 or Ref. 18.

Let us introduoe a notation following the adjoint representation of the Lie group
theory [9]. A linear operator $ad(\zeta)$ : $\mathfrak{g}arrow \mathfrak{g}$ for any $\zeta\in \mathfrak{g}$ is defined by

$[\zeta_{1},\zeta_{2}]=-[\zeta_{2},\zeta_{1}]=ad(\zeta_{1})\zeta_{2}=-ad(\zeta_{2})\zeta_{1}$ for $\forall\zeta_{1},$ $\zeta_{2}\in \mathfrak{g}$ . (2)

The dual operator of $ad(\zeta)$ with respect to the inner bracket (, \rangle is denoted by
$ad^{*}(\zeta)$ : $g^{*}arrow \mathfrak{g}^{*}$ . Using this notation, the Hamiltonian equation allows another
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expression;

$\partial_{t}u=-ad^{*}(\frac{\delta H}{\delta u})u$ . (3)

Any Lie-Poisson system is commonly written in this form of nonlinear evolution
equation. Actually, one can reproduce the ideal MHD equation by substituting the
corresponding Lie-Poisson bracket and the Hamiltonian.

It is important to notioe that the operator ad’(o) determines, to some extent,
how $u(t)$ evolves infinitesimally at each time. Suppose that the Hamiltonian in (3)
is replaced by arbitrary linear functional, i.e., $H=\langle u,\zeta\rangle$ for some $\zeta\in \mathfrak{g}$ . The
corresponding virtual variation $\delta u=-ad^{*}(\zeta)u$ is said to be kinematically accessible
(or dynamically accessible, according to Morrison [10]). Such variations $\delta u$ generated
by every $\zeta\in \mathfrak{g}$ do not span the whole space 9“, which implies that there is some
constraint on the dynamics. The existence of such kinematical constraints is peculiar
to the noncanonical systems and, physically, it is related to the conservation laws.

Any equilibrium state $u_{e}\in \mathfrak{g}^{r}$ is characterized by an extremum point $(\delta H=0)$

of $H$ with respect to the kenamatically accessible variations;

$\delta H=\langle ad^{*}(\zeta)u_{\epsilon},$ $\frac{\delta H}{\delta u}|_{e}\rangle=0$ for all $\zeta\in \mathfrak{g}$ , (4)

where $\delta H/\delta u|_{\epsilon}$ denotes the value of the functional derivative $\delta H/\delta u\in \mathfrak{g}$ at $u=$
$u_{e}$ . The linearization of (3) about this $u_{\epsilon}$ leads to a linear evolution equation for
perturbation $\tilde{u}(t)\in \mathfrak{g}^{*}$ ,

$\partial_{t}\tilde{u}=(A\mathcal{H}+\mathcal{B})\tilde{u}$, $\tilde{u}(O)=\tilde{u}_{0}$ , (E)

where we defined some linear operators, $\mathcal{A}:garrow \mathfrak{g},$ $\mathcal{H}$ : $\mathfrak{g}arrow \mathfrak{g}$ and $\mathcal{B}:\mathfrak{g}’arrow \mathfrak{g}^{s}$ by

$\mathcal{A}:=-ad’(0)u_{c}$ , $\mathcal{H}:=\frac{\delta^{2}H}{\delta u^{2}}|_{e}$ and $\mathcal{B}:=-ad\cdot(\frac{\delta H}{\delta u}|_{\epsilon})$ . (5)

Note that $A$ is an anti-symmetric operator, $\mathcal{A}^{*}=-\mathcal{A}$ (stemming from the anti-
symmetry of the Lie bracket), and $\mathcal{H}$ is a symmetric operator, $\mathcal{H}^{\cdot}=\mathcal{H}$ . Since this
paper will focus on the linear theory, we will omit the subscript $e$ in what follows
and $u$ will always refer to the equilibrium state satisfying (4). For the MHD case,
these operators are computed as shown in Appendix A.

We consider the kenamatically accessible perturbations $\tilde{u}\in\{\mathcal{A}\zeta;\zeta\in \mathfrak{g}\}$ to the
equilibrium state, which span the range of $\mathcal{A}$ . It is of interest to note that these per-
turbations constitute an invariant subspace for the evolution of $\tilde{u}(t)$ . The following
assumption and the subsequent theorem are fundamental to the later sections.

Assumption 1. The initial data $\tilde{u}_{0}\in \mathfrak{g}$
’ of the linearized equation (E) is kenamat-

ically accessible, $i.e.$ ,

$\exists\zeta_{0}\in \mathfrak{g}$ such that $\tilde{u}\mathfrak{v}=\mathcal{A}\zeta_{0}$. (A)

Theorem 2. Under the assumption (A), the solution $\tilde{u}(t)$ of (E) remains kenamat-
ically accessible; $\tilde{u}(t)=\mathcal{A}\zeta(t)$ for all $t>0$ where $\zeta(t)$ is a solution of the adjoint
problem

$\partial_{t}\zeta=(\mathcal{H}A-\mathcal{B}^{\cdot})\zeta$ , $\zeta(0)=\zeta_{0}$ . $(E^{*})$
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In addition, a symmetric quadratic $f_{07}m\delta^{2}H$ : $\mathfrak{g}\cross \mathfrak{g}arrow \mathbb{R}$ defined by

$\delta^{2}H:=-\langle(\mathcal{A}\mathcal{H}+\mathcal{B})\mathcal{A}\zeta,\zeta\rangle=\langle\tilde{u}, \partial_{t}\zeta\rangle$ (6)

is a constant of motion.

This theorem can be proved by noting the symmetry $(\mathcal{B}\mathcal{A})$ $=\mathcal{B}\mathcal{A}$ stemming
from the Jacobi identity of the Lie bracket. The proof of $(\mathcal{B}\mathcal{A})$ $=\mathcal{B}\mathcal{A}$ and the
subsequent claim, $\delta^{2}H=const.$ , has already given in Ref. 11 with some different
notations. It must be emphasized here that there is an explicit duality between the
variables $\tilde{u}$ and $\zeta$ . The solution of the linearized Lie-Poisson equation (E) is closely
related to that of the adjoint problem (E’) via the mapping $\mathcal{A}$ . This fact and the
underlying assumption (A) are required for the second (kenamatically accessible)
variation $\delta^{2}H$ of $H$ to be invariant. Therefore, we refer to this $\delta^{2}H=\langle\tilde{u}, a\zeta\rangle$ as the
energy of perturbation.

III. WAVE ENERGY AND WAVE ACTION

In the linear theory, it is useful to regard the perturbations $\tilde{u}\in \mathfrak{g}$ and $\zeta\in \mathfrak{g}$ as
complex variables and invoke the Fourier-Laplace transform. In what follows, we
will naturally identify $\mathfrak{g}$

’ as $\mathfrak{g}$ and extend them into a complex Hilbert spaoe $L^{2}$ . The
inner product is then given by ($\overline{\tilde{u}},$

$\zeta\rangle$ for any $\tilde{u},\zeta\in L^{2}$ , where the bar $(^{-})$ denotes
complex conjugate. By just multiplying the linearized systems by the imaginary
unit $i$ , we get Schr\"odinger-like equations,

$i\partial_{t}\tilde{u}=C\tilde{u}$, $\tilde{u}(O)=\tilde{u}_{0}$ , (E)
$i\partial_{t}\zeta=\mathcal{L}^{*}\zeta$ , $\zeta(0)=\zeta_{0}$ . $(E’)$

where we defined two pure-imaginary operators, $C:=i(\mathcal{A}\mathcal{H}+\mathcal{B})$ and C’ $:=i(\mathcal{H}A-$

$\mathcal{B}^{*})$ .
The linear waves and their frequencies will respectively correspond to the eigen-

functions and the eigenvalues of the linear operator $C$ . Since fluids and plasmas
have infinite degree-of-ffeedom, the spectrum of $C$ generally includes the continuous
spectrum as well as the point (or discrete) spectrum. We will define wave energy
($=energy$ of eigenmode) for both kinds of spectra in this section.

Let $\cup(\Omega)$ and $Z(\Omega)(\Omega\in \mathbb{C})$ be the Laplaoe transform of $\tilde{u}(t)$ and $\zeta(t)$ , which are
the solutions of

$(\Omega-C)\cup(\Omega)=i\tilde{u}_{0}$ , (LE)
$(\Omega-\mathcal{L}^{\cdot})Z(\Omega)=i\zeta_{0}$ . (LE’)

The spectrum $Sp(\mathcal{L})\subset \mathbb{C}$ of $C$ is then characterized by the singularities of $\cup(\Omega)$ on
the complex $\Omega$-plane;

$Sp(\mathcal{L})=$ { $\omega\in \mathbb{C}$ $:\cup(\Omega)=i(\Omega-C)^{-1}\tilde{u}_{0}$ is not regular at $\Omega=\omega$}. (7)

Similarly, the singularities of $Z(\Omega)$ correspond to the spectrum $Sp(C’)$ , which is
generally known to be the complex conjugate of $Sp(C);Sp(\mathcal{L})=\overline{Sp(C)}$ .
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FIG. 1: Path of the Dunford integration

When the initial data is restricted by the assumption (A), the relation $\cup(\Omega)=$

$\mathcal{A}Z(\Omega)$ holds and the resultant solution may not include all eigenmodes. Hence, its
spectrum is possibly a subset of $Sp(\mathcal{L})$ , which will be denoted by $\sigma\subset Sp(\mathcal{L})$ ;

$\sigma=$ { $\omega\in \mathbb{C}$ : $\mathcal{A}Z(\Omega)=i(\Omega-\mathcal{L})^{-1}\mathcal{A}\zeta_{0}$ is not regular at $\Omega=\omega$ }. (8)

The solution $\tilde{u}(t)$ is expressed by the inverse Laplace transform (or the Dunford
integral),

$\tilde{u}(t)=-\frac{1}{2\pi}\oint_{\Gamma(\sigma)}\cup(\Omega)e^{-:\Omega t}d\Omega$ , (9)

where the path of integration $\Gamma(\sigma)$ encircles the all spectrum $\sigma$ in the counterclock-
wise direction as illustrated in Figure la). This $\Gamma(\sigma)$ can be analytically deformed
into the neighborhood of each point and continuous spectra as in Figure lb).

For simplicity, suppose that the spectrum $\sigma=\sigma_{p}\cup\sigma_{c}$ is composed of semi-simple
point spectra $\omega_{j}\in\sigma_{p},$ $j=1,2,$ $\ldots$ , and real continuous spectrum $\sigma_{c}\subset \mathbb{R}$ , as is
common with ideal fluids and plasmas. For $\omega_{j}\in\sigma_{p}$ , the residue theorem leads to
the corresponding eigenfunction, denoted by

$\hat{\tilde{u}}(\omega_{j})$

$:=- \frac{1}{2\pi}\oint_{\Gamma(w_{j})}\cup(\Omega)d\Omega$ . (10)

As for the continuous spectrum $\sigma_{c}\subset \mathbb{R}$ , the path of integration is deformed into the
two paths that run parallel to $\sigma_{c}$ at the slightly upper and lower sides. Hence, it is
reasonable to define the generalized eigenfunction for $\omega\in\sigma_{c}$ by

$\hat{\tilde{u}}(\omega):=\frac{1}{2\pi}[\cup(\omega+i0)-\cup(\omega-iO)]$ . (11)

This definition of $\hat{\tilde{u}}(\omega)$ is consistent with the Fourier transform of $\tilde{u}(t)$ according
to the Sato’s hyperfunction theory [7] (see also the Appendix of Ref. [12]). The
eigenfunction $\hat{\tilde{u}}(\omega)$ for the continuous spectrum $\omega\in\sigma_{c}$ is therefore a generalized (or
singular) function. This fact has been pointed out in many literatures; for example,
see Case $[13, 14]$ , $Sedl\acute{a}\delta ek[15]$ and Tataronis [16].

The solution is formally represented by

$\tilde{u}(t)=\sum_{w_{j}\in\sigma_{p}}\hat{\tilde{u}}(\omega_{j})e^{-i_{t}v_{j}t}+\int_{\sigma_{c}}\hat{\tilde{u}}(\omega)e^{-1\omega t}d\omega$ . (12)
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In the same way, the eigenfunctions, $\hat{\zeta}(\omega)$ for $\omega\in\sigma$ , are generated by $Z(\Omega)$ . Since
we have $U(\Omega)=\mathcal{A}Z(\Omega)$ under the assumption (A), the following relation is satisfied;

$\hat{\tilde{u}}(\omega)=\mathcal{A}\xi(\omega)$ for $\omega\in\sigma$ . (13)

This spectral decomposition can be applied to the theorem 2, which enables us
to define energy of each eigenmode ($=wave$ energy) as follows.

Theorem 3. Let $\tilde{u}(t)$ be a solution of (E) under the assumption (A). If the spectru$m$

$\sigma$ is composed of semi-simple point spectra $\sigma_{p}=\{\omega_{j}\in \mathbb{C} : j=1,2, \ldots\}$ and real
continuous spectrum $\sigma_{c}\subset \mathbb{R}$ , the energy of perturbation $\delta^{2}H=(\tilde{u}(t), \partial_{t}\zeta(t)\rangle$ $=const$ .
is decomposed into the energy of eigenmodes,

$\delta^{2}H=\sum_{\omega_{j}\in\sigma_{p}}\Re[\omega_{j}\mu_{p}(\omega_{j})]+\int_{\sigma_{C}}$ \omega \mbox{\boldmath $\mu$}c(\omega )ゐ, (14)

where

$\mu_{p}(\omega_{j})=\langle\overline{\zeta_{0}},iA\xi(\omega_{j})\rangle$ for $\omega_{j}\in\sigma_{p}$ , (15)

$\mu_{c}(\omega).=\langle\overline{\zeta_{0}}$ , $iA\hat{\zeta}(\omega)\rangle$ for $\omega\in\sigma_{c}$ , (16)

and the real part $(\Re)$ needs to be taken when $\omega_{j}$ is complex.

This theorem is proved by inserting the solution (12) into $\delta^{2}H$ and by using the
following two lemmas.

Lemma 4. The spectrum $\sigma\subset Sp(\mathcal{L})$ satisfies $\sigma=\overline{\sigma}=-\overline{\sigma}=-\sigma$.

Lemma 5. The genemlized eigenfunctions $\hat{\tilde{u}}(\omega)$ and $\xi(\omega)$ , defined in (11), satisfy

$\langle\overline{\hat{\tilde{u}}(\omega)},\hat{\zeta}(\omega’)\rangle=\delta(\omega-\omega’)\langle\overline{\tilde{u}_{0}},$ $\xi(\omega)\rangle=\delta(\omega-\omega’)\langle\overline{\hat{\tilde{u}}(\omega)},$ $\zeta_{0}\rangle$ , (17)

for $\omega,\omega’\in\sigma_{c}$ .

Recall that, for point spectra $\sigma_{p}=\{\omega_{j}\}$ , the eigenfunctions $\{\hat{\tilde{u}}(\omega_{j})\}$ of $\mathcal{L}$ are
non-orthogonal to each other, but the dual basis is provided by the eigenfunctions
$\{\hat{\zeta}(\omega_{j})\}$ of $C$“. The above lemma 5 implies that such “orthogonality” holds also for
continuous spectrum. The proofs of these lemmas will be given in the upcoming
paper by us.

We call the quantities $\mu_{p}(\omega_{j}),$ $j=1,2,$ $\ldots$ , wave actions sinoe they will prove to
be the action variables of the eigenmodes. The magnitude of $\mu_{p}(\omega_{j})$ depends on the
square of the corresponding modal amplitude and measures the activity of the wave.
The sign of $\mu_{p}(\omega_{j})$ can be either positive or negative (if the symmetric operator, $iA$,
is indefinite), which is of particular interest in the bifurcation theory of Hamiltonian
systems [5].

Before ending this section, we introduoe another expression for the wave action
which is related to the dispersion relation. Let us define a linear operator $\mathcal{E}(\Omega)$ :
$L^{2}arrow L^{2}$ by

$\mathcal{E}(\Omega)=i(\Omega-\mathcal{L})\mathcal{A}$ , (18)
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with $\Omega\in \mathbb{C}$ being a complex parameter. A symmetric property $\mathcal{E}^{*}(\Omega)=\mathcal{E}(\overline{\Omega})$

follows from $\mathcal{A}=-\mathcal{A}^{*}$ and $\mathcal{L}A=\mathcal{A}\mathcal{L}$“. In this work, we will refer to the equation

$\mathcal{E}(\Omega)Z(\Omega)=-\tilde{u}_{0}$ , (19)

as symmetric response equation, for the solution $Z(\Omega)$ represents the frequency re-
sponse to some (kenamatically accessible) initial data $\tilde{u}_{0}$ . If our problem was a
system of finite degree of freedom, the space $L^{2}$ would be a finite-dimensional vec-
tor space and $\mathcal{E}(\Omega)$ be a matrix of numbers. Then, the dispersion relation would be
given by the determinant, $D(\Omega)=\det|\mathcal{E}(\Omega)|=0$ . However, sinoe we are considering
the system of infinite degree of freedom, $\mathcal{E}(\Omega)$ is generally a differential operator and
the continuous spectrum shows up. It is no longer possible to obtain the dispersion
relation algebraically. We, therefore, introduoe generalized dispersion relation as
follows.

Proposition 6. Define the generalized dispersion relation $D:\mathbb{C}\cross L^{2}\cross L^{2}arrow \mathbb{C}$ for
(19) as

$D(\Omega,\zeta_{1}, \zeta_{2})$ $:=\langle\overline{\zeta_{1}},\mathcal{E}(\Omega)\zeta_{2}\rangle$ . (20)

Then, the wave actions for a semi-simple point spectrum $\omega_{j}\in\sigma_{p}$ and real continuous
spectrum $\omega\in\sigma_{c}$ are, respectively, given by

$\mu_{p}(\omega_{j})=\frac{1}{2\pi i}\oint_{\Gamma(w_{j})}D(\Omega, Z(\overline{\Omega}),$ $Z(\Omega))d\Omega$ , (21)

$\mu_{c}(\omega)=\frac{i}{2\pi}[\lim_{\Omegaarrow w+10}.D(\Omega,Z(\overline{\Omega}),$ $Z(\Omega))-\lim_{\Omegaarrow w-i0}D(\Omega, Z(\overline{\Omega}),$ $Z(\Omega))]$ . (22)

While this proposition is straightforward from the definitions of $\mu_{p}$ and $\mu_{c}$ , the
above expressions will play an important role in the subsequent sections.

IV. MAGNETOHYDRODYNAMIC WAVES

We apply the general theorems discussed so far to the MHD equation. Under the
assumption (A), the linearized equation (E) for the MHD case can be reduced to the
equation derived by Frieman&Rotenberg [17], which is easier to solve especially
when the basic flow is absent. Since the theorem 2 assures $\tilde{u}(t)=\mathcal{A}\zeta(t)$ for all $t>0$ ,
the corresponding relations holds between $\tilde{u}=(\tilde{M},\tilde{B},\tilde{\rho},\tilde{s})^{T}$ and $\zeta=(\xi, \eta, \alpha, \beta)^{T}$

as follows,

$\tilde{v}=\xi\cross(\nabla\cross v)-\rho^{-1}B\cross(\nabla\cross\eta)-\nabla(\xi\cdot v+.\alpha)+\beta\rho^{-1}\nabla s$ , (23)
$\tilde{B}=\nabla x(\xi\cross B)$ , (24)

$\tilde{\rho}=-\nabla\cdot(\rho\xi)$ , (25)
$\tilde{s}=-\xi\cdot\nabla s$ . (26)

By exploiting these relations, we can eliminate $\eta,$ $\alpha$ and $\beta$ from the evolution equa-
tion (E) and reproduoe the Frieman-Rotenberg equation for $\xi\in X$ with restncted
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initial data;

$\{\begin{array}{l}\rho\partial_{t}^{2}\xi+2\rho(v\cdot\nabla)\partial_{t}\xi=\mathcal{F}\xi(\partial_{t}\xi)(0)=-2(v\cdot\nabla)\xi_{0}-v\cross(\nabla x\xi_{0})-\rho^{-1}B\cross(\nabla\cross\eta_{0})-\nabla\alpha_{0}+\rho^{-1}\beta_{0}\nabla s\xi(0)=\xi_{0}\end{array}$ (27)

wh$ere\mathcal{F}$ : $\mathfrak{X}arrow X$ is aselfadjoint operator called the Force opemtor [17]. The
variable $\xi(t)\in X$ automatically agreae with the conventional definition of the La-
$gmn_{9}ian$ displacement field, which is the displacement vector fleld of the fluid particle
orbits [17]. Therefore, the relations (24)-(26)implies that magnetic fleld, mass and
entropy are frozen in t.he fluid particle motion.

The energy of kenamatically accessible perturbation $\delta^{2}H$ , defined by the thm-
rem 2, also agre\’e with the expression of energy derived in Ref. 17 (see Hameiri [18]
for detailed comparison). The positive definiteness of the potential energy, $- \int\xi$ .
$\mathcal{F}\xi d^{3}x\geq 0$ , givae asufficl’ent stability condition. This criterion is known to works
very well for static equilibria $(v=0)$ , for which (27) is analogous to the Newton’s
second law. The energy principle [19] claims that astatic equilibrium is stable if and
only if the potential energy is positive definite. Linear instabilities always emerge
from the zero eigenvalue of the selfadjoint operator $\mathcal{F}$, whose spectral decomposition
ct be $discu8sed$ by the well-aetabli8hed methods (like the Von Neumann theorem)
in the quantum mechanics.

However, the potential energy (and also the total energy $\delta^{2}H$ ) of perturbation
often turns out to be indefinite in the presenoe of the basic flow $v[20]$ . The basic
flow, moreover, plays the role of the gyroscopic term $2\rho(v\cdot\nabla)\partial_{t}\xi$ in (27), which
allows the existenoe of neutrally stable modes with negative energy. These facts
imply that the energy criterion is difficult to be satisfied for flowing plasma8. It,
then, seems to be important to evaluate the wave energy (or action) for the purpose
of predicting and understanding various instabilities.

Now, let us proceeds to the derivation of wave energy for the MHD caee. The
reduction to the bieman-Rotenberg equation (27) is similarly applicable to the
symmetric response equation (19). By denoting the Laplace transform of $\xi(t)$ by
$\Xi(\Omega)$ , the Laplace-transformed Frieman-Rotenberg equation is written as

$\mathcal{E}_{FR}(\Omega)\Xi(\Omega)=-m_{0}(\Omega)$ , (28)

where the operator $\mathcal{E}_{FR}(\Omega)$ is defined by

$\mathcal{E}_{FR}(\Omega)\Xi(\Omega)$ $:=\Omega^{2}\rho\Xi(\Omega)+2i\Omega\rho(v\cdot\nabla)\Xi(\Omega)+\mathcal{F}_{-}^{-}-(\Omega)$ . (29)

The right hand side of (28) has a nontrivial expression,

$m_{0}(\Omega)$ $:=-i\Omega\rho\xi_{0}-\rho vx(\nabla\cross\xi_{0})-B\cross(\nabla x\eta_{0})-\rho\nabla\alpha_{0}+h\nabla s$ , (30)

reflecting that the initial data was restricted by the assumption (A). Since the
operator $\mathcal{E}_{FR}(\Omega)$ again satisfies $\mathcal{E}_{FR}^{*}(\Omega)=\mathcal{E}_{FR}(\overline{\Omega})$ in terms of the inner bracket
$\int\overline{\circ}\cdot\circ d^{3}x$ of the reduced functional space, one can regard (28) as a new symmetric
response equation and define

$D_{FR}( \Omega,\xi_{1},\xi_{2})=\int\overline{\xi}_{1}\cdot \mathcal{E}_{FR}(\Omega)\xi_{2}d^{3}x$ . (31)
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Theorem 7. In the MHD case, the wave action is represented by

$\mu_{p}(\omega_{j})=i\int\overline{\hat{\xi}(\overline{\omega_{j}})}\cdot m_{0}(\omega_{j})d^{3}x$ , (32)

$= \frac{\partial D_{FR}}{\partial\Omega}(\omega_{j},\hat{\xi}(\overline{\omega_{j}}),\hat{\xi}(\omega_{j}))$ , (33)

$= \int\overline{\hat{\xi}(\overline{\omega_{j}})}\cdot 2\rho[\omega_{j}\xi(\omega_{j})+i(v\cdot\nabla)\xi(\omega_{j})]d^{3}x$ .

for a semi-simple point spectrum $\omega_{j}\in\sigma_{p}$ , and

$\mu_{c}(\omega)=i\int\overline{\hat{\xi}(\omega)}\cdot m_{0}(\omega)d^{3}x$ , (34)

for real continuous spectrum $\omega\in\sigma_{c}\subset \mathbb{R}$ , where $\xi(\omega_{j})$ and $\hat{\xi}(\omega)$ are the corresponding
eigenfunctions.

Proof. It is essential to notice that the relation,

$D_{FR}(\Omega, \Xi(\overline{\Omega}),$ $\Xi(\Omega))=D(\Omega, Z(\overline{\Omega}),$ $Z(\Omega))+\int\rho|\xi_{0}|^{2}d^{3}x$, (35)

holds. One may, therefore, replace $D$ ( $\Omega$ , Z(St), $Z(\Omega)$ ) by $D_{FR}(\Omega, \Xi(\overline{\Omega}),$ $\Xi(\Omega))$ in the
formulae (21) and (22), because the term $\int\rho|\xi_{0}|^{2}d^{3}x$ independent of $\Omega$ does not
affect the results. Sinoe $m_{0}(\Omega)$ depends on $\Omega$ analytically, these formulae yield (32)
and (34) respectively.

To derive another expression (33), we invoke the fact that $\Xi(\Omega)$ has semi-simple
poles at $\Omega=\omega_{j}$ and $\Omega=\overline{\omega_{j}}$ (from Lemma 4). The Laurent expansion at these
points must be

$\Xi(\Omega)=\frac{i\hat{\xi}(\omega_{j})}{\Omega-\omega_{j}}+.$ . . and $\Xi(\Omega)=\frac{i\hat{\xi}(\overline{\omega_{j}})}{\Omega-\overline{\omega_{j}}}+\ldots$ , (36)

where the dots $($ . .. $)$ represent the analytic parts of expansions. By expanding
$\mathcal{E}_{FR}(\Omega)$ also at $\Omega=\omega_{j}$ , we get

$D_{FR}(\Omega, \Xi(\overline{\Omega}),$

$\Xi(\Omega))=\{\overline{\frac{\hat{\xi}(\overline{\omega_{j}})}{\overline{\Omega}-\overline{\omega_{j}}’}}FR(\omega_{j})+(\Omega-\omega_{j})\frac{\partial \mathcal{E}_{FR}}{\partial\Omega}(.\omega_{j})]=\langle\overline{\hat{\xi}(\overline{\omega_{j}})},\frac{\partial \mathcal{E}_{FR}[\mathcal{E}}{\partial\Omega}(\omega_{j})\hat{\xi}(\omega_{j})\rangle\frac{1}{\Omega-\omega_{j}}+..,\frac{\hat{\xi}(w_{j})}{\Omega-\omega_{j}}\}+\ldots$

where we used the fact that $\hat{\xi}(\omega_{j})$ is an eigenfunction, $\mathcal{E}_{FR}(\omega_{j})\hat{\xi}(\omega_{j})=0$ . By putting
this form into (21), the residue theorem leads to the required result (33). $\square$

Since both $\mathcal{E}_{FR}(\Omega)$ and $m_{0}(\Omega)$ are regular with respect to $\Omega$ , the equation (28)
and the related dispersion relation $D_{FR}$ can be used anytime in plaoe of (19). The
wave energy for a point spectrum $\omega_{j}\in\sigma_{p}$ is now written by

$\omega_{j^{\frac{\partial D_{FR}}{\partial\Omega}}}(\omega_{j},\hat{\xi}(\overline{\omega_{j}}),\hat{\xi}(\omega_{j}))$ . (37)
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The formula (33) is more useful than (32) because it is symmetric and independent
of initial data. For the continuous spectrum, however, the same formula does not
seem to be applicable. The singularity of $\Xi(\Omega)$ at $\Omega=w\in\sigma_{c}$ is far from the
simple pole and varies depending on the profiles of mean fields. We will seek the
counterpart of the formula (33) for the continuous spectrum by assuming a simple
geometry in the next section.

It is obvious from (33) that, in the absence of basic flow $v=0$, the wave action
of any neutrally stable wave $\omega_{j}\in \mathbb{R}$ is simply $\mu_{p}(\omega_{j})=2\omega_{j}\int\rho|\xi(\omega_{j})|^{2}d^{3}x$. Since
the sign of the wave action corresponds to that of $\omega_{j}$ , any linear instability occurs
through the zero eigenvalue $w_{j}=0$ (static bifurcation). In other words, the Hopf
bifurcation in fluids and plasmas is necessarily attributed to the presenoe of basic
flow.

V. SLAB EQUILIBRIA

Further reduction of variables can be performed if the equilibrium state has a
specific symmetry. As the simplest (but fundamental) example, we restrict our
analysis to the slab geometry, i.e. the equilibrium is inhomogeneous only in the $x$

direction as follows,

$v=(O, v_{y}(x),$ $v_{z}(x))$ , $B=(O, B_{y}(x),$ $B_{z}(x))$ , $\rho(x)$ .and $s(x)$ (38)

on a bounded domain $x\in[x_{1},x_{2}]$ , where the boundary walls are located at $x=$
$x_{1},$ $x_{2}$ and both flow and magnetic field are always tangential to them. This is
indeed an equilibrium state if the external foroe is absent and the total pressure
Ptotal: $=p(\rho, s)+B^{2}/2$ satisfies

$p_{tota1}’(x)=0$ (39)

where the prime (’) denotes the x-derivative of the equilibrium fields.
For fully three-dimensional perturbations, it is useful to adopt the spatial Fourier

transform in the $y$ and $z$ directions;

$\xi(x, y, z, t)=\frac{1}{2\pi}\int\int\xi(x, k_{y}, k_{z}, t)e^{i(k_{y}y+k_{z})z}dk_{y}dk_{z}$ . (40)

Our task is to find the $(x, t)$-dePendences of $\xi(x, k_{y}, k_{l}, t)$ for fixed wavenumbers
$k_{y}$ and $k_{z}$ . To simplify the notations, we will denote this $\xi(x, k_{y}, k_{z}, t)$ by $\xi(x, t)$ ,
omitting the check $(^{c})$ and the $(k_{y}, k.)$-dependences, which does not cause confusion
in many cases. With respect to the fixed wavenumber vector $k$ $:=(0, k_{y}, k_{z})$ , we
introduce the parallel and perpendicular components of $\xi$ as follows.

$\xi_{||}$
$:= \frac{k\cdot\xi}{k}$ , $\xi\perp:=\frac{(e_{x}\cross k)\cdot\xi}{k}$ , (41)

where $k=|k|$ and $e_{x}=(1,0,0)$ . In this manner, we shall use $(x, \Vert, \perp)$ components
rather than $(x, y, z)$ .

Let $\Xi(x, \Omega)$ be the Laplace transform of $\xi(x, t)$ again. We can algebraically
eliminate $\Xi_{||}$ and $\Xi\perp$ from (28) after the spatial Fourier transformation. Such the
elimination of variables results in a new symmetric response equation;

$\mathcal{E}_{I}(\Omega)_{-x}^{-}-(\Omega)=-m_{0I}(\Omega)$ , (42)
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with the property $\mathcal{E}_{I}^{*}(\Omega)=\mathcal{E}_{I}(\overline{\Omega})$ in terms of the one-dimensional inner product
$\int_{x}^{x_{2}}$ \={o} $odx$ . The left hand side of this equation corresponds to the well-known eigen-
1 ue problem of the Sturm-Liouville type

$\mathcal{E}_{I}\Xi_{x}$ $:= \rho\Pi_{A}\Xi_{x}+\partial_{x}[\rho\frac{\Pi_{S}\Pi_{A}}{\Pi_{sf}}\partial_{x-x}^{-}-]$ , (43)

which was derived by Hain and L\"ust [21], and Goedbloed [22] for the case of static
equilibrium (but the generalization to the steady equilibrium (38) is straightfor-
ward). The right hand side of (42) represents the initial data which takes the form
of

$m_{0I}$ $:= m_{0x}-(\frac{M_{0}}{\Pi_{f}})’$ , (44)

where Mo $=i\Pi_{S}km_{0\Vert}-i\Pi_{v}kb_{||}b\cdot m_{0}$ . In the above expressions, we defined some
functions of $x$ and $\Omega$ as follows.

$\Pi_{v}(x,\Omega)=[\Omega-kv_{||}(x)]^{2}$ , (45)
$\Pi_{A}(x, \Omega)=\Pi_{v}(x, \Omega)-\omega_{A}^{2}(x)$ , (46)
$\Pi_{S}(x, \Omega)=[b^{2}(x)+c_{\epsilon}^{2}(x)][\Pi_{v}(x, \Omega)-w_{S}^{2}(x)]$ , (47)

$\Pi_{\epsilon f}(x,\Omega)=\Pi_{v}^{2}(x, \Omega)-k^{2}\Pi_{S}(x, \Omega)$

$=[\Pi_{v}(x, \Omega)-w_{\epsilon}^{2}(x)][\Pi_{v}(x, \Omega)-w_{f}^{2}(x)]$ , (48)

where $b=B/\sqrt{\rho}$ denotes the Alfv\’en speed and $c_{l}=\sqrt{\partial p}/\partial\rho$ the sound speed. The
following characteristic frequencies are conventional,

$\omega_{A}^{2}=k^{2}b_{||}^{2}$ : Alfv\’en frequency,

$w_{S}^{2}=k^{2} \frac{b_{||}^{2}c_{l}^{2}}{b^{2}+c_{l}^{2}}$ : slow magneto-sonic frequency,

$w_{s,f}^{2}= \frac{k^{2}}{2}[(b^{2}+c_{l}^{2})\pm\sqrt{(b^{2}+c_{t}^{2})^{2}-4b_{\Vert}^{2}c_{l}^{2}}]$

: slow (-) and fast $(+)$ turning point frequencies.

The functions $\Pi_{A},$ $\Pi_{S}$ and $\Pi_{tf}$ may vanish when $\Pi_{v}$ is equal to the square of these
frequencies. The set of $\omega\in \mathbb{R}$ for which there exists $x_{0}\in[x_{1}, x_{2}]$ satisfying either
$\Pi_{A}(x_{0},\omega)=0$ or $\Pi_{S}(x_{0},w)=0$ corresponds to the continuous spectrum because
such a point $x_{0}$ is a regular singular point of the ordinary differential equation (42).
On the other hand, the singular point $x_{0}$ satisfying $\Pi_{*f}(x_{0},\omega)=0$ is known to be
apparent [23], that is, the $solution–x$ remains regular at such $(x_{0},\omega)$ . The
continuous spectrum $\sigma_{c}$ consists of

Alfv\’en continuous spectrum $\sigma_{A}=\{kv_{||}(x)\pm w_{A}(x)\in \mathbb{R}:x\in[x_{1},x_{2}]\}$ , (49)
Slow continuous spectrum $\sigma_{S}=\{kv_{||}(x)\pm w_{S}(x)\in \mathbb{R}:x\in[x_{1},x_{2}]\}$, (50)

which may overlap each other and may fold by itself depending on the profilae of
the mean fields and the wave number $k$ . Moreover, if either $b_{||}(x)$ or $b_{\perp}(x)$ vanishes
somewhere in $[x_{1}, x_{2}]$ , some frequencies out of $\omega_{A}(x),$ $\omega_{S}(x),$ $\omega_{l}(x)$ and $\omega_{f}(x)$ would
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degenerate and yield a different type of singularity in the equation (even in the
incompressible case, these continuous spectra exhibit a nontrivial singularity when
$b_{||}(x)=0[12])$ . In this paper, we focus on the typical case, $b_{||}(x)\neq 0$ and $b_{\perp}(x)\neq 0$

for all $x$ , where the above four frequencies are separated.
Again, let us define the generalized dispersion relation for (42) by

$D_{I}( \Omega,\xi_{x1},\xi_{x2})=\int_{x_{1}}^{x_{2}}\overline{\xi_{x1}}\mathcal{E}_{I}(\Omega)\xi_{x2}dx$ for $\forall\xi_{x1},\xi_{x2}$ . (51)

The following theorem holds in the same manner as Theorem 7.

Theorem 8. For the slab MHD equilibria, the wave action for a semi-simple point
spectnrm $\omega_{j}\in\sigma_{p}$ is given by

$\mu_{p}(\omega_{j})=i\int_{x_{1}}^{x_{2}}\overline{\hat{\xi}_{x}(\overline{w_{j}})}m_{0I}(\omega_{j})dx$ , (52)

$= \frac{\partial D_{I}}{\partial\Omega}(w_{j},\hat{\xi}_{x}(\overline{w_{j}}),\hat{\xi}_{x}(w_{j}))$ , (53)

$= \int_{x_{1}}^{x_{2}}\hat{\xi}_{x}$ , (54)

where

$N(x,w_{j})= \frac{b_{||}^{2}b_{\perp}^{2}\Pi_{v}^{2}+(\Pi_{S}-\Pi_{v}b_{||)^{2}}^{2}}{\Pi_{\epsilon f}^{2}}|_{\Omega=w_{j}}$ (55)

If $b_{||}(x)\neq 0$ and $b_{\perp}(x)\neq 0$ for all $x$ , the wave action for continuous spectrum $w\in\sigma_{c}$

is given by

$\mu_{c}(w)=i\int_{x_{1}}^{x_{2}}\overline{\hat{\xi}_{x}(\omega)}m_{0I}(w)dx$ . (56)

Proof. Sinoe (42) was derived from (28) by the elimination of variables $(\Xi_{\Vert}, \Xi_{1})$ , we
find that the new dispersion relation $D_{I}$ is related to DFR as follows.

$D_{FR}$ ( $\Omega$ , E(豆), $\Xi(\Omega)$ )
$=D_{I}(\Omega, \Xi_{x}(\overline{\Omega}),\Xi_{x}(\Omega))$

$+ \int_{x_{1}}^{x_{2}}\overline{(m_{0||}m_{0\perp})}\cdot\frac{1}{\rho\Pi_{\epsilon f}}(\Pi A\Pi_{v^{-k^{2}(b_{1}^{2}+c_{l}^{2})}}^{-k^{2}b_{||}b\perp)}(\begin{array}{l}m_{0||}m_{0\perp}\end{array})dx$ . (57)

The last expression is regular in terms of $\Omega$ except for the apparent singularities
stemming from $\Pi_{sf}=0$ . Sinoe the apparent singularities are isolated from the
genuine singularities, $\Pi_{A}=0$ and $\Pi_{S}=0$ , due to the assumption $b_{||},$ $b_{\perp}\neq 0$ , we can
use $D_{I}$ instead of $D_{FR}$ (and also $D$ ) when calculating the wave actions by (21) and
(22). The remaining part of the proof is the same as Theorem 7. The computation
of the $\Omega$-derivative in (53) results in (54). $\square$

For a real point spectrum $w_{j}\in \mathbb{R}$ , the integrand of (54) is positive except for
$\omega_{j}-kv_{||}(x)$ . It follows that the wave action is positive (respectively, negative) if the
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phase velocity $w_{j}/k$ of the wave is faster (respectively, slower) than $v_{||}(x)$ , i.e. the
basic flow along the $k$ direction, everywhere on $[x_{1}, x_{2}]$ . When the Hopf bifurcation
is conoerned, linear instability occurs due to the Krein collision (namely, $co$alescing
on the real axis and splitting toward the upper and lower half planes) between a
pair of eigenvalues with positive and negative actions. Such the collision is possible
only in the region $\{kv_{||}(x)\in \mathbb{R} : x\in[x_{1}, x_{2}]\}$ , from which any unstable eigenvalue
$\Im(\omega_{j})>0$ must emerge.

There exists the continuous spectrum on the real axis, too. It seems that, besides
the conventional Krein collision between point spectra (eigenvalues), the collision
between point and continuum or the one between two continua may cause linear
instability as was pointed out by Balmforth &Morrison [24]. To derive the sign
of $\mu_{c}(\omega)$ requires some careful treatment of the singularity. We demonstrate this
technique below. Our derivation is straightforward by means of the hyperfunction
theory. The similar technique probably applies to various continuous spectra, i.e.,
for the cases of $b_{||}=0$ or $b_{1}=0$ , the hydrodynamic limit $B=0$ and so on, which
will be reported elsewhere.

As was observed by Appert $el$ al. [23], we note that the equation (42) is equivalent
to the following set of first order differential equations;

$\{\begin{array}{l}P+a_{n.\overline{n^{M_{\Delta}}}_{lf}}\Pi s\frac{\Pi}{f}\partial_{x}\Xi_{x}=-\rho\Pi_{A}\Xi_{x}+\partial_{x}P=m_{0x}\end{array}$ (58)

(59)

in which a new variable $P(\Omega)$ is physically interpreted as the Laplace transform of
the total pressure perturbation $(\tilde{p}+B\cdot\tilde{B})(t)$ . Before applying the formula (22), we
represent the dispersion relation in terms of $P(\Omega)$ as follows.

$D_{I}( \Omega, \Xi_{x}(\overline{\Omega}),---x(\Omega))=\langle--x[\frac{\rho\Pi_{S}\Pi_{A}}{\Pi_{sf}}\partial_{x-x}^{-}-(\Omega)]\rangle_{x}$ ,

(61)

$=-\langle\overline{\partial_{x}P(\overline{\Omega})},$ $\frac{1}{\rho\Pi_{A}}\partial_{x}P(\Omega)\rangle_{x}+\langle\overline{P(\overline{\Omega})},$ $\frac{\Pi_{\epsilon f}}{\rho\Pi_{S}\Pi_{A}}P(\Omega)\rangle_{x}$

$+\langle\overline{m_{0x}},$ $\frac{1}{\rho\Pi_{A}}m_{0x}\rangle_{x}-\langle\frac{\overline M_{0}}{\Pi_{sf}},$ $\frac{\Pi_{sf}M_{0}}{\rho\Pi_{S}\Pi_{A}\Pi_{\epsilon f}}\rangle_{x}$ , (60)

where $\langle$\={o}, $0 \rangle_{x}=\int_{x1}^{x_{2}}$ \={o} $odx$ and the several uses of integration by parts has been
made. Moreover, by exploiting the equations (58), one can rewrite this in the form
of

$D_{I}(\Omega,---x(\overline{\Omega}),\Xi_{x}(\Omega))=\langle\overline{\partial_{x}F(\Omega)},$ $\frac{1}{\rho\Pi_{A}}\partial_{x}F(\Omega)\rangle_{x}-\langle\overline{F(\Omega)},$ $\frac{\Pi_{sf}}{\rho\Pi_{S}\Pi_{A}}F(\Omega)\rangle_{x}$

$+\langle\overline{\partial_{x}G(\Omega)-m_{0x}},$ $\frac{1}{\rho\Pi_{A}}[\partial_{x}G(\Omega)-m_{0x}]\rangle_{x}$

$- \langle G(\Omega)-\frac{\overline M_{0}}{\Pi_{\epsilon f}},$ $\frac{\Pi_{\epsilon f}}{\rho\Pi_{S}\Pi_{A}}[G(\Omega)-\frac{M_{0}}{\Pi_{\epsilon f}}]\rangle_{x}$ ,

where

$F(\Omega)$ $:= \frac{1}{2}[P(\Omega)-P(\overline{\Omega})]$ , (62)

$G(\Omega)$ $:= \frac{1}{2}[P(\Omega)+P(\overline{\Omega})]$ . (63)
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The limit of (22) is now estimated as follows. First, let us define some generalized
functions as follows,

$\pi\hat{p}(\omega)=F(\omega+i0)$ , (64)

$\pi\hat{p}\dagger(w)=G(\omega+i0)-\frac{M_{0}(w)}{\Pi_{\epsilon f}(x,\omega)}$ , (65)

$\pi\hat{\psi}(\omega)=\partial_{x}F(w+i0)$ , (66)
$\pi\hat{\psi}^{\dagger}(w)=\partial_{x}G(\omega+i0)-m_{0x}(w)$ . (67)

For the Alfv\’en continuous spectrum $\omega\in\sigma_{A}$ , the well-known Plemlj formula yields
the delta functions,

$\frac{i}{2\pi}[\frac{1}{\Pi_{A}(x,\omega+i0)}-\frac{1}{\Pi_{A}(x,w-i0)}]$

$= \frac{1}{2\omega_{A}(x)}[\delta(\omega-kv_{\Vert}(x)-w_{A}(x))-\delta(w-kv_{||}(x)+\omega_{A}(x))]$ , (68)

and we have

$\frac{\Pi_{\epsilon f}(x,kv_{||}(x)\pm\omega_{A}(x))}{\Pi_{S}(x,kv_{||}(x)\pm w_{A}(x))}=-\frac{k^{2}b_{1}^{2}(x)}{b^{2}(x)}$ . (69)

Substituting these expressions, the wave action for $w\in\sigma_{A}$ is represented by

$\mu_{c}(\omega)=\int_{\cross}x_{1}\frac{\pi^{2}}{2\mu_{A}}[\delta(\omega-kv_{||}-\omega_{A})-\delta(\omega-kv_{||}+\omega_{A})]x_{2}[\dagger$

. (70)

In order for this expression to make sense, the functions $\hat{p},\hat{p}\dagger,\hat{\psi}$ and $\hat{\psi}\dagger$ must be
continuous at the positions where $\omega-kv_{||}(x)\pm w_{A}(x)$ vanishes.

Let $x_{0}$ be, again, the singular point that satisfies either $w=kv_{||}(x_{0})\pm w_{A}(x_{0})$ or
$\omega=kv_{||}(x_{0})\pm\omega_{S}(x_{0})$ . In either cases, the solution $\Xi_{x}(x, \Omega)$ of (42) is represented
by the Frobenius series expansion in the neighborhood of $x=x_{0}[22]$ , say,

$\Xi_{x}(x, \Omega)=c_{1}f(s)+c_{2}[g(s)+f(s)\ln s]$ (71)

where $s\in\Omega$ is the complex continuation of the real variable $x-x_{0}$ , and $f(s)=$
$f_{0}+f_{1}s+\ldots$ and $g(s)=90+g_{1}s+\ldots$ are some analytic functions. Thus, the
singularity of $\Xi_{x}(x, \Omega)$ is at worst $logarithmic\sim\ln s$ . It easily follows from $\Pi_{S}\Pi_{A}\propto s$

that

$\Pi_{S}\Pi_{A}\partial_{x-x}^{-}-=c_{1}sf’(s)+c_{2}[sg’(s)+f(s)+sf’(s)\ln s]$ . (72)

Therefore, the singularity of $P(x, \Omega)$ is at worst $s\ln s$ , which impli\’e that $P(x,w\pm iO)$

must be continuous function including the point $s=0$ , namely, $x=x_{0}$ . This
argument guarantees that the continuity of $\hat{p}(\omega)$ and $\hat{p}\dagger(\omega)$ at $x=x_{0}$ .

Furthermore, since $\Xi_{x}\sim\ln s$ and $\Pi_{A}\propto s$ for Alfv\’en singularity, we note from
(58) that $\partial_{x}P\Pi_{A-x}^{-}$ must be not only continuous but also zero at $s=0$.
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This implies that $\hat{\psi}(w)=0$ and $\hat{\psi}\dagger(\omega)=0$ at $x=x_{0}$ , and these functions actually
does not appear in (70).

Similarly, as regards the slow continuous spectrum $\omega\in\sigma_{S}$ , we obtain

$= \frac{\frac{}{2}i\pi[\frac{1}{\Pi_{S1}(\omega+i0,x)[\delta(\omega}}{2c_{t}^{2}(x)\omega_{A}(x)}-(x))-\delta(w-kv_{||}(x)+\omega_{S}(x))]-\frac{1}{k(x)-\omega_{S}\prod_{v_{||}}s(w-i0,x)}]$

, (73)

and

$\frac{\Pi_{\epsilon f}(kv_{||}(x)\pm w_{S}(x),x)}{\Pi_{A}(kv_{||}(x)\pm\omega_{S}(x),x)}=-\frac{k^{2}b_{||}^{2}(x)c^{4}(x)}{b^{2}(x)[b^{2}(x)+c_{*}^{2}(x)]}$ . (74)

Our computations are then summarized as follows.

Theorem 9. If $b_{||}(x)\neq 0,$ $b_{\perp}(x)\neq 0$ for all $x_{f}$ the wave action for the Alfv\’en
continuous spectrum $\omega\in\sigma_{A}=\{kv_{||}(x)\pm\omega_{A}(x)\}$ is given by

$\mu_{c}(\omega)=\int_{x_{1}}^{x_{2}}\frac{\pi^{2}}{2\mu_{A}}[\delta(\omega-kv_{||}-w_{A})-\delta(\omega-kv_{\Vert}+\omega_{A})]$

$\cross\frac{k^{2}b_{\perp}^{2}}{b^{2}}[|\hat{p}(\omega)|^{2}+|\hat{p}^{\uparrow}(\omega)|^{2}]dx$ , (75)

and that for the slow continuous spectru$mw\in\sigma_{S}=\{kv_{||}(x)\pm w_{A}(x)\}$ is given by

$\mu_{c}(w)=\int_{x_{1}}^{x_{2}}\frac{\pi^{2}}{2\mu_{A}}[\delta(w-kv_{||}-w_{S})-\delta(w-kv_{||}+w_{S})]$

$\cross\frac{k^{2}b_{||}^{2}c_{\epsilon}^{2}}{b^{2}(b^{2}+c_{l}^{2})}[|\hat{p}(\omega)|^{2}+|\hat{p}^{1}(\omega)|^{2}]dx$. (76)

Sinoe both integrals include the delta function, only the value of each integrand at
the singularity $x=x_{0}$ is of interaet to the calculation of $\mu_{c}(w)$ . The sign of the wave
action is now clear-cut without solving $\hat{p}(\omega)$ or $\hat{P}^{\dagger}(\omega)$ . If asingular mode localized
at $x=x_{0}$ propagates in the positive (or negative) direction of the mean magnetic
field, $k\cdot B(x_{0})>0$ [or $k\cdot B(x_{0})<0$], relative to the mean flow, $v_{||}(x_{0})$ , then the
corresponding wave action is positive (or negative). Note that, without mean shear
flow $v\equiv 0$ , the spectra of the singular modes with positive and negative actions
never collide each other on the real frequency axis (this collision occurs if $b_{||}=0$

somewhere which is indeed well-known as the most dangerous pl\"aoe for static MHD
equilibria). While the mean shear flow causes only the Doppler shift of each singular
mode by $k\cdot v(x)$ , it enables the coalescenoe of continuous spectra with opposite signs
of wave action. This finding may explain mechanisms of various instabilitiae, such
as the jolnt instability [25] and the magnetorotational instability [26], in which the
enery exchange between flow and magnetic field seems to be essential. The value of
the wave action will be crucial also in the study of the wave-mean field interaction,
because it plays the role of an adiabatic invariant when the mean fields undergo slow
modification.
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APPENDIX $A$ : LINEAR OPERATORS IN THE LINEARIZED MHD
EQUATION

The linearized MHD equation for perturbations $\tilde{u}=(\tilde{M},\tilde{B},\tilde{\rho},\tilde{s})^{T}$ can be rep-
resented by the form of (E), where the linear operators $\mathcal{A},$ $\mathcal{H}$ and $\mathcal{B}$ are explicitly
written in $4\cross 4$ matrix forms as follows.

$A=(-\nabla(\rho 0)-0\nabla s\cross O-B\cross(\nabla\cross 0)000-\rho\nabla 000000\nabla s00)(A1)$

$\mathcal{H}=(-0\frac{1}{0\rho}7M0001h_{\rho}^{M\llcorner^{2}}\partial^{-}+\frac{\partial^{2}}{\partial}\varphi\lrcorner^{2}g^{\rho}\partial\phi\epsilon o^{\overline{\rho}^{T}}M\ovalbox{\tt\small REJECT}_{k}^{o}\underline{\partial\partial^{2}\partial}*\partial\epsilon 0)$ , (A2)

$\mathcal{B}=(\begin{array}{lllllllll}-\nabla\cdot v-\nabla(\circ\cdot v)-(\nabla x \circ)x v (\nabla Bx)\cross o \nabla[v^{2}\#-h] \rho T\nabla o0 \nabla x(v\cross o) 0 00 0 -\nabla\cdot(ov) 00 0 0 -v\cdot\nabla\circ\end{array})$ , (A3)

where $e(\rho, s)$ is a given function of $\rho$ and $s$ representing the internal energy per
unit mass, and $h(\rho, s)=\partial[\rho e(\rho, s)]/\partial\rho$ denotes the enthalpy per unit mass and
$T(\rho, s)=\partial e(\rho, s)/\partial s$ the temperature.
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