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1 Introduction
Let us consider the critical dissipative quasi-geostrophic equations in $\mathbb{R}^{2}$ :

$\{\begin{array}{ll}\frac{\partial\theta}{\partial t}+(-\Delta)^{\frac{1}{2}}\theta+u\cdot\nabla\theta=0 in \mathbb{R}^{2}\cross(0, \infty),u=(-R_{2}\theta, R_{1}\theta) in \mathbb{R}^{2}\cross (0,\infty),\theta|_{t=0}=\theta_{0} in \mathbb{R}^{2}, \end{array}$ (QG)

where the scalar function $\theta$ and the vector field $u$ denote the potential tem-
perature and the fluid velocity, respectively, and $R_{i}= \frac{\partial}{\partial x_{i}}(-\Delta)^{-1/2}(i=1,2)$

represents the Riesz transform. We are concerned with the initial value prob-
lem for this equation. It is known that (QG) is an important model in geo-
physical fluid dynamics. Indeed, it is derived from general quasi-geostrophic
equations in the special case of constant potential vorticity and buoyancy
frequency. Since there are a number of applications to the theory of oceanog-
raphy and meteology, a lot of mathematical researches have been devoted to
the equations. For example, there are many works on the well-posedness
for this equations. Constantin, Cordoba and Wu [4] proved existence of a
strong solution for the initial data in $H^{1}$ with small $L^{\infty}$ norm. In [9] and
[10], Ju and the author independently proved the local well-posedness for
large initial data in $H^{1}$ . Here it is worth noticing that the spaces $L^{\infty}$ and
$\dot{H}$ 1 are both scaling invariant function spaces for (QG). Very recently, Kise
lev, Nazarov and Volberg [8] showed a new maximum principle and proved
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the global well-posedness of (QG) for any $W^{1,\infty}$ periodic initial data. Dong
and Du improved the argument of [8] and obtained the global well-posedness
of (QG) for any initial data in $H^{1}$ . Furthermore, Caffarelli and Vasseur [2]
showed the regularity of weak solution for initial data in $L^{2}(\mathbb{R}^{2})$ by applying
De Giorgi’s method to (QG).

The purpose of this note is to show spatial decay estimates of the solutions
for fast decaying initial data. It is known that in general, the solution of (QG)
does not decay in space variables as fast as the initial data if the initial data
dacays very rapidly. This is due to the fact that the fundamental solution of
the linearized QG equation decays only with order $-3$ . Therefore it seems
to be interesting to investigate the relation between the spatial decay rate of
the solution and the initial data. We first show that if the initial data decays
with $order-\alpha(\alpha\geq 3)$ as $xarrow\infty$ , the solution decays (at least) with order
$-3$ . Moreover, we prove that for such a initial data the solution decays with
$order-\alpha$ if and only if the average of the initial data is equal to $0$ .

In the proof of the result, we will make use of weighted spaces. Because
of the presence of the (non-local) drift term $u\cdot\nabla\theta$ , it is difficult to obtain
weighted estimates of the solution. Indeed the velocity $u$ is expressed by
the Riesz transform of $\theta$ , and unboundedness of the transform in $L^{\infty}$ or
certain weighted If spaces causes difficulties to deal with the drift term.
To overcome this difficulty we need weighted estimates of the derivative of
solutions to the linearized equation. Combining these estimates with special
structure of the drift term, we obtain the weighted estimates of the solution.
The decay estimates of the solution also play important role to estimate the
growth of the weighted norm.
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2 Definitions and Statement of Theorem
Let us first recall the definition of the Sobolev space. We denote $\mathcal{Z}’$ as

the topological dual space of $Z$ defined by

$\mathcal{Z}\equiv$ { $f \in S;\int x^{\alpha}f(x)dx=0$ for all $\alpha\in N^{n}$ }.
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We define the homogeneous and inhomogeneous Sobolev spaces $\dot{H}^{s,p},$ $H^{s,p}$

by

$\dot{H}^{s,p}\equiv\{f\in \mathcal{Z}’;\Vert f\Vert_{\dot{H}^{s,p}}\equiv\Vert(-\Delta)^{s/2}f\Vert_{p}<\infty\}$ for $s\in \mathbb{R}$ ,

and

$H^{s,p}\equiv\{f\in S’;\Vert f\Vert_{H^{s,p}}\equiv\Vert f\Vert_{L^{p}}+\Vert f\Vert_{\dot{H}^{\epsilon,p}}<\infty\}$ for $s>0$ ,

respectively. We abbreviate $\dot{H}^{s,2}=\dot{H}^{s}$ and $H^{s,2}=H^{s}$ .

We next introduce weighted $L^{p}$ spaces. For $1\leq p\leq\infty$ and $0\leq\beta<\infty$ ,
we define homogeneous and inhomogeneous weighted $L^{p}$ spaces by

$\dot{If}^{\beta}\equiv\{f\in L_{loc}^{1};||f\Vert_{L}p,\beta\equiv|||\cdot|^{\beta}f||_{L^{p}}\}$

and
$L^{p,\beta}\equiv\{f\in L_{loc}^{1};||f\Vert_{L^{p,\beta}}\equiv\Vert\langle\cdot\rangle^{\beta}f\Vert_{L^{p}}\}$ ,

respectively where we denote $\langle\cdot\rangle\equiv(1+|\cdot|^{2})^{1/2}$ .
Remarks We state some basic property of weighted spaces.
i) It is easy to see the following embedding between the weighted space and
the usual $L^{p}$ space:

$\dot{L}^{p,\alpha}$

$arrow$ $L^{q}$ for $\alpha>n/q-n/p$ .

ii) It is known that the Riesz transform $R$ is bounded in $\dot{L}^{p,\alpha}$ if and only if
$1<p<\infty$ and $\alpha<n-n/p[3]$ . This yields that velocity field $u$ does not
have the same decay as $\theta$ in general. The fact causes some difficulties when
one get decay estimate of the nonlinear term.

Our main theorem is stated as follows

Theorem 2.1 Let $3<\alpha<4$ . Suppose that the initial data $\theta_{0}$ belongs to $H^{1}$

$\cap L^{\infty,\alpha}$ . For $\epsilon>0$ there exists positive constant $C>0$ and a unique solution
of $(QG)\theta$ in the class

$C([0, \infty);H^{1})\cap L^{2}(0, \infty;\dot{H}^{3/2})$

satisfying the following estimate:

$\Vert\theta(t)-AP_{t}\Vert_{L\infty,\alpha}\leq Ct^{\alpha-3}$ for $t\geq\epsilon$ , (2.1)

where $A= \int\theta_{0}(x)dx$ and $P_{t}(x)=ct^{-2}(1+ \frac{|x|^{2}}{t^{2}})^{-\frac{3}{2}}$ where $P_{t}$ is the fundamental
solution to the linear fractional diffusion equation without the drift term.
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Remarks
i) The statements of global existence and regularity in this theorem are due
to [6, 9, 10], and our contribution of this theorem is the weighted estimate of
the asymptotics (2.1). We see that the solution evolving from well-localized
initial data decays as fast as constant power of $P_{t}$ in spatial variables, where
the constant is determined by the average of the initial data. Since $P_{t}$ decays
like $|x|^{-3}$ , we see that the solution also decays like $|x|^{-3}$ for $t>0$ . In partic-
ular, we cannot expect that the solution does not decay faster than $|x|^{-3}$ for
$t>0$ even if the initial data decays rapidly in general. However the solution
decays faster than $|x|^{-3}$ if and only if the average of the initial data is equal
to $0$ . So we are able to classfy spatial decay property of the solution for (QG)
in terms of the avarage of the initial data.
ii) The growth rate $t^{\alpha-3}$ is optimal in the sense that this rate is equal to the
one for the solution to the linearized equation. By the technical reasons due
to the presence of the drift term, we need the assumption $t\geq\epsilon$ to avoid the
singularity near $t=0$ . It seems to be difficult to remove this condition by
our approach.
iii) Hayashi-Kaikina-Naumkin [7] considered related fractional diffusion equa-
tions in one space dimension. They derived the spatial dacay and the asymp-
totics of the solutions. Brandolese-Karch [1] also studied some class of the
fractional diffusion equations with convection terms. They obtained the
asymptotics of the solutions toward the linear evolution $e^{-t(-\Delta)^{\alpha}}\theta_{0}$ . It is
worth noticing that they considered the case $\alpha>1/2$ while we are interested
in the critical case $\alpha=1/2$ .

3 Preliminaries

3.1 Linear Estimate in Weighted If Spaces
In this section we prepare some basic tools to prove our main results. The
following estimates in this subsection is a variant of the estimates proved by
Hayashi-Kaikina-Naumkin [7] in one space dimension.

Lemma 3.1 i) Let $p,$ $q,$ $r\in[1, \infty]$ with $r\geq p,$ $q$ and define $p’,$ $q’$ by $1/p’=$

$1+1/r-1/p$ and $1/q’=1+1/r-1/q$ . Suppose that $a\in\dot{L}^{q,\beta}\cap L^{p}$ with
$\beta\in[2-2/p’, 3-2/p’)$ or $(p, r, \beta)=(1, \infty, 3)$ . Then we have

$\Vert e^{-t\Lambda}a\Vert_{\dot{L}^{r,\beta}}\leq Ct^{\beta-2(1-1/p’)}\Vert a\Vert_{L^{p}}+Ct^{-2(1-1/q’)}\Vert a\Vert_{L}q,\beta$ for $t>0$ , (3.1)

where $\Lambda=(-\Delta)^{1/2}$ .
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ii) Let $p,$ $q,$ $r\in[1, \infty]$ with $r\geq p,$ $q$ and define $p’,$ $q’$ by $1/p’=1+1/r-1/p$
and $1/q’=1+1/r-1/q$ . Suppose that $a\in L^{q,\beta}\cap L^{p}$ with $\beta\in[3-2/p’, 4-2/p’$)
or $(p, r, \beta)=(1, \infty, 4)$ . Then we have

$\Vert\nabla e^{-t\Lambda}a\Vert_{\dot{L}^{r,\beta}}\leq Ct^{\beta-2(1-1/p’)-1}||a\Vert_{L^{p}}+Ct^{-2(1-1/q’)-1}\Vert a\Vert_{L}q,\beta$ for $t>0$ .
(3.2)

Next we show the asymptotics of the solutions to the linear hactional
diffusion equation in weighted spaces. Substracting the fundamental solution
$P_{t}$ , we obtain higher order weighted estimates.

Lemma 3.2 i) Let $1\leq p\leq\infty$ and $\beta\leq 4$ . Suppose that $a\in\dot{L}^{p,\alpha}\cap\dot{L}^{1,1}$ .
Then we have

$||e^{-t\Lambda}a-AP_{t}||_{L\infty,\beta}\leq Ct^{\beta-3}\Vert a\Vert_{L^{1,1}}+Ct^{-2}p\Vert a\Vert_{\dot{L}^{p,\beta}}$ . (3.3)

where $A= \int a(x)dx$ .
ii) Let $1\leq p\leq\infty$ and $\beta\leq 4$ . Suppose that $\nabla a\in\dot{L}^{1,1}$ and $a\in\dot{L}^{p,\beta}$ . Then
we have

$||e^{-t\Lambda}\nabla a-A’P_{t}||_{L\infty,\beta}\leq Ct^{\beta-3}||\nabla a||_{L^{1,1}}+Ct^{-\frac{2}{p}-1}||a||_{\dot{L}^{p.\beta}}+Ct^{-\frac{2}{p}}||a||_{\dot{L}^{p.\beta-1}}$.
(3.4)

where $A= \int\nabla a(x)dx$ .

3.2 Decay estimates for Derivative of Solution
We next prepare decay estimates of the solution for (QG). These estimates
are used for the proof of Theorem 2.1 to control the growth in time of the
solution.

Proposition 3.3 (Constantin- $Wu[5]$) Assume that $\theta_{0}$ belongs to $L^{1}\cap L^{2}$

Then there $e$ rists a weak solution $\theta$ of $(QG)$ such that

$||\theta(t)||_{L^{2}}\leq C(1+t)^{-1}$ ,

where $C$ is constant depending only on the $L^{1}$ and $L^{2}$ norms of $\theta_{0}$ .
We also recall the existence of the global solution in the critical Sobolev

space.

Proposition 3.4 (Dong-Du/6], $Ju/9]$, Miura /10]) Suppose that the initial
data $\theta_{0}$ belongs to $H^{1}$ . Then there exists a unique solution of $(QG)\theta$ in the
class

$C([0, \infty);H^{1})\cap L^{2}(0, \infty;\dot{H}^{3/2})$ .
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Combining these results with Fourier splitting method by M. Schonbek
[12], we are able to show the following sharp decay estimates of the derivative
of the solution.

Proposition 3.5 Suppose that the initial data $\theta_{0}$ belongs to $L^{1}\cap H^{1}$ and $\theta$

is the (unique) corresponding solution of $(QG)$ in the class $C([0, T);H^{1})\cap$

$L^{2}(0, T;H^{3/2})$ . Then there exists constant $C>0$ such that the following
estimate holds

$||\theta(t)||_{\dot{H}^{\epsilon}}\leq C(1+t)^{-s-1}$ for $t>0$ and $0<s\leq 1$ (3.5)

and

$\Vert\theta(t)||_{\dot{H}}$ . $\leq Ct^{-s+1}(1+t)^{-s-1}$ for $t>0$ and $1\leq s\leq 2$ . (3.6)

4 Sketch of Proof

4.1 Weighted Estimates of solutions
Firstly we show following auxiliary weighted estimates. These estimates are
needed for the estimate of the nonlinear term in the proof of the Theorem
2.1. The point is that weights for these estimates are subcritical in terms
of boundedness of the Riesz transform. As mentioned before in section 2,
the Riesz transform is bounded in $\dot{L}^{m,\alpha}$ if and only if $1<m<\infty$ and
$\alpha<2-2/m$ . Hence we obtain weighted estimates using the usual integral
representation of (QG):

$\theta(t)=e^{-t\Lambda}\theta_{0}-\int_{0}^{t}e^{-(t-\epsilon)\Lambda}(u\cdot\nabla\theta)(s)ds$ (4.1)

and Lemma 3.1. Furthermore applying non-local maximum principle by [8],
we obtain such estimates globally in time.

Proposition 4.1 Let $2<m<\infty$ and $1-2/m<\alpha<2-2/m$ . Suppose
that the initial data $\theta_{0}$ belongs to $L^{m,\alpha}\cap L^{1}\cap H^{1}$ . Then there exists a solution
of $(QG)$ in $L^{\infty}(O, \infty;L^{m,\alpha})$ .

Proposition 4.2 Under the same assumption of the initial data as Propo-
sition 4.1, for every $\epsilon>0$ there exist a constant $C>0$ and a solution of
$(QG)$ satisfying

$||\nabla\theta(t)||_{L^{m,\alpha}}\leq C$ for $t\geq\epsilon$ ,

where the constant $C$ depends only on $\theta_{0}$ and $\epsilon$ .
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4.2 Asymtotics of the solutions in weighted spaces
In this position we now outline the proof of Theorem 2.1. We estimate the
righthand side of the integral representation (4.1) respectively. The estimates
for the linear term in (4.1) is obtained by applying Lemma 3.2 directly. As
for the estimate of the nonlinear term, we notice the fact that the average of
the drift term $u\cdot\nabla\theta$ is equal to $0$ , because the velocity $u$ satisfies divergence
free condition. This and Lemma 3.2 imply that

$||e^{-(t-s)\Lambda}(u\cdot\nabla\theta)\Vert_{L\infty,\alpha}$

$\leq\Vert e^{-(t-s)\Lambda}(u\cdot\nabla\theta)-AP_{t}\Vert_{L\infty,\alpha}$

$\leq Ct^{\beta-3}\Vert u\cdot\nabla\theta||_{L1,1}+Ct^{-\frac{2}{p}}||u\cdot\nabla\theta||_{\dot{L}^{p,\alpha}}$

$\leq C(t^{\beta-3}+t^{-\frac{2}{p}})\Vert u\cdot\nabla\theta\Vert_{L^{p,\alpha}}$ ,

where $A= \int u\cdot\nabla\theta(x)dx$ and embedding $L^{1,1_{\llcorner}}arrow L^{p,\alpha}$ . Applying Proposition
4.1, 4.2, we can show that $||u\cdot\nabla\theta||_{p,\alpha}$ for sufficiently large $p$ . So we see that
the expression $||e^{-(t-s)\Lambda}(u\cdot\nabla\theta)\Vert_{L\infty,\alpha}$ is finite for $0<s<t$ . In fact, we have
to check that the integral is integrable on $[0, t]$ and it is bounded by $t^{\alpha-3}$

for $t>0$ . To this end, we need to split the interval of integral and apply
Proposition 3.5 to control the growth in time. The details of these arguments
are work out in [11] and will be published elsewhere.
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