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On regularity of suitable weak solutions
to the Navier-Stokes equations in unbounded domains

Tomoyuki Suzuki
Department of Mathematics, Graduate School of Science, Osaka University

1 Introduction

Let us consider the Navier-Stokes equations in Q x (0,T) with 0 < T< oo, where Q is a
general domain with uniformly C2?-boundary 99 # @ in R3. In particular, we are interested
in the problem in unbounded domains with non-compact boundary:

Ou—Au+u-Vu+Vp=0 inQ x(0,T), (1.1)
diV’U«=0 in O x (O’T)v .
u=0 . on 8Q x (0,T),

. 1.2

where u = u(z,t) = (u1(z,t), uz(z, t), us(z,t)) and p = p(x,t) denote the unknown velocity
vector and the pressure of the fluid at the point (z,t) € Q x (0,T), respectively, while
up = ug(z) = (uo,1(x), uo,2(x), uo,3(x)) is the given initial velocity vector.

~ For ug € L2, it is known that there exists a global weak solutions to (1.1)-(1.2), so-called
Leray-Hopf weak solution. Although uniqueness and regularity of weak solutions are still
open problems, we have the partial result by Caffarelli-Kohn-Nirenberg [1]. Introducing the
notion of suitable weak solutions, they showed that the one dimensional Hausdorff measure
of the singular set of such solutions is zero. The existence of a suitable weak solution for
up € L? is known in the whole space, half spaces, bounded and exterior domains, see e.g.
Taniuchi [12]. F.-H. Lin [4] proved the same result in a much simpler way with a slightly
different definition. Seregin [6] developed the partial regularity theory near the boundary.
The partial regularity can be used to prove the regularity for large |x|. Indeed, Caffarelli-
Kohn-Nirenberg (1] proved that the suitable weak solutions are regular for large |z| in R3.
The same result was shown in exterior domains by Sohr-von Wahl [10]. The most important
point for their results is to show that the pressure is small for large |z].

It is known that the standard approach to the Stokes equations in L9, 1 < ¢ < 0o, cannot
be extended to general unbounded domains except ¢ = 2; the Helmholtz decomposition in
L? holds for some special ¢ in a certain unbounded domain, see Maslennikova-Bogovskii [5].
However, Farwig-Kozono-Sohr [2] show that L theories of the Stokes equations remain true
in any uniformly C2-domains if we replace L? by L2 + L9 for 1 < g <2and by L2Nn L9
for 2 < g < oo, respectively. As a by-product, they prove the existence of a suitable weak
solution for up € L? in such domains.

Our purpose is to prove the regularity of suitable weak solutions for large || in general
unbounded domains. For the proof, the so-called e-regularity theorem for suitable weak
solutions plays a crucial role. Although such theorems are well-known by (1, 4, 6], it seems



152

impossible to apply it directly to our situation. The reason is that their characterization of
the e-regularity theorem includes integrals of the pressure p(z,t), while it generally seems
very difficult to determine the class of the pressure p(z,t) in general domains with non-
compact boundary. Therefore, we need to modify the known e-regularity theorem not
by means of the integral of the pressure p(z,t) itself but by means of that of the pressure
gradient Vp(z,t). Applying the maximal regularity theorem in L2+ L% with 1 < ¢ < 2 for the
Stokes equations [2], we show that the pressure gradient satisfies Vp € L%4(5, T; L? + L%/4)
for arbitrary § > 0. Our e-regularity theorem up to the boundary enables us to obtain a
compact subset K5 C € depending only on § > 0 such that every suitable weak solution
u(z, t) is Holder continuous for (z,t) € (8 \ K;5) x (6, T). Simultaneously, our result shows
that there is no singularity near the boundary 92 for large |z|. Therefore, we may regard
the main theorem below as regularity theorem up to the boundary for large |z|.

2 Main Theorem

Before stating our result, we introduce some notations. Let B(zo,R) and B(zg, R') be
the open balls with radius R > 0 centered at zo € R3 and z{, € R?, respectively. For
29 = (z0,%0), Q(20, R) = {(=,t);z € B(xo,R),t € (to — R%,10)} is the standard parabolic
cylinder. For simplicity, we abbreviate B(0, R) and B(0,1) to B(R) and B, respectively.
L3(2) stands for the usual (vector-valued) L?-space with norm ||- ||., a; () denotes the inner
product in L? (Q) and the duality pairing between L9(Q2) and L9 (), where 1 + 7 =1 We
denote by Cg° () the set of all C* functions 1 with compact support in Q'such that
divy = 0. The space LI (1) is the closure of C§% (£2) with respect to the Le¢-norm || - ||¢.0
for 1 < g < 0.

Throughout this paper, we use the following assumption.
Assumption Let s,g and g, be positive numbers satisfying the followmg relations:

2 3 3 1 1 1

~+-=4 for 1<8<2 and 1<¢g< -, —==---=,
s q g 2 (\ q 3

Our definition of a weak solution is as follows.

Definition 2.1 Let up € L2(9). A function u is called a weak solution of (1.1)-(1.2) in
Qx(0,T) if

(i) u€ L°°(0 T; L2(Q)) N L2(0, T; Wo 2(Q)),
(i1) '
T T T
- / (u, I’ dt + f (Vu, V)hdt + / (u- Vu, $)hdt = (uo, $)h(0)
0 0 0

for all h € C§°([0,T)), ¢ € C§5 ().
We give definitions of interior and boundary suitable weak solutions.

Definition 2.2 The pair (u, Vp) is called an interior suitable weak solution of the Navier-
Stokes equations (1.1) in Q x (0,T) if the following conditions are satisfied:

(i) we L*(0,T;L%N)) N L*0,T; W"*(Q)), Vp € L} ((0 T); LE. (D).
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(i) (u,Vp) satisfies (1.1) in the sense of distribution in Q x (0,T).
(iii) (generalized energy inequality) There holds
¢
[P tay+2 [ [ 1vulgayar
Q 0 Ja
¢
< [ [ {1+ 86)+ (ul + 20)u- v} dyar
for allt € (0,T) and all nonnegative functions ¢ € C(Q x (0,T)).

Definition 2.3 LetT be a relatively open subset of 8Q. The pair (u, Vp) is called a boundary
suitable weak solution of the Navier-Stokes equations (1.1) near I’ x (0,T) if the following
conditions are satisfied:

() ue L®(0,T; LAQ) 1 L2(0, T WH3(R), V3u, Vp € Lio((0, T); Lo ().

(ii) (u,Vp) satisfies (1.1) in the sense of distribution in Q x (0,T) and

u=0 on I'x(0,7).

(iii) (generalized energy inequality) There holds

¢
/ lu(y, )P (y, t) dy + 2/ / |Vul?¢ dydr
Q . 0o Jo
< /0 /(; {|u|2(¢r + Ad) + (|ul® + 2p)u - V¢} dydr

for allt € (0,T) and all nonnegative functions ¢ € CP(R2 x (0,T)) vanishing in a
neighborhood of the set (8Q\I') x (0, T). :

IfT' = 0Q, then IQ\T = @ and this inequality holds for all t € (0,T) and all nonnegative
functions ¢ € CF(R3 x (0,T)), see [8, p.340].

Remark 2.4 In the corresponding definitions of [7] and [8], it holds the stronger global
condition V2u,Vp € L*(0,T; L9(Q)) with g = §,s = §,2 + 2 = 4. The weaker conditions
on V2u and Vp in Definitions 2.2 and 2.3 are useful in particular in order to admit initial

values ug € LZ(f); see the existence result in Theorem 2.6 where ¢ = s = % and where
€ = 0 is possible under a stronger condition on ug.

We give a precise definition of uniformly C2-domains, see [9].

Definition 2.5 We call Q uniformly C?-domain if and only if there exist positive constants
a, B, K > 0 with the following properties: for each zog € 8Q there exist a Cartesian coordinate
system y = (¥',y3) = (v1,v2,y3) with the origin zo and C%-function hz,(v'), || < o with
lhzq |l o2 (B'(a)) S K such that the neighborhood

Ua(20) = Ua, 8,14 (0) = {(¢/, 4) h2o (¥') — B < y3 < o (¥) + B, l/| < @}
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satisfies

Us (20) = U g, (@0) = {(t/s9); oo (') < 3 < hao (¥') + B, I¥/| < @}
= QN Ua(zo)

and

NN Ua(zO) = {(!/,y);ys = hwo(yl)f Iyll < a}'

We recall the existence of a suitable weak solution in general domains.

Theorem 2.8 [2] Let @ C R3 be a uniformly C%-domain and let ug € L2(Q). Then there
exists a suitable weak solution u € L®(0,T; L2(Q)) N L2,.((0, T); Wy 2(R)) in the sense of
Definitions 2.2 and 2.8 withT" = 0Q and s = q¢ = % satisfying the following regularity
properties: o

us, u, Vu, V2u, Vp € L¥4(e, T; L2 + L%%) for all 0<e< T, (2.1)

Remark 2.7 (i) Although it is not mentioned specifically, we can see that the suitable weak
solution constructed in [2] is actually interior and boundary suitable weak solution in the
sense of Definition 2 and 3 with I"' = 6.
(i) Since L? and L5/4 are reflexive, for u and p satisfying (2.1) there exist u(®),u(®, p(¥)
and p( such that
U= ru,(l) + u(2)’ p = p(l) + p(z),
ugl), uD), Tu® v vp) ¢ L‘r’/“(a, T;L?) forall 0<e<T,

ugz),u(z),vu(z)’Vzu(z),vp(z) € L“/“(e, T, L5/4) forall 0<e<T
and

luelly + lully + [ Vully + | Volly
= lluPlyw + 1@lyw + 1926 lyey + V6V lyay
+1uPllya + 1u®|ly@ + 1V*uD )y @ + V2P ly@

where the spaces Y, Y1) and Y?) are defined by Y = L5/4(¢, T; L2+ L%/4), Y() = L5/4(¢, T; L?)
and Y = L%4(¢, T; L5/4). For details, see [2, Remark 2.8].

Our main result in this paper now reads:

Theorem 2.8 Let Q2 be a uniformly C?-domain and let ug € L2(R). Suppose that (u, Vp)
is any suitable weak solution of (1.1), (1.2) in the sense of Definitions 2.2 and 2.8 with
' =0N. Then for any 0 < § < T there exists a positive constant K such that u is Holder
continuous on {z € ;|z| > K} x (§,T).

Remark 2.9 The regularity of suitable weak solutions for large |z| has been proved in the
whole space R3 [1] and exterior domains [10]. In both cases, since there is no boundary
outside a sufficiently large ball, it sufficies to apply the interior e-regularity theorem in
[1, 4, 3] to the proof of the smoothness of u(z,t) for large |z|. In general domains with
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non-compact boundary, it is necessary to consider the smoothness not only in the interior
of © but also near the boundary. The notion of boundary suitable weak solutions makes
it possible to prove regularity up to the boundary. All the previous e-regularity. theorems
(1, 4, 3, 8] are characterized by the integral of the pressure p(z,t). However, non-compactness
of the boundary prevents us from obtaining behavior of p(z, t) by means of the information
on Vp(z,t). Therefore, we modify these previous results in terms of the integral of the
pressure gradient Vp(z,t). Although it is generally known that the singularity may occur
near the boundary, our theorem makes it clear that, in the same way as in R3 and exterior
domains, we can prove the smoothness of the solution for sufficiently large |z| even in general
unbounded domains.

3 Interior partial regularity

Let zp € Q2 and let R > 0. For (u,p), we denote the integral average by the slash

_ _ 1
(u)zo,R .—ﬂc;(zo,R)u(z) dz = —_—lQ(zo,R)l //Q(zo,R) u(z) dz,v

1
R = p(y,t)dy = s p(y,t) dy.
[Plzo,R 7{9 o h) (v, t) dy B0 B Jaeon (v, t) dy

We introduce Yi(u; Q(20, R)), Ya(u; Q(20, R)), Ya(p; Q(20, R)) defined by

Y1(4;Q(20, R)) = (]%(zo R)lu_ (u)zo,R|3) 1/3’
Qe )= (] (= )" )"

Y3 (p; Q(z0, R)) = B? (7{o )

Furthermore, we define Y (u, p; Q(zo, R)) and Z(u, p; Q(20, R)) by
Y (u, p; Q(20, R)) = Yi (4; Q(20, R)) + Ya(u; Q(20, R)) + Y3 (p; Q(20, R)),
Z(u, p; Q(20, R)) = Y1 (u; Q(20, R)) + Ya(p; Q(20, R)).

In order to prove our main theorem, we need the following version of the e-regularity
theorem, which is different from that of [4].

Theorem 8.1 There eists an absolute constant €y > 0 such that if any interior suitable
weak solution (u,Vp) in Q = Q(0,1) satisfies one of the following conditions:

(i) for1<s< 3},

4@ = [[ e+ [ °1 ([ rurf-)"/q"+ /_°1 (f Wp|")'/q<eu. (3.1)
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(ii) for-g- <s8<2

5@)= [[ 1w+ [ ) (f lvm“)s/q <en (32)

then u is Hélder continuous on Q(3) = Q(0, §).

Remark 3.2 The hypotheses (3.1) and (3.2) include only the pressure gradient, while the
e-regularity theorem in the previous results [1, 3, 4] requires the assumption on the pressure
itself. In the whole space and exterior domains, it is possible to obtain regularity of the
pressure by means of that of the pressure gradient. However, since the boundary 0 is
non-compact in our case, we can hardly expect to obtain global regularity of the pressure
itself.

The proof is based on the standard blow-up argument with some modifications of [3].
For details, see [11].

Lemma 3.3 Let M > 3. For 0 < 6y < % , there ezxist positive constants eg > 0 and Cy > 0
such that if any interior suitable weak solution (u,Vp) of the Navier-Stokes equations (1.1)
in Q satisfies

(Wil <M, Y(u,pQ)<e if 1<s<$,
(Wil <M, Z(u,pQ)<e if $<s<2,

then there holds |
Y(up;Q600) < Co 63" Y(u,p:Q) if 1<s<i
Z(u,p;Q(60)) < Co 63/ Z(u,p;Q)  if $<s<2

By the successive procedure of Lemma 3.3 and the scaling transformation
ur(y, 8) = Ru(zo + Ry, to + Rs), pr(y,s) = R*p(z0 + Ry, to + R%s),
we obtain the following general result.
Lemma 3.4 Let M > 3 and let 0 < 8 < 3. Suppose that 0 < 6 < } is a constant such that
2—.’2
Cobp* <1,

where Cp is the constant in Lemma 8.9. Suppose that any interior suitable weak solution
(u, Vp) in Q(z0, R) satisfies

R|(u),z| < M, RY(u,p;Q(20,R)) <% if 1<s<3,
R|(u),5| < M, RY(u,p;Q(20,R)) <% if §<s<2,
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where &y = min{eo, ;11-08M }. Then there ezists a positive constant C such that

Y (v, p;Q(20,p)) < C (%)ﬁéY(u,p;Q(zo; R)) if 1<s<},
Z(u,7;Q(20,p)) < C (%)#Z(u,p;Q(zo,R)) if §<s<2,
for all p € (0, R).

Proof of Theorem 3.1. We take M sufficiently large and 8 = 4. For 2o € Q(3), there
holds

Q(2,3) @ and I3l sC4}Q).
and
1Y (P Q(z0, 7)) < C(AV3(Q) + AV (Q) + AV*(Q)) if 1<s<3,
{ 12 (u.p;Q(20, 1)) < C(B'3(Q) + B'/*(Q)) if §<s<2
Let ey be such that
Ce/* <M and C(g* +6/" +¢/*) <z if 1<s<},
{ Ce;/3<M and C(e;/3+6;/’)<éo if %53<2.
It follows from Lemma 3.4 with 8 = 0 that
Y (u,p; Q(20,0)) < p*'Y (u,p; Q(20, %)) < p/*50 if 1<s <3,
{ Z(u,p;Q(20,0)) < p* Z(u,p; Q(20, 1)) < p*50  if §<s<2,

for all zp € Q(%) and 0 < p < ;. It follows from the Campanato embedding theorem of
parabolic type that u is H6lder continuous on G(%) with exponent 1/s’. This completes the
proof of Theorem 3.1.

4 Boundary partial regularity

Let Q*(20,R) = {(z,t) € B(zo,R) x (to — R%,tp);zos > 0} be the half cylinder. We
introduce Y7 (u; Q* (2o, R)) and Y, (u; Q* (20, R)) defined by

V" (u; Q* (20, R)) = (]6{?

(w5 Q* 0. B) = (f, to_m (jﬁ,h(zo’mluxqi)"’ .

to
Furthermore, we define Y+ (u,p; Q* (20, R)), Z+ (u, p; @+ (20, R)) by
Y™ (u,p; Q* (20, B)) = Y1" (u; @* (20, R)) + Y5' (w; Q" (0, R))
+ Y3(p; Q@ (20, R)),
Z* (u,p;Q* (20, R)) = Yi* (u; Q¥ (20, R)) + Y3(p; Q* (20, B)).
We shall prove the following boundary e-regularity theorem, see (7, 8].
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Theorem 4.1 Let Q be a uniformly C%-domain and let T be an open subset of the boundary
O0. There ezist an absolute constant €, > 0 and R, > 0 such that if any boundary suitable
weak solution (u, Vp) of the Navier-Stokes equation (1.1) near I' x (0,T) and zy = (o, o)
with o €T, 0 <ty < T and tyo — R. > 0, satisfy one of the following conditions:

§/q.
/ uf’ + L ( / e
to-R3JUE, (mo) to—R2 \JUZE, (o)
s/q
/ ( / IVpl") <e., (4.)
to~RZ \JUR, (z0)

(1) for1<s<%,

(i) for 3 < s <2,

to ‘/q
Vpl|? < €., 4.2
& / i /U R vl (/Um)l pl) (42)

then u is Hélder continuous on @(wo) x [to — %,to]. Here, UZ (z0) is the set defined in
Definition 2.5.

We straighten the boundary by the relation

- W
z = h(y) = ( %2 ) ) (4.3)
~ ys — h(y1,32)
where h € C?(B'(a)) satisfies
h(0,0) =0, V'A(0,0)=0, |hlcs <K, [V'hlleow<M (4.4)

for arbitrary M > 0. Then the Navier-Stokes equations (1.1) turn into the form
0i— By +8-V4a+ =0, Vp-8=0, Usy=0=0,

~

where @ = u o, p=pohand ¥, and A, are defined by the formulas

o (08 _oh8 8 8h8 8
h=\8z, 0Oz,0z3' Oz; 0Oz 0z3 Oz3

and
Ay = ‘j‘: % (@) Bm?;xj i i ¥ (m)ai',
ij=
where
0 _6h
(asa(x))lq <3 8h _}’h 1 -:li’:lhlz |
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0
(bi(m))15¢53 = (_2,’) )

The following global estimate plays an essential role to prove Theorem 4.1.

Proposition 4.2 (8] Let 1 < ¢,3 < 0o and h € C?(R?). Then there exists an absolute
constant K. > 0 such that if h satisfies (4.4) for K < K., then there exists a unique
solution (u,p) of the perturbed Stokes equations

Ou — Ah‘u + Vhp = f, Vh ‘u=0 in Hi'.’ ulzs=0 =0, u't=—1 =0,
where IIf = R3 x (—1,0). Moreover, it holds that
“ut”q,a,ﬂt + ”Vzu”q,g,n'l" + ”vp||q,a,nl+ s C"f”q,a,l'l?"

Let us consider the perturbed Navier-Stokes equations
Bu—Aputu-Vpu+Vpp =0, ¥4u =0in Q+= Q*(0,1), tzgmo = 0. (4.5)

The notion of suitable weak solutions for the perturbed Navier-Stokes equations can be
defined by the same way as in Definition 2.3.

Definition 4.3 The pair (u, Vp,h) is called a boundary suitable weak solution of the per-
turbed Navier-Stokes equations (4.5) in Q™ if the following conditions are satisfied:

(i) u e L®(-1,0; L%(B*)) n L*(—1,0; W12(B+)),
Viu,Vp € L-'( 1,0; LI(B*)).

(ii) (u,Vp) satisfies (1.1) in the sense of distribution in Qt and
u=0 on {ze€ BYiz3 = 0} x (-1,0).

(iii) (generalized energy inequality) There holds
t -~
/ lu(y, t)*(y, t) dy + 2 ] / |Vhul?¢ dydr
B+ -1/B+

</ tl [, {1@r + Bag) + (ul? + 260 On} ddr

for allt € (—1,0) and all nonnegative functions ¢ € C(Q).
Theorem 4.1 can be deduced from the following result.

Proposition 4.4 Assume that h € C2%(B’) satisfies (4.4) with K < K., where K, is the
constant as in Proposition 4.2. Then there erists an absolute constant e. > 0 such that

if any boundary suitable weak solution (u,Vp,h) of the perturbed Navier-Stokes equations
(4.5) in Q* satisfies

{ Y+ (u,p; Qt) <& for 1<s< %, (4.6)

Zt(u,p; Q%) <& for 3 <s<2,

then u is Hélder continuous on Q' (3) = Q7 (0, 3).
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We give the proof of Theorem 4.1 assuming Proposition 4.4.
Proof of Theorem 4.1. Let R = %—R,. If R, is small enough, it holds

Ué"‘ (120) - V(wo,R) C U;* (z0),

where V(zo, R) = h~1(B*(zo, R)). Set &, = (%)"E*; Then we have that

Y+ (u,p; V(zo, R) X (to — R%,t0)) <& if 1<s<3$,
Z+(u,p;V(:vo,R) X (to - Rz,tO)) <&, if % <s< 2,

By the transformation (4.3), we see that the functions (u, Vp, k) are a boundary suitable
weak solution of the perturbed Navier-Stokes equations (4.5) in Q% (2o, R) satisfying

Y*+(u,p; Q% (20,R)) <& if 1<s< %,
Z*(u,p;Q% (20, R)) <& if $<s<2

Therefore, by the scaling transformation
ur(y, 8) = Ru(zo + Ry, to + R%s), pr(y,s) = R*p(zo + Ry,to + R2s),
1
hr(y1,y2) = h(By1, Rys), (4.7)

the new functions (ug,pr,hr) are a boundary suitable weak solution of the perturbed
‘Navier-Stokes equations (4.5) in Q% satisfying

Y+(ur,pr; Q%) <& if 1<s<§,
Z*(ur,pr;Qt) <e. if $<s<2

”hR“c,'ﬂ(F_) < R|hllcagry) < KR.

By putting R, = %, all the conditions of Proposition 4.4 are satisfied. Hence, we conclude
that ugp is Holder continuous on T(%). Taking (4.7) into consideration, we see that u is
Halder continuous on V(zo, &) x [to — %E,to]. Since Ug,_ (zo) C V(zo, &), it completes the
proof of Theorem 4.1. '

In order to prove Proposition 4.4, we use the several steps similar to the interior case.
The first step is the following result.

Lemma 4.5 For0< 61 < %, there exist positive constants €1 > 0 and Cy > 0 such that if
any boundary suitable weak solution (u, Vp, k) of the perturbed Navier-Stokes equation (4.5)
in Q% satisfies

YHu,p;Qt)<er  if 1<s<i,
{ ZHu,p;Qt) <en  if $<s<?,
then there holds
Y*(u,p;Q*(0) < G167 Y+ (u,p; Q%)  if 1<s<$,
{ Z*(u,p; Q¥ (61) < 16" 2+ (w,p; Q%) if §<s<2.



As in Proposition 3.3, the proof is based on the blow-up argument with some modifica-
tions of [8]. With the same procedure as in [6], we can show the following general result.

Lemma 4.6 If any boundary suitable weak solution (u,Vp,h) of the perturbed Navier-
Stokes equations (4.5) in Q% and zo = (zo,tp) € Bt x (-1,0) satisfy

(B(zo,R)N8B*) c {x € B ;23 =0}, 0< R< Ry, to — R? > —1,
Y"‘(u,p;w(zo,R)) <& if 1<s< -g-,
 Zt(u,pw(z0,R)) <7 if §<s<y,

then there holds

/

1/s .

Y (u, p;w(20,p)) < Chs (%) if 1<s<3$,
1/8 .

Z (u, p;w(20,p)) < Csg (j’;—) if $<s<2,

for all p € (0, R). Here, w(z, R) := (B(zg, R) N B*) x (to — R2,to).

We are now in a position to prove Proposition 4.4. '
Proof of Proposition 4.4. It follows from Lemma 3.4 with 8 = 0 that if

{ Y(u,p;Q) <8 if 1<s<$,
Z(u,p;Q) <% if $<s<2,
then there holds
Y(u,p;Q(20,0)) < p/¥80  if 1<s5< 3,
{ Z(u,p; Q(20,p)) < p/¥50  if §<s<2

for all zp € Q*(3) and 0 < p < 1. By Lemma 4.6, the same assertion holds for all z
belonging to the flat part of the lateral boundary with Z, replaced by #;. Combining the
interior and boundary estimates as in [6, Lemma 5.2], we obtain

Y (u,p;Q(20,p)) < Cp/¥  if 1<s< 8,
Z(u,p;Q(20,p)) S Cp/* if $<s<2

for all 25 € Q"'(%) and 0 < p < '1'1'6' Therefore, it follows from the Campanato embedding
theorem that u is Holder continuous on Q" (3) with exponent 1/s'.

5 Proof of Main theorem

Step 1. (Interior regularity) We shall prove the following:

For 0 < 01 < T, there exists Ky > 0 such that u(z,t) is Holder continuous
~ for (z,t) € {(z,t) € Q x (01,T); |z| > K1,dist (z,00) > \/o1}.

161
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Since u € L*(0,T; L*(Q)) N L?(0, T; W1?(Q)), we see that
”u”L"(Qx(O Ty < C“u”Loo(o TL2(Q))“VUHL2(O T;L2(Q))"
By Remark 2.7, there exist Vpg ) Vp( ) such that

Vol e L¥4(0,T; L3()), VpP e L3/4(0,T; L¥/4(%)),
Vp = Vpgl) + Vpgz).

Therefore, for o <t < T we can choose K} > 0 so large that

/ / ] +— sup / | +a / /
t/2 J|y|>K} 01 t/2<s<T |y|>K’ t/2 |y1>x' ’

1 / / (1)2 o8 . (2)2
+—= |Vps | |Vpy | < &, (5.1)
o)/ t/2( WI>K] 5/4 t/2 > K; !

where gy is the constant as in Theorem 3.1. Hence, we obtain

8/3
to

/ lul® + —g ( / lu [15/8)
to—0} J By (20) 01 Jto—o? \ J By, (z0) :

+ =7 / / Vo4 < &
af/ % Jto=02 JBay (20) :

for all (zo,t0) € {z € Qlx| > K] + o1,dist (z,09) > \/51} X (01,T). It follows from
Theorem 3.1 with s = ¢ = § that u(a:, t) is Holder continuous for (z,t) € {z € Q;|z] >
K1 + %, dist (z,09Q) > /71} % (61, T). The assertion of the interior regularity is proved

Step 2. (Boundary regularity) We shall prove the following:

For 0 < 03 < T, there exists K > 0 such that u(z,t) is Hélder continuous
for (z,t) € {(z,t) € Q x (02, T); |z| = K2, dist (z,00) < %'-}

In the same way as in Step 1, choose K} > 0 so large that

T
2/ / 3+F sup / Iu|2+R.f / V|
RZ JR./2 >k, * R./2<s<T |y|>K’ R./2 Jly|>K}

+ / / Vo, (1))2 / / |Vp3 ( 5/‘<e,,, 5.2
Ri’“ R./z( vy P2 l) RS Jrap s | 52

where €, and R, are constant as in Theorem 4.1. Hence, we obtain

to 8/3
|u]® + == / / ul15/8
R2 ‘/t‘—-R3 ,/;;4- (z0) R5 to—R2 ( U+ (z'o)' | )

Vo|%4 < .
5/4/ RZ/U"' (=lto)| Pl.
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for all (xo,to) € {z € O|z| > K} + R.} x (02,T). It follows from Theorem 4.1 with
s = g = § that u(z,t) is Hélder continuous on (z,t) € {z € &; [z| > K2+3@: dist (z,00Q) <
—i} X (02,T). The assertion of the boundary regularity is proved.

Step 3. As a direct consequence of Step 1 and Step 2, we can prove our main theorem. In-
deed, it follows from Step 2 that u(z, t) is regular for suﬁicxently large |z| near the boundary.
Moreover, u(z,t) is smooth for such |z| with dist (z,89Q) > & -5 by Step 1. This completes
the proof of our main theorem.
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