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An initial-boundary value problem for motion of

incompressible inhomogeneous fluid-like bodies *
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Graduate School of Science and Technology, Keio University

Abstract

An initial-boudary value problem for the system of equations governing the
flow of inhomogeneous incompressible fluid-like bodies is studied. This model
equation arises from the study of incompressible flows of granular materials.
Rewriting this problem by Lagrangian coordinates, we prove its solvability in
anisotropic Sobolev-Slobodetskii spaces.

Introduction
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Here we are concerned with the motion of inhomogeneous incompressible fluid-like

bodies.

The body under consideration is a sort of granular materials including

sand, powder and so on. Granular bodies respond in a fluid-like manner. Taking
this character into account, we introduce a continuum model of motion of granular

materials. The model studied in this paper is derived by Malek & Rajagopal [10).

The motion of inhomogeneous incompressible fluid-like bodies in a bounded do-
main Qr = Q (C R3) x (0, T) is described by the system of equations for the velocity
field v = (v;,v2,v3)(z,t), the pressure p = p(z,t) and the density o = o(z,t):

4
%t.g_zo, V:v=0 in Qr,
.< g—ﬁt—=V-'Il'+gb in Qr,
with T = —pI+ 2v(0)D — B, (V9®Ve- %IVeI""I)-
k _

*This study is a joint work with Atusi Tani (Keio University).

(1.1)
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Here . is the Lagrangian derivative; T is the Cauchy stress tensor; b = (b1, bz, b3)(z,
t) is the external body forces; D = (Vv + [Vv]T) is the symmetric part of the
velocity gradient; v(g) = v(o(z,t)) is the viscosity; B, is a positive constant; T is a
positive finite number.

A thermodynamic framework that has been recently put into place to describe
the dissipative response of materials is used to develop a model for the response of
inhomogenous incompressible fluid-like bodies whose stored energy depends on the
gradient of the density [14]. We also emphasize that dependence of the stress on
the gradient of the density in this model is the consequence of the inhomogeneity
of the body. And in fact, granular materials are naturally inhomogeneous, we shall
therefore consider the inhomogeneous models.

Bodies under consideration in this model are incompressible. Naturally, granular
materials are invariably compressible due to the interstitial spaces that exist between
the grains. As the grain size becomes smaller, however, they behave as though they
are incompressible due to the interlocking conditon of the grains. Such models are
but relatively crude approximations of real bodies, and in this sense the spirit of
the approximation is no different than that used to develop models for fluids. Here,
we regard a material as incompressible when its compressibility is insignificant and
more importantly, this compressibility has insignificant consequences concerning the
response of the body.

The viscosity ¥ may be either a constant, or a function of the density o, D
specifically through |D|?(= $°3._, D%) or the pressure p. The form v = v(p, o, |D|?)
is the most general case of the viscosity within this setting (see [9, 10, 11] for details).
In this study we shall consider the special case v = v(p) below.

For the system mentioned above, we need to assign appropriate boundary condi-
tions. One can consider an adherence condition or other boundary conditions such
as “slip” conditions. In case of considering behaviour of granular materials, one
should adopt boundary conditions which include the slip condition.

For example, Navier [12] derived a slip condition which can be duly generalized
to the condition

v.r=—KTn-r, K20,

where 7 and n are the unit tangential and the unit outward normal vectors to
the surface, respectively, and K is usually assumed to be a constant but it could,
however, be assumed to be a function of the normal stresses and the shear rate, i.e.,

K = K(Tn-n, D).
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A. Tani, S. Ito and N. Tanaka [21] studied the Navier-Stokes equations with the
above boundary conditions in the case K = K (z,t). '
Another boundary condition is Stokes’ slip as the “threshold-slip” condition that

is sometimes used, especially when dealing with non-Newtonian fluids. This takes
the form

if Tn-7|<caTn-n| then v.7 =0,

. v:mn

’y lv R nl ?
where ¥ = 4(v . 7,Tn - n). The above condition implies that the fluid will not slip
until the ratio of the magnitude of the shear stress and that of the normal stress
exceeds a critical value. When it does exceed that value, it slips with the velocity

depending on both the shear and normal stresses. It may happen that v depends
on |DJ? (see [9] for details).

if Tn-7|>a|Tn-n| then v-7#0 and Tn.-T =

In this study, instead of the slip boundary conditions mentioned above, we shall
impose, just for the sake of simplicity, that '

v=0 onGr(=Tx[0,T)), (1.2)

where I' is the boundary of 2.
The initial conditions are also assigned

o(z,0) =poo(z) and v(z,0)=vo(z) inQ, (1.3)

where go and v are given functions defined in 2.
We shall consider the problem (1.1) with (1.2) and (1.3) in the following section.

2 Mathematical issues and Main results

2.1 Setting up the problem

In this section we are concerned with the initial-boundary value problem describing
the motion discussed above. The problem (1.1)-(1.3) can be rewritten in Lagrangian
coordinates y. Let u(y,t) and g(y,t) be the velocity field and pressure expressed as
functions of the Lagrangian coordinates. The relationship between Lagrangian and
Eulerian coordinates are given by

o=yt [ )= Xalpt), uH) =v(Xalp1),0) (21)
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From (1.1) it is easy to derive

8o
2w.0=0 (22)
for 9(y,t) := o(Xu(y,t),t). Then, (2.2) has a solution

&y, t) = &(y,0) = e(Xu(y,0),0) = o(y,0) = eo(y), (2.3)

i.e,, one can find that the density of a fixed particle does not change, while the
density can change from point to point in the initial state of the body.

The Jacobian matrix of the transformation X,, is denoted by A= (a;;(y,t)); j=1.2:3
with the elements a;;(y,t) = &;; + j: gyi‘;?(y, T)dr and the Jacobian determinant
Ju(y,t) = det A(y,t) is the solution of the Cauchy problem

OJalyyt) < Bay SR Y
-——a__t..__. = Z —-ét——A'J = z AgJ E —a?k(xll(yi t)7t)akj

1,5=1 ti=1 k=1

= Ju® )V - v(&, )| _xu @y »

Ju(y,0) = 1.
According to (1.1)z, we have Ju(y,t) = 1.
In general,
VV{F(Xn(yat)yt)} = ATVZF(Z,t),
so that

V:,F(:B,t) = vup(y7 t)y
vll = A‘—TVV’ F(y7 t) = F(Xll(ya t))t))

where A~T is the inverse matrix of AT. And note that A~! = J;lof = of;
& is the adjugate matrix of A.

In the same way as (2.3), we have u(y,0) = vo(y), thus problem (1.1)-(1.3)
becomes

{eout=v.,-rf+gos<v>, Vau=0 Qr, 20
ul, o=vo inQ, u|;=0 onGr.
Here
T=—ql+ 20(00)D™ - (V..Qo ® Vuoto — 3|Vuool? I),
D® = (Veu+ (Vau)T), b®@(y,t) = b(Xu(y,t),t).
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The aim of this paper is to prove a theorem on local in time solvability of problem
(2.4) in Sobolev-Slobodetskil spaces.
Furthermore, we consider the following linear problem

{ oo(y)ur = Vg +v(y)Vu+oo(y)f, V.-u= g inQr,

(2.5)

where V2 = V . V, v(y) a given positive function defined in 2, f and g given
functions defined in @7 and d a given function on I'r.

2.2 Function spaces

In this subsection we introduce the function spaces used in this paper. Let ¢ be a
domain in R” and r is a non-negative number. By W7 (%) we denote the space of
functions equipped with the standard norm
lullfs @y = |£|: ID*ullZ, ) + el oy (2.6)
a|<7r ’

where
luls ey = 3 100l )

loej=r

if r is an integer, and

|D*u(z) — Du(y)|?
|“”W*(g) Z / / |z — y|n 20t drdy

leel=Ir]

if 7 is not an integer. Here [r] is the integral part and {r} the fractional part of 7, re-
spectively. || f]|z.en = (fy | f(z)[2dz)? is the norm in Ly(%), D*f = dl°l /521 823?
..0z2 is the generalized derivative of the function f in the distribution sense of
order |a| = a; + a2 + ... + oy, and a = (o, 02, ...,0an) € Z7} being a multi-index.
The anisotropic space Wi™/3(®r) in the cylindrical domain &7 = ¢ x (0,T) is
defined by Ly(0,T; Wi (%)) N Ly(&; W5'3(0,T)), whose norm is introduced by the

formula

T
Nl my = /o lullvz et + /,"“":Vs”’(o,:")"l‘Ic

= lulz0i0m + 16100720y

where Wi%(®7) = Ly(0, T; W (%)) and W3"/3(®7) = Ly(#; W;/(0,T)). Similarly,
the norm in Wj/ +/2(0,T) (for nonmtegral r/2) is defined by
(r/2)

diu
”’.‘”iv;""(o,r) =D,
=0

dti

L2(0,T)



dr
FA+2{r/2}"

dr/Au(t)  dr/Au(t — 1) 2
dth/2l T d¢i/2]

T t
+[a [
0 0

Other equivalent norms of these spaces are possible. For | € (0, 1) we set

1/2
Ll/2 1
12 = {0 gm ey il Phnion}

2+1,141/2 Li/2
LGS = U1 smninyy + (IF1EP)

lee|=2

1/2
o £ (51/2) 2
+3 (D2 ) + s IIfIIW21+z(,,)} .

For any finite T > 0 these norms are equivalent to the norms in the spaces Wy"/(®r)
and W2thH/2(@.1), respectively. Let also

1/2
0,1/2 1
9182 = {1y ey *+ i Woters}

If & is a smooth manifold (in this paper the boundary of a domain in R? may
play this role), then the norm in WJ(%¥) is defined by means of local charts, i.e.,
a partition of & into subsets each of which is mapped into a domain of Euclidean
space where the norms of W} are defined by formula (2.6). After this the spaces
Wi 3(®71) on Br(= ¥ x (0,T)) are introduced as indicated above.

The same symbols W} (%), W;"/2(®r) are used for the spaces of vector fields
f=(f1,f2,--.,fa) etc. Their norms are introduced in standard form; for example,

1€z 0y = D I fillz oy-

i=1

We introduce several propositions that concern the well-known inequalities of
norms in Sobolev-Slobodetskil spaces (see Lemma 4.1 of [18]).

Lemma 2.1 For any f € W}(), g, h € Wit (Q), Qc R3, 1€ (1/2,1)

If9llwie) < el fllwielalwr+iay (2.7)
Ngh||w21+‘(g) < C"H"wg“(g) "h"w,l“(y)- (2.8)

These estimates also hold in the case n = 2, when the index / may be replaced by
1-1/2.

169
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For functions f, g depending also on t € (0,T) we obtain the inequalities

Ifg ||w;v°(oq-) < cfgg lg ||w21+‘(y)||f “w,?’°(or)’ (2.9)
||f9||w;'°(%) < cfgg "f"w,'(fl) "g||W21+‘-°(QT)7 (2.10)
"ghllwg""-“(g,.) < cf‘ég g "Wz‘*"(g) il witho(er): (211)

And also for f € Wi"/*(&7) and g € Wt(¥)

Ll/2 A/2
1915 < el A1l glw ey (2.12)

holds.

2.3 Main Results

Let us now describe the results in this paper. First of all, we consider the problem
(2.5) in the spaces W22+"1+’/2(QT) and W. ll/z(Q )

Theorem 2.1 Let Q be a bounded domain, T' € W32+ | € (1/2,1), go € W2H(Q),
oo(y) > Ro > 0, v € W2 (Q) and v > 0. For arbitrary vo € W3t (Q), £ €
Wy (Qr), g € W3tQr), 9 =V.-G, G e WQr) and d €
Wa/HHAMAH (1) satisfying the compatibility conditions

V:-vo=g(-,0)inQ, vo=d(:,0)onT, /G-ndSz/d-ndS,
r T

the problem (2.5) has a unique solution (u,Vq) in WIt"™3(Qr) x W *(Qr) and
2+,14+/2 11/2 L1/2
[IEHD 4 gl < o) (IS + Vol

+"9"W21+l,1/2+l/2(07) + |G, "g;f/z) + "d"Wf/“"”/‘“/’(I‘T)) ) (2.13)
where ¢(T') i3 a non-decreasing function of T'.

Theorem 2.1 can be proved by the same procedure used in [20, 21], thus we leave
out the proof in this paper.

Finally, we consider the problem (2.4), and the following theorem on t1me—loca1
solvability is proved in § 4.

Theorem 2.2 Let  be a bounded domain, T' € W32+ [ € (1/2,1), go € W3 (),
o0(y) > Ro > 0, v € C}(R,), v > 0, and assume that b has continuous derivatives
of order one and two, and that b, b,, satisfy the Lipschitz condition in z and the
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Hélder condition with the ezponent 3 > 1/2 in t, and assume that vo € W3t(Q)
satisfying the compatibility conditions

Vivo=0inQ, vo=0o0onTl.

Then the problem (2.4) has a unique solution (u, Vq) € W2"2(Q.)x W33 (Qp)
on a finite interval (0,T) whose magnitude T' depends on the data, i.e., on the
norms of b and g (see the condition (4.7) below).

3 Auxiliary estimates

Before proving Theorem 2.2, we begin with auxiliary propositions.
We assume below that u € W2""*/2(Q.) and

T2 S < § (3.1)

is satisfied with sufficiently small § > 0.
The problem (2.4) is rewritten in the form

o — ¥(00) Vu + Vg = I{")(u, q) + 2/ (00)D“Vugo

\ —%(V‘J’Vf."eo)vueo — 81V200V w0 + 20b™, (3.2)

| V-u= lgu)(u)’ ult=0= vo, ujp=0,
where
119(w, s) = v(0)(V2 — V)W — (Vu — V)3,
(3.3)
K)(w) = (V- V) - w=V.20(w).

Hereafter we estimate the right-hand side of (3.2), which is neccesary to prove
the solvability of the problem (2.4). Let us introduce the following notation:

¢ Buy
aij = 6;; + bij, by = / =—dr, Aij = 8j + By,
‘ o 0y;
where &7 = (A;;) (see p. 4). Since
Ay = ajj0k — ajkGkj, Aij = QriGjk — GjiGrk,
where i # j, j # k, k # 1, it follows that

B,',' == b_,',' + bkk + bjjbkk - bjkb),j, B," = — V54 + b]n'bjk - bjibkk- (3.4)
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We denote by af;, bj;, Aj;, Bi; the same functions corresponding to another vector
field w'(y,t), and set b;; = b;; — b, Bij = B; — Bj;, etc. We have
Bii = bji(1 + byx) + brk(1 + ;) — brgbix — bbi,
(3.5)

~

B;; = _Eji(l + bkk) - fmb;.- + Ejkbki + b;,,z,,;.
Finally, set that

Du—{a_u‘.} D2u-{ O }
= N = ’
Oy; i,j=1,2,3 Fy;Oyx iJ,k=1,2,3

. 8%us
et o D2 =
[Dulo = mexoup |5y 1D vle=paxeumen i 5]
3 1/2
Ou
HDullwr(m:( a0 ) ’
2 ng ayj w3(Q)

etc.
We proceed to estimates of the functions (3.4) and (3.5). All lemmata stated
below were proved mainly in [19)].

Lemma 3.1 If u, u’ € W2"*2(Qr), then

t t t

\Bis (y, )] < 2 / ID(u - ')|dr (1+ / |Dujadr + / |Du’[nd'r), (3.6)
0 0 0

~ t

1B Ollwgory < ¢ [ 1D( = w)lhugosaydr

t t
0 0
1Bis(-1t) = Bii(-,t = T)llzoce

t t t
<2 [ |D(u-v)smdr (1 + / | Duladr + / | Du'lnd‘r)
0 0

t—1
t t i
42 /0 ID(u—w)ladr [ (1Dullz@ + 1DV zy@)dr, (3.8)
t—-7
IVBy(-,t) — VB (-t — )l Lo

¢ ¢ t
<2 | D?(u — u)| La@)dT’ (1 + / | Dulad’ + / | Du’ |gd1")
0 0

t—7



t 4
12 / 1D?(u — ) oy / (| Dl oy + | DY | zagey)dr”

-7

t t
+2 [ D= w)limrdr’ [ (1Dl + D )i
t t
12 [[ID@-wlatr [ (D0l + IDW L@, (69
t—7

where 7 € (0,t). Such estimates (with u' = 0 on the right hand side) also hold for
the functions B;;.

Inequalities (3.6)—(3.9) can easily be obtained directly from formulae (3.5). In
the proof of (3.9) we used the Hdlder inequality

1 f9ll oy < 11 F Lo 9l Lot)-

We note that

t
[ 1Dl gy < VE full ooy <3 (3.10)
t
/0 "Du’”wzl.u(n)d’r < \/Z ||“’||W§+"°(QT) <4, (311)
t dr t1/2-l/2 1/2
/0 “Duﬂwg(n) @7 /2 < ( / "D“"wl(n)d"')
" "(2+l 1+l/2) o (3.12)
\/ 1—1 \/1 =T

hold.

Lemma 3.2 If u, v € W2"*/2(Qy) satisfy condition (3.1), then for t < T
- t
| B:s “W;“(n) <c /0 |D(u - u') “w;“(n)d"" (3.13)
P ~ ar \'2
(/; | Bij (-, t) — By;(-,t — ”')"%Vg(n);rﬁ)

t t | D(u — u')||lwyay
<e¢ (‘/0 IID(u - u’)"W;“(de + A (t — 1)1/2 dr (3.14)

173
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Such inequalities (with u’ = 0 on the right side) hold also for B;;.

To derive (3.14) the fact that W; () is embedded in C({) (and also in Lg(2))
and W}(Q) is embedded in L3(f?) is used.

Lemma 3.3 If u, u’ € W22+"1+'/ %(Qr) satisfy condition (3.1), then for any f €
W;,l/z(QT) and h € W21+l,1/2+l/2(QT)

B 2+1,1+1/2
||Bijh"W21+x,1/2+z/2(QT) < C\/T"u - uI"(Q ;H 1+1/2)

~ (1,1/2)
(2+1,1+1/2) /2
Bof|, < evTlu—wI& 2 51, (3.15)

A 0,1/2 0,
X("h"W,l"'“/"”/’(QT) + "Vh"(QT/ ) + "h”(q;ﬂ)). (3.16)

Setting u’ = 0 in (3.15) and (3.16) and noting (3.10) and (3.12), we arrive at the
following proposition.

Lemma 3.4 If u satisfies (3.1), then

B4 FISD < o | FISP, (3.17)

0,/2 0,l/2
"B.’,'h"wzuz.;/nu/z(QT) < cJ(“h||W21+z.1/2+1/z(QT) + "Vh"(QT/ ) 4 "h"(Qr/ )). (3.18)

Lemma 3.5 Let u € W§+l'l+"l2(QT), To > 0, then for any 0 < T'< Tp

IDu|D < oTe) (T2l + T2 2 u(, Olwyy) - (319)

(3.19) is derived from the interpolation inequality

I DSl oty < (€N D?£llLaqey + €71 fllLa@))-

We proceed to estimates of lg“)(w, s) —1{")(w, s), KV (w)—-lg“')(w) and £ (w)—
£™)(w), where 15“’, lg“l), etc. are determined by formulae (3.3) on the basis of the
vector fields u and u'.

From (2.12) we have

ILl/2 [R]
1(e) FISY® < cllv(en) g+ £S5 < cloo) 1FIG™ (3.20)
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where

. 1
c(e0) = c{sgplu(mnmf " (sgplz/(gn ¥ ”Vé’o”wg(n)) ||V90||wg(n)} .
Then we obtain the following estimates:

Lemma 3.6 Let u and u’ satisfy condition (3.1). For arbitrary w € withiHi2g.),
Vs € Wa**(Qr) it holds

;) ~ 10w, )]

, 2 1,141, A/2
< VTl - w |G (wl| G + | Wsligy/), (3-21)

’ 2+, 241, 2
S (w) = (W)l 317273 gy < VT — W GHHHD w) GHHD, (3.22)

(0.1/2)

| - 2| " < o(vTiu - wig

Qr

ATV 2 (., 0) — w(, O)lwy ) IWlGF /2. (3:29)

If w|,_o=0, then (3.23) is valid also without the second term in the parenthesis of
the right hand side.

Setting w’ = 0 in (3.21)(3.23), we obtain that

Lemma 3.7 If u satisfies condition (3.1), then

(w1/2)
(20w, < c8 (w2 + 1wsligy™) (32)
2+1,1+1/2
D (W)lypzeraranaggy < collwllGr 7™, (3.25)
(0,1/2)

e

< o8+ TV u(-, ) lwyey ) IWIET/2. (326)

Qr

In the case w|,_,= 0 the second term in the parenthesis of the right hand side of
(3.26) can be dropped.

The next auxiliary proposition concerns the difference

b@(y, t) — b™)(y, t) =b(Xu,t) — b(Xw,t)

‘Z / b, (Xu,,t)dd / (ue —wp)dr,  (3.27)

k=1
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whereu — v’ =0, up = u' + 6ua (0 € (0,1)), X, —y+j;,ud‘r X.,r=y+]gu’d'r
and Xy, —y+_f0 ugdr.

Lemma 3.8 If b satisfies the conditions of Theorem 2.2 and condition (3.1) is
satisfied, then

where ¢(T') is a nondecreasing (power) function of 7.

o(T) / T — (3.28)

Finally, we remark that by elementary calculation it holds

- 1,1/2 1
5 Flge™ < o1+ =+ leolfygercap) 171G (3.29)

4 Proof of Theorem 2.2

Proof of Theorem 2.2. We shall solve the problem (3.2) by the method of successive
approximations, setting u(® = vg, ¢@ = 0 and determining (u(™+Y, ¢(m+V) (m =
0,1,2,...) as a solution of the problem

4 % u§m+1) _ V( go)v2u(m+1) +V q(m+1)

= 1™ (u™ | ¢t™) 1 25/ (0)D™V ., 00

(4.1)
& S (VOVRe0)Vimeo ~ 1V 00Viman + 00b™,

| V- ulm+) :1gm)(u(m)), utmH)|_ = vy, u™|, =0.

Here Vi, = Ve, ™ = 1™ (j = 1,2), B™ = DO, 5t = ™). From The-
orem 2.1 it follows that (u(™t) V¢(™+))) are uniquely determined, and (u®,¢(»)
is a solution of problem (4.1) ie .,

¢

w_ Yo gz m Lg,m
STl ENORRER
u; % 2% q

< = -%(V(”V“’eo)veo Bvrpuman, 0 @2

| Vu® =0, u®4=ve, Ol
with the estimates

2-+1,1+1/2 /2
Nu®, ¢®):= "u(l)”g: /Y ”un)"QT
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w1/2)
—(VOV©00) Vo

< (Iﬂﬂ

+ |64

Qr

4LY/2)

1
—V300V
2 ¥ GV

Ll/2
+ |IbIIS2 + ||Vo"w21+zm))
Qr

- 1,1/2
<o (@2 + T ol aiaigy + DI + IVollwpoige ), (43)

where c; is a nondecreasing function of T'.
~ For the differences Z(™+) = u(™+) — ym) Pim+D) .= glm+D) _ gm) (mq =
1,2,3,...), we have

( goz$m+1) _ V(go)v2z(m+1) + YPm+1)

— lg"‘) (z(m)’ P(m)) + lgm) (u(m—l)’ q(m—-l)) _ lgm—l) (u(m—l), q(m_l))

+2V (o) (B™Vmeo — D™DV,_100)

\ ﬂ‘ (VOVD 00)V 00 — (Vm_IVS,?_lgo)Vm_lgo}

_ﬂl (VonVon Vm_lgon_lgo) + go(g(m) - i;(m—l))’

V. Zm+1) — lgm)(z(m)) + lgm)(u(m—l)) _ l;m—l)(u(m_l))’

| 2| =0, Z™D| =0,

We suppose that the condition (3.1) is satisfied for u®™ (n < m).
Lemmata in § 3 yield

4i/2) 1,1/2)

1Mz, p(ﬂ)) + |1 (-, gv-1) —

< o8 (IZONED + [VPOYGD)

1/2)

o

DMV QO—D(" A v 190”

. 2+1,141/2
< clleollwz+ gy (1 + T2 '/2nvo||w;(,,,) TV Z ™)) G+

[(F9V0 ) Vt0 (92,7200 V]

- 2+1,1+1/2
< cllgolfyger oy (T2 + T3V 2| D G412,
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V2 e0Tmtn — V220V 1c0]| 7

< C”Qollfvzmm) (TV/2 4 TV2-Y2)T2) Z(o)| GHAH/D
|b™ — -1 "g,;/z) < cTV? |Iz(n)"(Q2:l,l+l/2),
1 (2 by aiarr gy + I D) = DD s

< 06" z(n) "(Q?:'l,l+l/2) ,

8 o 1 . ©4/2)
@ Qr
< 05" Z ) "(02;—!.14-1/2).
Then, we obtain that
NZE+D, PO4D] = |0 | @HIHD | gl G/
< C (6N[Z, PO) 1 /2 Z)GHD) 0.4)

where C = C(T'; vo, 0o) is a nondecreasing function with respect to T'. If we choose
6 satisfying C§ < i, we obtain

N[Z(""'l),P(""'l)] < %N[Z("),P(")] + CTl/2||z(n)“(02;-l,l+l/2)

< (A + CTVA)N[Z™,PM] < ... < (§ + CT2)"N[ZW, PD]. (4.5)
We sum (4.5) in n from 0 to m and set Tpmi1 = Y g NZCHD), PC+D], Since

m m 1
= (n+1) pn+1) 1) 4 Z 1/2yn
Yomtl ,.E__ N[zt") P+l < Nu'Y, g ],.E_. (7+CT )

m
- 1,1/2 1
<a ((T1/2 + T2 1/2)“9“"::!/,’“(0) + "b"(Qr/ ) 4 ""0||w,1+l(n)) Z(Z +CTV2ym,
n=0

we obtain

N{u™, g™ < 3, + Nu®,q0)

<o (T2 + TV ol s

m
A 1
+[IbIS? + ||vo||wg+,(,,)) X (1 + E(Z + c:rl/?)ﬂ) : (4.6)
n=0
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Note that ¢; and C are nondecreasing functions of T', then condition (3.1) for u(™+
is satisfied if CT"/? < { and

372, ((TV2 + TV2V2) ol 3usigy + IBIGHD + Ivollypney) <6 (47)

The left side does not depend on m. Thus, N[u(™), ¢(™)] is uniformly bounded,
the sequence {u™), q™} converges in the norm N{-, -], and the limit is a solution
of the problem (3.2). The solution obtained is unique, since the difference of two
solutions w = u — o/, s = g — ¢ satisfies the relations

[ gow: — v(00) VW + Vs

=1{"(u,q) - ") (u, ¢') +2/(00) (ﬁ‘“’Vugo — B*)Vueo)
—% {(VOVOe)Vuto — (VIVE Qo)Vu'Qo}
—B1 (V2 00Vueo — V2. 2oVweo) + 2o(b™ — b™)),

V.w=1Pw) + ) - ),

{ z(m+1)|t=0= 0, z(m+1)|P___ 0.

Applying to this problem the estimate (2.13) and repeating the arguments carried
out, we arrive at the inequality

N[w, s] < ¢(6 + T**)N|w, s].

This implies (w, 8) = 0, and Theorem 2.2 is proved.

5 Concluding remarks

We mentioned that v can take the form

v = v(p,0,IDP) BNCEY

in the most general case (see §1), however, there are several difficulties in considering
the problem (1.1)-(1.3) with (5.1) unlike the problem (1.1)-(1.3) with v = v(g). In
short the same method as we used to prove Theorem 2.2 is not valid for the problem
(1.1)-(1.3) with (5.1). We shall give some remarks of the difficulties of it.

i. The pressure p is determined within an arbitrary function depending on t,
because only the pressure gradient appears in the equations. In the case that



v depends on p, the arbitrary function needs to be fixed by some additional
condition, for example,

/p(:c,t)drc =0 a.e. in (0,T).

Under this condition we can apply Poincaré’s inequarity to p, however, the
difficulty about the regularity of p with respect to ¢ still remains.

ii. If » depends only on g, as we mentioned in § 2, we may just consider v(go(y)),
which is a known function independent of ¢, in the transformed problem:(2.4)
written in Lagrangian coordinates. On the otherhand, in the case of v de-
pendent on p, ¢ and |D|?, the transformed viscosity v(q, co, lﬁ(")lz) is still an
unknown coefficient of the equations even though we consider the transformed
problem. ‘

iii. (g, 0o, |D™|?) has, at most, the same regularity as that of g or |D®)|2. While
we can assume the regularity of go as much as we need, the regularity of ¢ and
|D®™)|? are determined by the function spaces of solutions under consideration.
This implies the problem (2.5) cannot be a linearized problem of the problem
(2.4) with v = v(q, 0o, |D®)|2). Hence, we have to consider the different method
for this problem.

Despite these points at issue we have already observed that we can overcome
the difficulties by considering the appropriate function spaces for the solution if
v = (o, |DJ?). In this case the problem (2.5) is also a linearized problem, thus we
can use the strategy similar to that we used in this study. We strongly believe that
we can prove the existence theorem for the problem (1.1)-(1.3) with v = v(g, |D?)
in a forthcoming study.
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