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Abstract

The paper considers Terwilliger’s problem 11.26 in [Ter06], about simulta-
neously lowering maps on finite-dimensional polynomial spaces with respect to
two specific bases. The problem is related to construction of Leonard pairs and
relation between its split bases. We show a family of counterexamples of simul-
taneously lowering maps that do not correspond to Leonard pairs.

1 Introduction

Our setting is the following. Let d denote a nonnegative integer, and let K denote e
field of characteristic not equal to 2. Let 6,6, ...,04 denote a sequence of mutually
distinct scalars in K. Let z denote an indeterminante, and let V' denote the linear
spacc over K consisting of all polynomials in K[x] that have degree at most d. We
consider the following two sequences of polynomials from V. One sequence consists of
the polynomials

T = 15

% = (z—00)(z—61)...(x - Ok-1), fori=1,2,...,d.
The other sequence consists of the polynomials

Po = 1,
pi = (x —64)(x —0a-1)...(T — Od—k+1), fori=1,2,...,d

The polynomials in each sequence are monic, of different degrees. Each sequence forms
a basis for V.

Definition 1.1 By a simultaneously lowering map on V we mean a linear transforma-
tion ¥ : V — V that acts on both bases {4}¢_, and {pr}¢_, as follows:

Y7y =0, Ut € span(1k-1) fork=1,2,...,d,
Tpo =0, Wpy € span(pk-1) for k=1,2,...,d.
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By a proper lowering map we mean a simultaneously lowering map whose kernel is
generated by 19 = pg only. '

Observe that simultaneously lowering maps form s linear space.

Definition 1.2 By a weakly lowering map on V we mean a linear transformation
¥ :V — V that acts on both bases {7 }{_, and {px}¢_, as follows:

Vo € span(7y), YTy € span(Tg, Tk—1). for k=1,2,...,d,
Wpo € span(pg),  Wpx € span(p, pk-1) for k=1,2,...,d.

Observe that weakly lowing maps form a linear space. It includes the identity map
and the space of simultaneously lowing maps.

Paul Terwilliger suggested the following conjecture [Ter06, Problem 11.26]:

Conjecture 1.3 There is a nonzero simultaneously lowering map on V if and only if
the quotient

Ok—2 — Ok 41
e &l 1
Ok—1 — Ok (1)
s independent of k for2 <k <d-1.

We prove this conjecture in the generic case of proper lowering maps. That is, we
prove that if proper lowering maps exist, then the quotient (1) is independent of k.
Vice versa, if (1) is independent of k, then a simultaneously lowering map exists, though
not necessarily a proper lowering map.

If the kernel of a simultaneously lowering is allowed to contain polynomials of
positive degree (that is, some of the polynomials 7y, ..., 74, p1,... , Pd), the conjecture
is false. We present a family of counterexamples.

Under the condition on the quotient (1), the linear space of simultaneously lowering
maps has dimension 1. A generating lowering map has the form

» Uy = PrTk—1, \I’pk = PkPk-1, for k = L,2,...,d, (2)
where -
— 0; — 64_;
= 4___27J (3)
Pk j;o 80 — 6g

The space of weakly lowering maps has dimension 4; see Section 4.

In our family of counter-examples, we have the integer d odd, and the sum O2;+ 6241
independent of i for i = 0,1,...,|d/2]. The linear space of simultaneously lowering is
generated by the lowering map of the form (2) with

-} 1, ifkisodd,
Pk = 0, if k is even.

(4)

The space of weakly lowering maps has dimension 3 in general; see Section 5. The space
of weakly lowering maps can have dimension 2 as well; in particular, if d = 5 then the
generic dimension for the space of weakly lowering maps is 2, instead of expectable 1.
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2 Restrictions on the transition matrix

Suppose that the two bases {7 }{_, and {px}¢_, of V are related as follows:
Pk = Tk + Qk,1Tk—1 + Gk,2Tk—2 + ... + Gk k70, for k=1,2,...,d. (5)

The transformation matrix from the p-basis to the r-basis is therefore

( 1 a1 az2 a3z -+  @dd \
1 az1 a3z -+ add-1
1 a3y
e (6)
1
‘ ad,1
\ 1)

For convenicnce, we define axo = 1for 0 < k < d,and ax; =0 for j <0, j > kor
k> d.

The transition coeflicients ax,; are nicely related by the “multiplication by z”
map X : V — V. When polynomials in V are viewed as functions on the finite
set {60,61,...,0q}, the map X multiplies the value of p € V at 6 (for k =0,1,...,d)
by 6k, so that (Xp)(6x) = Okp(6x). More algebraically, the map X multiplies the
polynomials in V' by z modulo the polynomial (z — 6)(z — 8,) ... (z — 64).

Here is how the map X acts on the bases {7x}¢_, and {px}¢_,:

XTk = Thel -+ oka for 0 < k < d; XTd = Odea . (7)
Xpr = prt1+0a—xpr  for0< k <d; X pa = 6ypg. (8)

By letting X act on both sides of (5), and after expressing both sides of the equalities
in the 7-basis, we get the equations

Qk+1,j41 — Ok,j+1 = (Ok—j — Od—k)ak,j- (9)

In particular, for j = 0, j = k and k = d we have, respectively, ax+1,1—ax,1 = 0k —b4—r,
@k+1,k+1 = (B0 — Od—k)ak,k and agk+1 = (6o — Od-k)ad,k, so that

ag,1 = (6o + 19; +... + Ok-1) — (Bg—k-1+ ...+ 041 + 64), (10)
akk = adk = (0o — 0a)(6o — 0g—1) - (60 — Od—rk+1). (11)

Since we have mutually distinct 0i’s, all entries in the first row and the last column of
the transformation matrix T' are non-zero. ,

More generally, we may observe that ax ; = ad+j—k,; by the symmetry of recursion
relations (9). In other words, the transformation matrix T is symmetric with respect
to the diagonal going from the upper right corner to the lower left corner.
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Now suppose that there exists a weakly lowering map ¥ : V — V satisfying

Y79 = 6370, Ut = 0pTk + rTe-1 fork=1,2,...,d, (12)
¥po =0ppo,  Ypr = Ofpr + drpr—1 fork=1,2,...,d. (13)
for some scalars
00:01,---,63; #1,...,0d; H1,-. ., Pu. (14)
By letting ¥ act on both sides of (5), and after expressing both sides of the equalities
in the T-basis, we get the equations
ak,1 (0 — O6k—1) = ¥k — ok, (15)
ak,j+1 (9;. - 91:,—3'—1) = Qk,jPk—j — Qk—1,jPk- (16)
If we set j = k — 1 and use(11), we arrive at the equation

QK k— - -
b = —EkEZl (8] ~ 62)(Bu—rks1 — Bo)- (17)
Qk—1,k=-1

3 The generic case

Here we look for proper lowering maps. We show that when such lowering maps exist,
the statement of Conjecture 1.3 is true.

For simultaneously lowering maps, we have to take all 6;’s to be equal to zero in
equations (15)—(16), so we have

Yk = Pk, ak,jPk-j = Qk—1,jPk- (18)

For proper lowering maps, none of the i’s is equal to zero. Since the aix’s are
non-zero, existence of a proper lowering maps implies all a; ;'s are non-zero.

Theorem 3.1 Suppose that a proper lowering map erists, in the setting of Section 1.
Then the quotient in (1) is independent of k for 2 < k < d — 1, and the linear space of
simultaneously lowering maps is spanned by the map (2)-(3).

Proof. Let ¥ denote a proper lowering map. In both bases {7x}¢_, and {pi}¢_,, it
has the form
(0 & )

0 ")
V= 0

T e
.\ o)
Ok,j _ _Pk
Ak—1,j Pk~j

Equations in (18) mean that

(19)
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In particular, these equations with 7 = 1 mean that the vectors

(@1,1,a2,1,...,@4,1), (P1,92,- -, 94) (20)
are proportional. The form (2)—(3) of a possible lowering map follows from (10).
Equations (19) with j = 2 mean that the vector (a2,2,a32,...,aq4,2) is proportional

to the vector (p192, Y203, ..., Pa-1¥4d), etc. All together, the equations in (19) mean
that the transformation matrix T is a polynomial in ¥:

T=I+ca¥+c¥?+... +cqll, | (21)
where ¢y, ¢z, ... ,cq are non-zero scalars. The entries aj,; of T can be expressed as
Qk,j = Cj Pk—j+1 " " Pk-1Pk- (22
After substituting (22) into (9) and dividing out by Yk—j+1 -+ Pr—10k, We get
Ci+1 (Ph+1 — Pk—j) = ¢; (Bk—j — ba—k). (23)
Using @; = a;,1/c1 and (15) we conclude that the quotient

(Ok—j+...+60k) — (Ba—x+ ...+ O0i—k4;) _ ga
Ok—j — Oa—k Cj+1
is independent of k for any fixed j. (The undeterminance 0/0 for k = (d + j)/2 is not

important, since we use this fact in the form of linear equations between the 6;'s.)
Here are a few equations equivalent to (24) with j =1, j = 2:

(24)

U Ok —1 + Ok = u10d—k + Ga—k+1,
u16k + Ok+1 = u10d-k-1 + Ou—k, (25)
U20k—1 + Ok + Oky1 = u204—k—1 + Oa—k + Od—k+1,

where u; = 1 — c2/c; and ug = 1 — ¢ycz/c3. Solving for 84— x—1,04—k, 0d—k+1 gives, in
particular,
(ug = u1)0k—1 + u(uy — 1)0k + u16k41
Og—k-1 = 26
d-k-1 u? —uy + up | ) ( )
ul(ul - U2)9k—1 + U1u20k + (’uz - u1)0k+1 '
u% — U1 + ug ’

Ogr = (27)

After substitution of k by k —1 in the former formula we have two expressions for 4..%.
Elimintation of 64, gives the recurrence relation

(u1 — ug)(0k+1 - ok..z) =1u (‘U,2 —_ 1)(9k ot ek..l)‘ . (28)

Hence the quotient in (1) is constant, unless u; = uy or the denominator in (26) or
(27) is zero. In the former case, we can’t have 6 = 6x_1 nor uz = 1 (since c;c; # 0)
nor u; = 0 (see the system (25)). In the latter case, the numerator in (26) gives a

three-term recurrence relation 6541 = (1 — u1)60x + u16k—1, and the quotient in (1)
turns out to be a constant anyway. : O
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Example 3.2 Suppose that d is an odd integer. Let
Ok =a+b(-1)F + (¢ - k) (-1)%, (29)

for k = 0,1,2,...,d. We assume b 3 0 so that 6y # 6;. We have 03; + 09,41 = 2a + 1
for i = 0,1,...[d/2]. With these 6;’s, all even-indexed polynomials 79; and ps; are
symmetric with respect to the transformation z — 2a + 1 — z, and form a linear space
of dimension [d/2]. The even-indexed ps;’s are linear combinations of even indexcd
TS, hence

ak; =0 whenever k is even and j is odd. (30)

Particularly,

2b, if k is odd,
Qg1 = { (31)

0, if kis even,

since 6k — 04—k = 2b(—1)*. Equations (18) with j = 1 imply that i = 0 if k is even;
equations (18) with other odd j concur. The odd-indexed ¢} ’s are related by equations
(18) with even j and odd k. Fori =1,2,...,...|d/2], we have

azi2 = G2i41,2 = 2bi(d + 1 - 2i). (32)

Equations (18) with j = 2 imply that all odd-indexed ¢;’s must be equal. For other
equations (18) with even j and odd k we have ax,; = ak-1,; by (9) and (37). It follows
that the space of simultaneously lowering maps is spanned by the map ¥ given as

follows:
{. 1, if k is odd,
Pk =

(33)
0, if k is even.

This is not a proper lowering map. Incidentally, the quotient in (1) is independent of k
(and equal to —1), and the vectors in (20) are proportional. But the transition matrix
T is not a polynomial in ¥. In fact, ¥2 = 0.

Now we compute the space of weakly lowering maps for sequence (36). Equation
(15) with even k = 2i implies py; = ¢2;. Consequently, equation (16) with j = 1 and
k =2i or k = 2i + 1 gives two expressions for ¢o;:

P2 = "'(21' —-d- 1)(651' - 951‘-2)’ w2 = i(d+1— 25)(95141 - 951'—1)-

It follows that the sum 63; + 63, , is independent of <. Additionally, equation (17) with
k = 2i gives pg; = (21 — d — 1)(03, — 65). It follows that the even-indexed 603;’s form an
arithmetic progression. Equations (15) and (17) with odd k = 2i + 1 give, respectively,

P2i+1 = Paip1 — 2b(62,41 — 02:), . b2i41 = 1 — 2(b +1)(02:41 — 65),

because ag;;1,2i = @242 This determines all odd-indexed ¢x’s and pi’s once ¢, is
fixed. Without assuming any additional relation between 65, 67,65 and ;, one can
check that relations (9) and (16) with j > 2 for ax, ;’s are compatible. It follows that
the space of weakly lowering maps has dimension 4.
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4 The expected picture
The motivating perspective of Conjecture 1.3 was a possible new characterization of
Leonard pairs. Let us recall a few definitions.

Definition 4.1 Let V be a linear space over K with finite positive dimension. By a
Leonard pair on V we mean an ordered pair (A,B), where A:V =2V and B:V -V
arc lincar transformations which satisfy the following two conditions:

(i) There exists a basis for V' with respect to which the matrix representing A is
diagonal, and the matrix representing B is irreducible tridiagonal (that is, all
entries on the first subdiagonal and the first superdiagonal are nonzero).

(it) There exists a basis for V' with respect to which the matrix representing B is
diagonal, and the matrix representing A is irreducible tridiagonal.

" Leonard pairs are specified by parameter arrays.

Definition 4.2 [Ter06, Definition 5.4] By a parameter array over K, of diameter d, we
mean a sequence

(60,61,...,64; 05,61,...,03; p1,...,04; b1, ..,04) (34)
of scalars taken from K, that satisfy the following conditions:
PAl. 6y # 6; and 0f # 07 if k # j,for 0 < k,j < d.
PA2, ¢ #0and ¢ #0, for 1 <k < d.

k-1
PA3. g =1 3 L0434 (92— 63) (B s - 6a), for 1 < k < d.

j=0 60 - 6d
- 04-
PA4. ¢ —-pl}: dJ+(0k—90)(9d ki1~ 0o), for 1 < i < d.
PA5. The expressions
Ok—2 — Ok+1 Ok—2 = Ok+1
Or—1 — 6 ' Ox_1 — Ox

are equal and independent of k, for2< k <d - 1.

Particularly [Ter06, Section 5.1}, if sequence (41) is a parameter array, then the follow-
ing two matrices form a Leonard pair:

( 00 \ ( 06 ¥1 | \
1 6 61 2
1 o , e . (35)

K | 1. Gd} K ) ﬁ;/
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Theorem 4.3 In the setting of Section 1, suppose that the quotient in (1) is inde-
pendent of k. Then a simultaneously lowering map exists, the linear space of weakly
lowering maps has dimension 4, and a sequence of scalars in (14) defines a weakly
lowering map by (12)-(13) if and only if conditions PA3~PAS5 of Definition 4.2 are
satisfied.

Proof. This largely matches computations in the proof of [Ter06, Theorem 10.1]. Let

q denote a scalar such that 1 + ¢ + ¢~ ! is equal to the quotient in (1). If ¢ # #1, then
the 6;’s have the form

Ok = u + vg* + wq™*, for some scalars u, v, w. (36)
If ¢g=1o0r q = -1, then for some scalars u, v, w we have, respectively,
O =u+vk+wk® or O =u+v(-1)* + wk(-1)* (37)

In each of these three cases, the values in (3) satisfy equations in (18) and define a
simultaneously lowering map. Equations (15)—(16) for weakly lowering maps are linear
in the scalars in (14). Particular equation (17) coincides with condition PA4. Condition
PA3 follows from the symmetry of the 7- and p-bases. This eliminates all Yi's and
@k’s except one, say ;. In particular,

$r — Yk = (6o + Ok—1 — Oa—k+1 — 0a) (6 — 05) — ar,1(6] — 65). (38)

Three equations (15) with consecutive k allows us to eliminate 05, 67 linearly and get
a recurrence relation for 6}’s for whatever sequence of 6 ’s of the forms in (43) or (44),
except in the case of ¢ = —1 and odd d. (Only in the exceptional case some ak,1’s are
zero.) The recurrence relation is the restriction on the quotient of f%’s in condition
PAS5; by the recurrence relation and elimination expressions for ¢k's and ¢i’s we can
choose 65, 67,63, ¢1 freely, while relations (9) and (16) with j > 2 for ak,;'s work out

to be compatible. The conclusions now follow except for the case of ¢ = —1 and odd
d. The exceptional case is considered in Example 3.3, with u = a, v =>b+ % and
(inconsequentially) w = —1. The same restriction on 6}’s holds, and the dimension is

4 anyway. a

Corollary 4.4 In the setting of Section 1, suppose that a proper lowering map exists.
Then the linear space of weakly lowering maps has dimension 4, and a sequence of
scalars in (14) defines a weakly lowering map by (12)-(13) if and only if conditions
PA3-PA5 of Definition 4.2 are satisfied.

Conclusions of this corollary were expected to be true whenever a non-zero simul-
taneously lowering map exists. However, in the next section we present a family of
counterexamples to this expectation. We find (non-proper) lowering maps that are not
related to Leonard pairs; the dimension of weakly lowering maps is generally 3.
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5 The counterexamples

In the setting of Section 1, let us assume that d is odd, d = 2n + 1. We define the
following maps on the linear space of polynomials of degree at most d:
Lz? =0, L+l = g2t fori=0,1,...,n, (39)
Pr* =%  Pz?¥tl =y, fori=0,1,...,n. (40)
If we view polynomials as functions on the real line, the map L annihilates even poly-

nomial functions, and divides odd functions by . The map P fixes even functions,
and annihilates odd polynomial functions.

Let po, p1,. .., s be a sequence of distinct scalars. We set d = 2n + 1 and

2 = pi, O2i+1 = —pi, fori=0,1,...,n. (41)
We define the polynomials 7o,71,...,74 and pg,p1,...,pa 88 in Section 1 from this
data. Note that the even-indexed polynomials 79,72, ....T2n and py, pa,..., P2n 8re

even polynomial functions.
The action of L on the 7 and p bases is the following:

L‘Tz,' = 0, LTgi.H = T24, fOl‘ 1= 0; 1, N (42)
Lpz; =0, Lp2iy1 = pai, fori=0,1,...,n. - (43)

We see that L is a lowering map with, but it is not a proper lowering map. The map
is given by (4). We have no other restriction on the 6)’s except ;; + 02,41 = 0. The
quotient in (1) is equal to —1 for even k, and is variable for odd k.

The action of P on the 7 and p bases is the following:

Pry; = 73, Pryiyy = —piTo, fori=0,1,...,n, (44)
Ppzi = pai, Ppziy1 = pn-ip2i,  fori=0,1,...,n. (45)

We see that P is a weakly lowering map. The space of weakly lowering maps contains
L, P and the identity, hence its dimension is at least 3. For d = 5, 7 this appears to be
the general dimension.

This example can be generalized by adding a fixed scalar m to each member of
the sequence of 6;’s; the 'evenness’ symmetry is then the transformation z — m — z.
The general relation on the 6;’s is the condition that the sum 6; + 2,47 must be
independent of i. Example 3.3 is a special case of this setting; it arises when the
sequence of p;’s is an arithmetic progression.
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