On d-dual hyperovals in PG(2d, 2)

詫間電波高専 谷口浩朗 (Hiroaki Taniguchi)
Takuma National College of Technology

1 はじめに

射影空間 PG(m, 2) 内の高次元双対超卵形 (dimensional dual hyperoval, DHO) は C. Huybrechts と A. Pasini [2] により以下のように定義されました.

定義 1 (DHO). A family S of d-dimensional subspaces of PG(m, 2) is called a d-dimensional dual hyperoval in PG(m, 2) if it satisfies the following conditions:

- 1. any two distinct members of S intersect in a projective point,
- 2. any three mutually distinct members of S intersect in the empty projective set,
- 3. the members of S generate PG(m, 2), and
- 4. there are exactly 2^{d+1} members of S.

この稿では、概体 (quasifield) から構成された高次元双対超卵形、その中でもとくに擬体 (nearfield) から構成される DHO について考察します.

定義 2 (概体). An algebraic structure $(Q; +, \circ)$ is called a quasifield if it satisfies the following conditions:

- (1) Q is an abelian group under + with identity 0,
- (2) for all $a \in Q$, $a \circ 0 = 0 \circ a = 0$,
- (3) there exists an element $1 \in Q \setminus \{0\}$ such that $1 \circ a = a \circ 1 = a$ for all $a \in Q$,

- (4) for all $a, b, c \in Q$, $(a + b) \circ c = a \circ c + b \circ c$.
- (5) for $a, c \in Q$ with $a \neq 0$, there exists exactly one $x \in Q$ such that $a \circ x = c$, and
- (6) for $a, b, c \in Q$ with $a \neq b$, there exists exactly one $x \in Q$ such that $x \circ a x \circ b = c$.

擬体 (near field) とは、積。に関して結合法則が成り立つ概体のことです。また半体 (semifield) とは、左分配法則が成り立つ概体のことです。標数 2 の概体から以下のようにして射影空間 PG(2d,2) 内の d 次元双対超卵形が構成できます。

命題 1. Let $d \geq 2$. Let $(Q; +, \circ)$ be a quasifield of characteristic 2 which is a (d+1)-dimensional vector space over GF(2). We fix an isomorphism $\phi: Q \cong GF(2^{d+1})$ as a vector space over GF(2) which sends $1 \in Q$ to $1 \in GF(2^{d+1})$. We denote by Tr the trace function from $GF(2^{d+1})$ to GF(2). Let σ be a generator of the galois group $Gal(GF(2^{d+1})/GF(2))$.

In $Q \oplus Q \setminus \{(0,0)\} = PG(2d+1,2)$, for $t \in Q$, let

$$X(t) = \{(x, (x \circ t)^{\sigma} + x \circ t) \mid x \in Q \setminus \{0\}\}.$$

Then $S(Q) := \{X(t) \mid t \in Q\}$ is a d-dimensional dual hyperoval in PG(2d, 2) where $PG(2d, 2) = \{(x, y) \mid x, y \in Q, Tr(y) = 0\} \setminus \{(0, 0)\}.$

本稿の主な目的は次の定理の証明の概要を説明することです. また, 半体から構成される DHO の同型判定についても考察します.

定理 1. Let $(N_1; \circ, +)$ and $(N_2; *, +)$ be nearfields. If $S(N_1)$ is isomorphic to $S(N_2)$, then $(N_1; \circ, +)$ is isomorphic to $(N_2; *, +)$.

たとえばnがメルセンヌ素数 $n=2^p-1$ で $q=2^l$ (ただし $l=p,2p,4p,8p,\ldots$)ならば位数 q^n の擬体の同型類が非常にたくさん存在し[3], それにともない, この定理より同型でない DHO が非常にたくさん存在することがわかります.

2 特別な自己同型

擬体から命題1のようにして構成されたDHOには、以下のような特別な自己同型が存在します。

補題 1. For $b \in N \setminus \{0\}$, let us define an automorphism m_b of PG(2d, 2) as follows;

$$m_b((x,y)) := (x \circ b^{-1}, y).$$

Then, m_b is a automorphism of the dual hyperoval S(N), which satisfies that $m_b(X(t)) = X(b \circ t)$ and that $m_b(X(0)) = X(0)$, where $X(0) := \{(x,0) | x \in N\}$. Hence we see that the multiplicative group $(N \setminus \{0\}, \circ)$ acts regularly on $S(N) \setminus \{X(0)\}$.

上記の自己同型は、次の補題によって特徴付けられます.

補題 2. Let Ψ be an automorphism of S(N) defined by

$$\Psi((x,y)) = (f(x),y),$$

where f is some GF(2)-linear mapping. Then there exits non-zero element b in N such that $f(x) = x \circ b^{-1}$. Therefore, we have $\Psi = m_b$ for some $b \in N \setminus \{0\}$.

3 定理1の証明の概要

Cooperstein-Thas [1] による PG(2d, 2) における d 次元 DHO の次の特徴付けがあるので非常に助かります.

命題 2. The subset

 $PG(2d,2)\setminus \cup \{the\ points\ on\ the\ members\ of\ the\ dual\ hyperoval\}$

is a (d-1)-dimensional subspace in PG(2d,2).

我々の考察している状況に当てはめれば、次のようになります.

X 1. Let $S(Q) = \{X(t) \mid t \in Q\}$ with $X(t) = \{(x, (x \circ t)^{\sigma} + x \circ t) \mid x \in Q \setminus \{0\}\}$ be a dual hyperoval constructed from a quasifield Q. Then, in $PG(2d, 2) = \{(x, y) \mid x, y \in Q, Tr(y) = 0\} \setminus \{(0, 0)\}$, we have

$$\{(0,y) \mid y \in Q, y \neq 0, Tr(y) = 0\} = PG(2d,2) \setminus \bigcup_{t \in Q} X(t).$$

これらにより、同型写像の形が次の補題のようになることが分かります.

補題 3. Let $(N_1; \circ, +)$ and $(N_2; *, +)$ be Nearfields. We regard that the ambient space $PG(2d, 2) = \{(x, y) \mid x, y \in N_1, Tr(y) = 0\} = \{(x, y) \mid x, y \in N_2, Tr(y) = 0\}$. If dual hyperovals $S(N_1)$ and $S(N_2)$ are isomorphic by the automorphism of the ambient space $\Phi: PG(2d, 2) \to PG(2d, 2)$, we may assume that Φ is represented, using some GF(2)-linear mapping a(x) and d(y), as follows:

$$\Phi((x,y)) = (a(x), d(y)).$$

2節の「特別な自己同型」の作用については、以下の命題が成り立ちます.

命題 3. Let $(N_1; \circ, +)$ and $(N_2; *, +)$ be nearfields. Let the dual hyperovals $S(N_1)$ and $S(N_2)$ are isomorphic by the mapping Φ , then there is a group isomorphism $\theta: (N_1 \setminus \{0\}, \circ) \mapsto (N_2 \setminus \{0\}, *)$ such that, for any $b \in N_1 \setminus \{0\}$ and for any $X_1(t) \in S(N_1)$, we have

$$\Phi(m_b(X_1(t))) = m_{\theta(b)}(\Phi(X_1(t))).$$

これらを用いますと、定理の証明が次のように出来ます.

定理 1. Let $(N_1; \circ, +)$ and $(N_2; *, +)$ be nearfields. If dual hyperovals $S(N_1)$ and $S(N_2)$ are isomorphic, then $(N_1, \circ, +)$ and $(N_2, *, +)$ are isomorphic.

Proof. We assume that dual hyperovals $S(N_1)$ and $S(N_2)$ are isomorphic by Φ . Hence, we may assume that $\Phi(X_1(0)) = X_2(0)$. Therefore, Φ is represented as $\Phi((x,y)) = (a(x),d(y))$ for some GF(2)-linear mapping a(x) and d(y). Moreover, we may assume that $\Phi(X_1(1)) = X_2(1)$. We define ρ by $\Phi(X_1(t)) = X_2(\rho(t))$. Then we have $\rho(0) = 0$ and $\rho(1) = 1$. We have

$$\Phi(m_b(X_1(t))) = m_{\theta(b)}(\Phi(X_1(t))) \tag{1}$$

using the group isomorphism $N_1 \setminus \{0\} \ni b \mapsto \theta(b) \in N_2 \setminus \{0\}$. Since

$$\Phi: X_1(t) \ni (x, (x \circ t)^{\sigma} + x \circ t) \mapsto (a(x), d((x \circ t)^{\sigma} + x \circ t)) \in \Phi(X_1(t)),$$

and by the equation (1), we have

$$\Phi((x \circ b^{-1}, (x \circ t)^{\sigma} + x \circ t)) = (a(x) * \theta(b^{-1}), d((x \circ t)^{\sigma} + x \circ t)),$$

hence, by $\Phi((x,y)) = (a(x),d(y))$, we have

$$a(x \circ b^{-1}) = a(x) * \theta(b^{-1}). \tag{2}$$

On the other hand, since $\Phi(X_1(t)) = X_2(\rho(t))$ and since $X_2(\rho(t)) = \{(x, (x * \rho(t))^{\sigma} + x * \rho(t)) \mid x \in N_2 \setminus \{0\}\}$, we have

$$(a(x), d((x \circ t)^{\sigma} + x \circ t)) = (a(x), (a(x) * \rho(t))^{\sigma} + a(x) * \rho(t)),$$

hence we have $d((x \circ t)^{\sigma} + x \circ t) = (a(x) * \rho(t))^{\sigma} + a(x) * \rho(t)$ for any x and t in N_1 . Since $\rho(1) = 1$, we have $d(x^{\sigma} + x) = a(x)^{\sigma} + a(x)$ if we put t = 1. Since d is a linear mapping, if we put x = 1, we have $a(1)^{\sigma} + a(1) = 0$. Since the mapping a induces the following GF(2)-linear isomorphism of d-subspaces $X_1(0)$ and $X_2(0)$;

$$\Phi: X_1(0) \ni (x,0) \mapsto (a(x),0) \in X_2(0), \tag{3}$$

we have $a(1) \neq 0$, hence we have a(1) = 1. Now, since a(1) = 1, we have $a(b^{-1}) = \theta(b^{-1})$ by the equation (2) if we put x = 1. Hence we have $a(x) = \theta(x)$ for $x \in N_1$ if we define $\theta(0) = 0$. Therefore, by the equation (2), we conclude that $a(x \circ y) = a(x) * a(y)$ for any $x, y \in N_1$. By (3), and since $X_1(0) = \{(x,0) \mid x \in N_1\}$ and $X_2(0) = \{(x,0) \mid x \in N_2\}$, we see that the mapping a induces an isomorphism $a: N_1 \cong N_2$ of vector spaces over GF(2). Since $a(x \circ y) = a(x) * a(y)$ for any $x, y \in N_1$, and a induces an isomorphism from N_1 to N_2 as vector spaces over GF(2), we see that the mapping a induces $(N_1; \circ, +) \cong (N_2; *, +)$.

4 半体から構成される DHO について

定義 3. Let $(Q; +, \circ)$ be a quasifield.

(1) The set

$$K(Q) := \{ a \in Q \mid a \circ (x \circ y) = (a \circ x) \circ y, a \circ (x+y) = a \circ x + a \circ y, x, y \in Q \}$$
 is called the kernel of Q . We note that $K(Q)$ is a subfield of Q .

(2) The middle nucleus $N_m(Q)$ of Q is defined as:

$$N_m(Q) := \{ n \in Q \mid x \circ (n \circ y) = (x \circ n) \circ y \text{ for all } x, y \in Q \}.$$

We note that $N_m(Q)\setminus\{0\}$ is a subgroup of Q.

一般の概体から構成される DHO においても,次の「特別な自己同型」が 存在します. 補題 4. Let $(Q; +, \circ)$ be a quasifield, and S(Q) a dual hyperoval constructed from Q. Let b be any non-zero element of the middle nucleus $N_m(Q)\setminus\{0\}$. Inside $PG(2d,2) = \{(x,y) \mid x,y \in Q, Tr(y) = 0\}\setminus\{(0,0)\}$, let us define the mapping m_b as follows:

$$m_b((x,y)) := (x \circ b^{-1}, y).$$

Then m_b is an automorphism of S(Q). Moreover, we have $m_b(X(t)) = X(b \circ t)$, and $m_b(X(0)) = X(0)$. Thus, the group $N_m(Q) \setminus \{0\}$ acts semi-regularly on $S(Q) \setminus \{X(0)\}$.

また、この自己同型は次のように特徴付けられます.

補題 5. We assume that $K(Q) \supseteq GF(2)$. Inside $PG(2d,2) = \{(x,y) \mid x,y \in Q, Tr(y) = 0\} \setminus \{(0,0)\}$, let Ψ be an automorphism of S(Q) defined by

$$\Psi((x,y)) = (f(x),y),$$

where f is a GF(2)-linear mapping. Then we have $f(x) = x \circ b^{-1}$ for $b \in N_m(Q) \setminus \{0\}$. Hence $\Psi = m_b$ for some $b \in N_m(Q) \setminus \{0\}$.

この特徴付けの応用として、とくに半体から構成される DHO が同型でないことの判定に次の系が使えます.

X 2. Let S_1 and S_2 be semifields. We assume that $K(S_1)$, $K(S_2) \supseteq GF(2)$. If dual hyperovals $S(S_1)$ and $S(S_2)$ are isomorphic, then the groups $N_m(S_1)\setminus\{0\}$ and $N_m(S_2)\setminus\{0\}$ are isomorphic.

小さい位数 $|S_1| = |S_2| = 16$ でしかも $|N_m(S_1)| \neq |N_m(S_2)|$ となる半体 S_1 S_2 があるので、半体から構成される DHO で同型でないものが非常に多くあることが期待されます.

References

- [1] B. N. Cooperstein and J. A. Thas, On Generalized k-Arcs in PG(2n, q), Annals of Combinatorics. 5 (2001), 141–152.
- [2] C. Huybrechts and A. Pasini, Frag-transitive extensions of dual affine spaces, Contrib. Algebra Geom. 40. (1999), 503–532.
- [3] H. Lüneburg, Translation Planes, Springer-Verlag (1980).
- [4] H. Taniguchi, On d-dimensional dual hyperovals in PG(2d, 2), to appear in Innovations in Incidence Geometry.