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Abstract

For a stationary $S^{*}\subseteq \mathcal{P}_{w_{1}}w_{2}$ and $k=0,1$ , let $SR_{k}(S^{*})$ denote the
principle that every stationary $S\subseteq S^{*}$ reflects to some ordinal in $\omega_{2}\backslash \omega_{1}$

of cofinality $\omega_{k}$ . We show that if ZFC is consistent then ZFC together with
$\exists S^{*},$ $SR_{k}(S^{*})$ is also consistent for both $k=0,1$ .

1 Introduction
In this paper we consider the consistency of the following partial stationary
reflection principle in $\mathcal{P}_{w_{1}}w_{2}$ :

Deflnltion 1.1. For a stationary $S^{*}\subseteq P_{w_{1}}w_{2}$ and $k=0,1$ let $SR_{k}(S^{*})$ denote
the following pninciple;

For every stationary $S\subseteq S^{*}$ there exists an ordinal $\alpha\in w_{2}\backslash w_{1}$ such
that cf $\alpha=\omega_{k}$ and $S\cap \mathcal{P}_{w_{1}}a$ is stationary in $\mathcal{P}_{w_{1}}\alpha$ .

$R\epsilon call$ that the stationary reflection principle in $\mathcal{P}_{w_{1}}w_{2}$ , which is $oRen$ caUed
the we&reflection principle, states that for every stationary $S\subseteq \mathcal{P}_{w_{1}}w_{2}$ there
exists $\alpha\in w_{2}\backslash w_{1}$ with $S\cap \mathcal{P}_{w_{1}}\alpha$ stationary. Let $SR(\mathcal{P}_{w_{1}}\omega_{2})$ denote this principle.
$SR_{k}(\mathcal{P}_{w_{1}}w_{2})$ is strengthening of $SR(\mathcal{P}_{w_{1}}w_{2}),$ $\bm{t}dSR_{k}(S^{*})$ is apartial version of
$SR_{k}(\mathcal{P}_{w_{1}}w_{2})$ .

It is $weU$ known that if awe&ly compact cardinal is L\’evy coUapsed to $\omega_{2}$ then
$SR_{1}(\mathcal{P}_{w_{1}}w_{2})$ holds. On the other hand $Veli\check{c}kovi\acute{c}[8]$ showed that if $SR(P_{w_{1}}w_{2})$

holds then $w_{2}$ is weakly compact in L. Hence both $SR_{1}(\mathcal{P}_{w_{1}}w_{2})$ and $SR(P_{\omega_{1}}w_{2})$

are equiconsistent with the weakly compact cardinal axiom. It seems to be an
open question whether $SR(\mathcal{P}_{w_{1}}w_{2})$ implies $SR_{1}(\mathcal{P}_{w_{1}}w_{2})$ or not.

As for the consistency of $SR_{0}$ two important facts are akeady iown. First
it is essentially shown in $Foreman-Todor\check{c}evi\acute{c}[2]$ that $SR_{0}(\mathcal{P}_{w_{1}}w_{2})$ is not consis-
tent. Next it $is$ shown in K\"onig-Larson-Yoshinobu[4] that if $2^{w_{1}}=w_{2}$ then
$SR_{0}(S^{*})$ does not hold for any stationary $S^{*}\subseteq \mathcal{P}_{\omega_{1}}w_{2}$ . As acoroUary of
the latter, K\"onig-Larson-Yoshinobu[4] obtained that $SR(\mathcal{P}_{w_{1}}\omega_{2})$ together with
$2^{w_{1}}=w_{2}$ implies $SR(P_{w_{1}}w_{2})$ .
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But it remains to be unknown whether the existence of a stationary $S^{*}\subseteq$

$\mathcal{P}_{\omega_{1}}w_{2}$ such that $SR_{0}(S^{*})$ holds is consistent or not. Here we give a positive
answer:

Theorem 1.2. If ZFC is consistent then so is ZFC with the existence of a
stationary $S^{*}\subseteq \mathcal{P}_{\omega_{1}}\omega_{2}$ such that $SR_{0}(S^{*})$ holds.

In the above theorem note that we do not need any large cardinal for the
consistency of $SR_{0}(S^{*})$ for some $S$“. We prove that this is also the case with
$SR_{1}(S^{*})$ :

Theorem 1.3. If ZFC is consistent then so is ZFC unth the existence of a
$stationa\eta S^{*}\subseteq \mathcal{P}_{w_{1}}\omega_{2}$ such that $SR_{1}(S^{*})$ holds.

This paper is devoted to the proof of the above theorems. We prove them
in Section 5. In Section 2 we present our notation and basic facts used in this
paper. In Section 3 and 4 we present tools, developed by Shelah, which we
use in the proof of the above theorems. In Section 3 we review the iteration of
T-complete forcing notions, and in Section 4 we present a lemma on stationary
subsets of $\mathcal{P}_{w_{1}}w_{2}$ .

2 Preliminaries
Here we present our notation and $ba8ic$ facts used in this paper. For thove which
are not presented below, consult Baumgartner [1], Jech [3] and ShelA [5].

The notion of club, stationary and nonstationary subsets of $\mathcal{P}_{\kappa}\lambda$ can be
found in [3]. We often use the fact that $S\subseteq \mathcal{P}_{\omega_{1}}\lambda$ is stationary if and only if
for every function $f$ : $[\lambda]<warrow\lambda$ there exists $x\in S$ which is closed under $f$ .

For $S\subseteq \mathcal{P}_{w_{1}}w_{2}$ and $\alpha.\in w_{2}\backslash w_{1}$ we say that $Sr\epsilon flects$ to aif $S\cap \mathcal{P}_{w_{1}}$ $a$ is
stationary in $\mathcal{P}_{w_{1}}\alpha$ .

For $k=0$ , llet $E_{k}^{2}$ denotes the set of $aU$ limit ordinals $\alpha\in w_{2}$ with $cf\alpha=w_{k}$ .
In this paper we $exten8ively$ use structures and their elementary submodek.

If we say that $\mathcal{M}$ is astructure then it means that $\mathcal{M}$ is astructure of some
countable language. We say that astructure $\mathcal{M}$ is an $e\varphi ansion$ of astructure
$\mathcal{N}$ if $\mathcal{M}$ is obtained $\theta omN$ by adding countable many functions, predicates
and constants. We often use the fact that if $\theta$ is aregular uncountable cardinal
and $M$ is an elementary submodel of $\langle \mathcal{H}_{\theta}, \in\rangle$ then $x\subseteq M$ for every countable
$x\in M$ .

A $forcing$ notion denotes apartial ordering which have the greatest element
and whose universe is aset.

Let $\mathbb{P}$ be aforcing notion and $\delta$ be acardinal. We say that $\mathbb{P}$ has the $\delta$-chain
condition $(\delta-c.c.)$ if there axe no antichain in $\mathbb{P}$ of cardinality $\delta$ . $\mathbb{P}$ is said to be
$\omega$-distributive if for every countable family $D$ of dense open subsets of $\mathbb{P},$ $\cap \mathcal{D}$

is dense in $\mathbb{P}$ . $\mathbb{P}$ is $w$-distributive if $\bm{t}d$ only if the forcing extension by $\mathbb{P}$ does
not add any countable sequence of ordinals.

Next let $\mathbb{P}$ be aforcing notion and $M$ be anonempty set. $p\in \mathbb{P}$ is called
an $(M,\mathbb{P})$-generric condition if $D\cap M$ is predense below $p$ for every predense
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$D\subseteq \mathbb{P}$ with $D\in M$ . Moreover for a P-generic filter over $V$ let

$M[G]=\{\dot{a}_{G}|\dot{a}\in V^{P}\cap M\}$ ,

where $\dot{a}_{G}$ denotes the evaluation of $\dot{a}$ by $G$ . We use the folowing basic fact:

Fact 2.1 (Shelah [5]). Let $\mathbb{P}$ be a forcing notion, $\theta$ be a sufficiently large oegular
cadinal and $M$ be an elementary submodel of \langle $\mathcal{H}_{\theta},$ $\in,\mathbb{P}$). Let $\dot{G}$ be the canonical
name for a $\mathbb{P}$-generic filter. Then the folloeuing hold:

(1) $|\vdash r$
$M[\dot{G}]\prec\langle \mathcal{H}_{\theta}^{V[6]}, \in\rangle’$ .

(Hence if $\dot{c}_{0},\dot{c}_{1},$
$\ldots$ are $\mathbb{P}$-names in $M$ then $|\vdash r$

$M[\dot{G}]\prec(\mathcal{H}_{\theta}^{V[\delta]},$
$\in$

$\dot{c}_{0},\dot{c}_{1},$ $\ldots\rangle’.$)

(2) If $p$ is an $(M, P)$ -generic condition then $p1\vdash r$ $M[\dot{G}]\cap V=M$ “.

An iteration of forcing notions of length $\zeta$ will be denoted as $(\mathbb{P}_{\xi},\dot{\mathbb{Q}}_{\eta}|\xi\leq$

$\zeta,\eta<\zeta\rangle$ . Each $\mathbb{P}_{\xi}$ is a forcing notion and each $\dot{\mathbb{Q}}_{\eta}$ is a $\mathbb{P}_{\eta}$-name of a forcing
notion. $\mathbb{P}_{\xi}$ consists of total functions $p$ on $\xi$ such that $pr\eta|\vdash r_{\xi}(p(\eta)\in\dot{Q}_{\eta}’$ .

We abbreviate $|\vdash r_{\xi}$ as $|\vdash\epsilon$ . We let $i_{\eta}$ denote a fixed $\mathbb{P}_{\eta}$-name of the greatest
element of $\dot{\mathbb{Q}}_{\eta}$ . For each $p\in \mathbb{P}_{\zeta}$ , let supp $p:=\{\eta<\zeta|p(\eta)=i_{\eta}\}$ .

An iteration \langle $\mathbb{P}_{\xi},\dot{\mathbb{Q}}_{\eta}$ I $\xi\leq\zeta,$ $\eta<\zeta\rangle$ is called a countable support iteration if
$\mathbb{P}_{\xi}$ is the inverse limit of \langle $\mathbb{P}_{\xi’}$ I $\xi’<\xi\rangle$ for every limit $\xi$ with cf $\xi=\omega$ and is the
direct limit for every $\xi$ with cf $\xi>w$ . Note that if ($\mathbb{P}_{\xi},\dot{\mathbb{Q}}_{\eta}|\xi\leq\zeta,\eta<\zeta\rangle$ is a
countable support iteration then $|suppp|\leq\omega$ for every $p\in \mathbb{P}_{\zeta}$ .

3 Iteration of T-complete forcing notions
Here we review the iteration of T-complete forcing notions, which was developed
by Shelah [5]. For the completeness of this paper we give the proof of almost
all lemmata.

We begin with the definition of T-completeness:

Deflnition 3.1 (Shelah). Let $\mathbb{P}$ be a forcing notion and $M$ be a countable set.
We call a sequence ($p_{n}|n\in\omega\rangle$ with the following properties an $(M,\mathbb{P})$ -generic
sequence:

(i) $\langle p_{n}|n\in\omega\rangle$ is a descending sequence in $\mathbb{P}$ unth $p_{n}\in M$ for every $n\in\omega$ .

(ii) For every dense open subset $D\in M$ of $\mathbb{P}$ there exists $n\in w$ utth $p_{n}\in D$ .

Here note that if $p$ is a lower bound of some $(M,P)$-generic sequence then $p$

is an $(M,\mathbb{P})$-generic condition.

Deflnition 3.2 (Shelah). Let $\mathbb{P}$ be a forcing notion, $\lambda$ be an ordinal $\geq w_{1}$ and
$T$ be a subset of $\mathcal{P}_{w_{1}}\lambda$ . We say that $\mathbb{P}$ is T-complete if it satisfies the following:
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If $\theta$ is a suff ciently large regular cardinal, and $M$ is a countable
elementary submodel of $\langle \mathcal{H}_{\theta}, \in, \mathbb{P},T\rangle$ with $M\cap\lambda\in T$ then every
$(M, \mathbb{P})- gener\dot{\tau}c$ sequence has a lower bound in P.

Below we present basics on T-complete forcing notions. As is the case with
properness, there are several slightly different definitions of T-completeness.
First we give one of them. The proof of the following is similar as that for
properness:

Lemma 3.3. Let $\mathbb{P}$ be a forcing notion. Let $\lambda$ be an ordinal $\geq w_{1}$ and $T$ be a
subset of $\mathcal{P}_{w_{1}}\lambda$ . Then $\mathbb{P}$ is T-complete if and only if it satisfies the follounng;

There exists a regular cardinal $\theta$ with $\mathbb{P},T\in \mathcal{H}_{\theta}$ and an $e\varphi ansion$

$\mathcal{M}$ of the structure $\langle \mathcal{H}_{\theta}, \in\rangle$ such that if $M$ is a countable $elementa\eta$

submodel of $\mathcal{M}$ with $M\cap\lambda\in T$ then every $(M,P)$ -generic sequence
has a lower bound in P.

It is easy to see that if $T$ is stationary then T-completeness implies w-
distributivity. Next we observe this:

Lemma 3.4 (Shelah). Let $\lambda$ be an ordinal $\geq\omega_{1}$ and $T$ be a stationary subset
of $\mathcal{P}_{w_{1}}\lambda$ . Then every T-complete forcing notion is $w- dist\dot{n}bu\hslash ve$ .
Prvof Suppose that $\mathbb{P}$ is a T-complete forcing notions. Take an arbitrary family
$\{D_{n}|n\in w\}$ of dense open subsets of $\mathbb{P}$ and an arbitrary $p\in \mathbb{P}$ . We must find
$p^{*}\leq p$ which belongs to $\bigcap_{n\in w}D_{n}$ .

Let $\theta$ be a sufficiently large regular cardinal. Because $T$ is stationaxy there
exists a countable elementary submodel $M$ of $\langle \mathcal{H}_{\theta}, \in,P, T\rangle$ such that $\{p\}\cup\{D_{n}|$

$n\in w\}\subseteq M$ and $M\cap\lambda\in T$. Then we can take an $(M,\mathbb{P})$-generic sequence
($p_{n}|n\in\omega\rangle$ with $p_{0}\leq p$ .

By $T$-completeness, there exists a lower bound $p^{*}$ of $\langle p_{n}|n\in w\rangle$ . Then
$p^{*}\leq p$ and $p^{*} \in\bigcap_{n\in w}D_{n}$ clearly. $\square$

T-completeness is preserved by countable support iterations:

Lemma 3.5 (Shelah). Let $\lambda$ be an $0$rdinal and $T$ be a subset of $\mathcal{P}_{w_{1}}\lambda$ . Suppose
that $\mathcal{I}=\langle \mathbb{P}\epsilon, \mathbb{Q}_{\eta}|\xi\leq\zeta,\eta<\zeta\rangle,$ $\zeta\in$ On, is a countable support iteration of
T-complete forcing notions. Then $P_{\zeta}$ is T-complete.

Prvof. Let $\theta$ be a sufficiently large regular cardinal. Suppose that $M$ is a count-
able elementary submodel of ($\mathcal{H}_{\theta},$ $\in,\mathcal{I},T\rangle$ and that $\langle p_{n}|n\in\omega\rangle$ is an $(M,P_{\zeta})-$

generic sequence. By Lemma 3.3 it suffices to show that $\langle p_{n}|n\in\omega\rangle$ has a
lower bound. We use the following claim:

Claim. Suppose that $\eta\in\zeta\cap M$ . Then $\langle p_{\mathfrak{n}}(\eta|n\in w\rangle$ is an $(M,\mathbb{P}_{\eta})$ -genenc
seguence. Moreover suppose that $p^{*}i_{8}$ a lower bound of $\langle p_{n}r\eta$ I $n\in w\rangle$ . Then

$p^{*}$ forces that $\langle p_{n}(\eta)|n\in\omega\rangle$ is an $(M[\dot{G}_{\eta}],\dot{\mathbb{Q}}_{\eta})$ -generic sequence, where $\dot{G}_{\eta}$ is
the canonical name for $\bm{1}_{\eta}$ -generic filter.
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Proof of Claim. First we prove the former. Clearly $\langle p_{n}r\eta$ I $n\in w\rangle$ is a
descending sequence in $\mathbb{P}_{\eta}\cap M$ . Take an arbitrary dense open subset $D\in M$

of $\mathbb{P}_{\eta}$ . We must show that there exists $n\in w$ with $p_{n}(\eta\in D$ .
Note that the set $D’$ $:=\{p\in \mathbb{P}_{\zeta}|p(\eta\in D\}$ is dense open in $\mathbb{P}_{\zeta}$ and belongs

to $M$ . Then by the $(M, \mathbb{P}_{\zeta})$ -genericity of $\langle p_{n}|n\in\omega\rangle$ there exists $n\in w$ with
$p_{n}\in D’$ . Then $p_{n}(\eta\in D$ for such $n$ .

Next we prove the latter. It suffices to show the genericity of $\langle p_{n}(\eta)|n\in\omega\rangle$ .
Take an arbitrary $P_{\eta}$-name $\dot{D}\in M$ of a dense open subset of $\mathbb{Q}_{\eta}$ . We show that
there exists $n\in\omega$ with $p^{*}|\vdash\eta$

” $p_{n}(\eta)\in\dot{D}$ “ .
It is easy to see that the set $D”$ $:=$ {$p\in \mathbb{P}_{\zeta}$ I $pr\eta|\vdash\eta$

“ $p(\eta)\in\dot{D}$ “} is dense
open in $\mathbb{P}_{\zeta}$ and belongs to $M$ . Hence there exists $n\in\omega$ with $p_{n}\in D’’$ . Then
$p^{*}|\vdash\eta$

“ $p_{n}(\eta)\in\dot{D}$ “ and $p^{*}\leq p_{n}r\eta$ . $\square$ (Claim)

Using the above claim we construct a lower bound $p^{*}$ of $\langle p_{n}|n\in\omega\rangle$ . $p^{*}$ will
be a function whose domain is $\zeta$ and such that $p^{*}(\eta)$ is a $P_{\eta}$-name of a condition
of $\dot{\mathbb{Q}}_{\eta}$ for each $\eta<\zeta$ . By induction on $\eta<\zeta$ we choose $p^{*}(\eta)$ . The following
are the induction hypotheses:

(i) $p^{*}\lceil\eta|\vdash\eta p^{*}(\eta)$ is a lower bound of ($p_{n}(\eta)|n\in w\rangle$ .
(i1) $p^{*}(\eta)=i_{\eta}$ for every $\eta\in\zeta\backslash M$ .

(ii) assures that supp $p^{*}$ is countable because $M$ is countable. In general note
that if $\eta\leq\zeta$ and $p^{*}(\eta’)$ has been chosen to satisfy the induction hypotheses for
each $\eta’<\eta$ then $p^{*}r\eta=\langle p^{*}(\eta’)|\eta’<\eta\rangle$ is a lower bound of ($p_{n}r\eta|n\in w\rangle$ .
Note also that $p^{*}\square \eta$ is an $(M,\mathbb{P}_{\eta})$-generic condition because $\langle p_{n}r\eta|n\in w\rangle$ is
an $(M,\mathbb{P}_{\eta})$ -generic condition by Claim.

Now we describe the choice of $p^{*}(\eta)$ . Suppose that $\eta<\zeta$ and $p^{*}r\eta$ has been
constructed. First suppose also that $\eta\not\in M$ . In this case let $p^{*}(\eta)=i_{\eta}$ . Note
that supp $p_{n}\subseteq M$ for each $n\in\omega$ because supp $p_{n}$ is a countable set belonging
to $M$ and $M\prec\langle \mathcal{H}_{\theta}, \in\rangle$ . Hence $p_{n}(\eta)=i_{\eta}$ for each $n\in w$ , and thus $p^{*}(\eta)$

satisfies the induction hypothesis (i).
Next suppose that $\eta\in M$ . Let $\dot{G}_{\eta}$ be the canonical name for $\mathbb{P}_{\eta}$-generic

filter. Then note that

$p^{*}r\eta|\vdash\eta((p_{n}(\eta)|n\in w\rangle$ is an $(M[\dot{G}_{\eta}],\dot{\mathbb{Q}}_{\eta})$ -generic sequence”

by Claim. $Mor\infty ver$

$p^{*}r\eta^{1\vdash}\eta$
$M[\dot{G}_{\eta}]\prec\langle \mathcal{H}_{\theta}^{V[\delta_{\eta}]}, \in,\dot{\mathbb{Q}}_{\eta},T\rangle\wedge M[\dot{G}]\cap\lambda=M\cap\lambda\in T$ ’

by Fact 2.1 and the fact that $p^{*}r\eta$ is $(M,\mathbb{P}_{\eta})$-generic. Hence $p^{*}|\eta$ forces
that $\langle p_{n}(\eta)|n\in w\rangle$ has a lower bound by T-completeness of $\dot{\mathbb{Q}}_{\eta}$ . Let $p^{*}(\eta)$ be
a $\mathbb{P}_{\eta}$-name of a lower bound of $\langle p_{n}(\eta)|n\in w\rangle$ in $\dot{\mathbb{Q}}_{\eta}$ . Clearly the induction
hypotheses are satisfied.

Now we could construct a lower bound $p^{*}$ of ($p_{n}|n\in\omega\rangle$ . This completes
the proof. $\square$
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At the end of this section we present a condition for iterations to have $w_{2^{-}}c.c$ .
We use the following condition for forcing notions:

Deflnition 3.6. A forcing notion $\mathbb{P}$ Unth the following properties is said to be
good:

(i) Every $p\in \mathbb{P}$ is a function such that $|p|=w$ and ran $p\subseteq w_{1}$ .
(ii) $p\leq q$ in $\mathbb{P}$ if and only if $p\supseteq q$ .
(iii) For each $p,q\in \mathbb{P}$ if $pr$ (dom $p\cap$ dom $q$) $=q\lceil$ (dom $p\cap$ dom $q$) then $p$ and

$q$ are compatible.

If $\mathbb{P}$ satisfies the follounng additional condition then we say that $\mathbb{P}$ is beuer:

(iv) If a descending sequence ($p_{n}|n\in w\rangle$ in $P$ has a lower bound then
$\bigcup_{n\in w}p_{n}\in \mathbb{P}$ .

The standard argument using the $\Delta$-system lemma shows that if CH holds
then goodness implies the $w_{2}- c.c$ :

Lemma 3.7. Every good forcing notion has the $(2^{w})^{+}- c.c$.
If CH holds and $T$ is stationary then a countable support iteration of T-

complete better forcing notions have the $w_{2}- c.c$ :

Lemma 3.8. Let $\lambda$ be an ordinal $\geq w_{1}$ and $T$ be a stationary subset of $\mathcal{P}_{w_{1}}\lambda$ .
Suppose that $\mathcal{I}=\langle \mathbb{P}_{\xi},\dot{\mathbb{Q}}_{\eta}|\xi\leq\zeta,\eta<\zeta\rangle,$ $\zeta\in$ On, is a countable $s$uppon
iteration of T-complete better forcing notions. Then $\mathbb{P}_{\zeta}$ has the $(2^{\omega})^{+}- c.c$.

Proof. We may assume that $\mathbb{P}_{\eta}$ forces that dom $q\subseteq$ On for each $q\in\dot{\mathbb{Q}}_{\eta}$ . We
may also assume that $i_{\eta}=\emptyset\vee$ for each $\eta<\zeta$ . Outline of our proof is as follows:
First we show that

$D$ $:=\{p\in \mathbb{P}_{\zeta}|\forall\eta<\zeta\exists q\in V, p(\eta)=\check{q}\}$

is dense in $\mathbb{P}_{\zeta}$ . After that, we show that the forcing notion obtained by restrict-
ing $\mathbb{P}_{\zeta}$ to $D$ is good. This together with Lemma 3.7 implies that $\mathbb{P}_{\zeta}$ has the
$(2^{w})^{+}- c.c$ .

Now we start to show that $D$ is dense in $\mathbb{P}_{\zeta}$ . Ihke an arbitrary $p_{0}\in \mathbb{P}_{\zeta}$ . We
find $p^{*}\leq p_{0}$ which is in $D$ .

Let $\theta$ be asufflciently large regular cardinal, and take acountable elementary
submodel $M$ of $\langle \mathcal{H}_{\theta}, \in,\mathcal{I},T\rangle$ with $p_{0}\in M$ . We $C\bm{t}$ take sui $M$ because $T$ is
stationary. Ako, t&e an $(M,\mathbb{P}_{\zeta})$-generic sequence ($p_{n}|n\in\omega\rangle$ below $p_{0}$ . Our
$p^{*}$ will be alower bound of $\langle p_{n}|n\in w\rangle$ . The construction of $p^{*}$ is based on
that in the proof of Lemma 3.5.

By induction on $\eta<\zeta$ we choose a $\mathbb{P}_{\eta}$-name $p^{*}(\eta)$ of acondition of $\dot{\mathbb{Q}}_{\eta}$ . The
induction hypotheses are the same as (i) and (ii) in the proof of Lemma 3.5.

Suppose that $\eta<\zeta$ and that $p^{*}r\eta$ has been constructed. If $\eta\not\in M$ then let
$p^{*}(\eta)=i_{\eta}=\emptyset\vee$ as in the Proof of Lemma 3.5. Then suppose that $\eta\in M$ . In
this case we claim the foUowing:
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Claim. For each $n\in\omega$ there exists $q_{n}\in V$ such that $p^{*}r\eta|\vdash\eta\phi_{n}(\eta)=q_{n^{z}}^{\vee}$ .
Proof of Claim. Fix $n\in w$ . First note that $\mathbb{P}_{\eta}$ is w-distributive by Lemma 3.4
and 3.5. Hence the set

$B=\{p\in \mathbb{P}_{\eta}|\exists q\in V, p|\vdash\eta p_{n}(\eta)=\check{q}’\}$

is a denve open subset of $\mathbb{P}_{\eta}$ . Moreover $B\in M$ .
Then there exists $m\in w$ with $p_{m}\in B$ by the $(M,\mathbb{P}_{\eta})$-genericity of $\langle p_{m}r\eta$ I

$m\in w\rangle$ (See Claim in the proof of Lemma 3.5). Then $p^{*}r\eta\in B$ because $p^{*}$ is
a lower bound of $\langle p_{m}|m\in w$). Therefore there exists $q_{n}\in V$ such that $p^{*}\square \eta$

forces that $p_{n}(\eta)=q_{n}^{\vee}$ . $\square$ (Claim)

Let $q_{n}$ be as in the above claim for each $n\in\omega$ , and let $q^{*}$ be $\bigcup_{n\in w}q_{n}$ . Here
the same argument as in the proof of Lemma 3.5 shows that $p^{*}[\eta$ forces that
$\langle p_{n}(\eta)|n\in w\rangle$ has a lower bound in $\dot{Q}_{\eta}$ . Then $p^{*}[\eta$ forces that $q^{*}\vee$ is a lower
bound of ($p_{n}(\eta)|n\in w\rangle$ by betterness of $\dot{\mathbb{Q}}_{\eta}$ . Let $p^{*}(\eta)$ be $q*\vee$ .

Now we have constructed $p^{*}$ . It follows from the construction of $p^{*}$ that
$p^{*}\leq p_{0}$ and $p^{*}\in D$ . This completes the proof of the density of $D$ .

Below, for each $p\in D$ and each $\eta<\zeta$ , we let $p(\eta)$ denote $q\in V$ such
that $p(\eta)=\check{q}$ . Note that $p(\eta)$ is a countable function from On to $w_{1}$ by the
w-distributivity of $\mathbb{P}_{\eta}$ .

For each $p\in D$ let $\hat{p}$ be the partial function from $\zeta\cross$ On to $w_{1}$ such that

$\bullet$ dom $\hat{p}=\{(\eta, a)|a\in domp(\eta)\}$ ,

$\bullet$ $\hat{p}(\eta, a)=p(\eta)(a)$ for each $\langle\eta, \alpha\rangle\in dom\hat{p}$ .
Then let $\hat{\mathbb{P}}$ be the forcing notion $\{p^{\wedge}|p\in D\}$ ordered by reverse inclusions.

It is easy to see that $\hat{\mathbb{P}}$ is good. Hence $\hat{\mathbb{P}}$ has the $(2^{\omega})^{+}- c.c$ . It is also easy to
check that $\hat{\mathbb{P}}$ is isomorphic to the forcing notion obtained by restricting $\mathbb{P}_{\zeta}$ to
$D$ . Therefore $\mathbb{P}_{\zeta}$ has the $(2^{\omega})^{+}- c.c$ . because $D$ is dense in $\mathbb{P}_{\zeta}$ .

This completes the proof of the lemma. 口

4 Sup depending stationary set
In the proof of Theorem 1.2 and 1.3 we use the $f_{0}g_{oW}ing$ lemma due to Shelah:

Lemma 4.1 (Shelah). Suppose that $\langle E_{i}|i<w_{1}\rangle$ is a sequence of stationary
subsets of $E_{0}^{2}$ . Then the set

$T:=$ {$x \in \mathcal{P}_{w_{1}}w_{2}|x\cap\omega_{1}\in w_{1}\wedge\sup x\not\in x$ A $supx\in E_{x\cap w_{1}}$ }

is stationary in $\mathcal{P}_{w_{1}}w_{2}$ .
Variants of this lemma are used in Shelah [6] and Shelah-Shioya [7] to obtain

consequences of the stationary refiection principle. Here we present the proof
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of the above lemma for the completeness of this paper. We use a two players’
game of length $w$ .

For $f$ : $[w_{2}]<warrow w_{2}$ and $i\in w_{1}$ let $D(f,i)$ be the following two players’ game
of length $\omega$ :

In the n-th stage, first BAD chooses $a_{\mathfrak{n}}<\omega_{2}$ and then G0OD chooses $\beta_{n}$ with
$a_{n}\leq\beta_{n}<\omega_{2}$ . G0OD wins if

$c1_{f}(i\cup\{\beta_{n}|n\in w\})\cap w_{1}=i$ ,

where cl$f(x)$ denotes the closure of $x$ under $f$ . Otherwise BAD wins.
Note that $D(f, i)$ is an open game for BAD and thus it is determined. We

claim the following:

Lemma 4.2. For every $f$ : $[w_{2}]<\omegaarrow w_{2}$ there exists $i\in\omega_{1}$ such that G0OD has
a unnning strategy in $D(f, i)$ .
Proof. On the contrary, assume that $f$ is a function $hom[w_{2}]<\omega$ to $w_{2}$ and that
there are no $i\in w_{1}$ such that G0OD has a winning strategy in $D(f,i)$ . Then
there exists a winning strategy $\sigma_{i}$ for BAD in $D(f, i)$ for every $i\in\omega_{1}$ . Let
$\vec{\sigma}:=\langle\sigma_{i}|i\in w_{1}\rangle$ .

Let $\theta$ be a sufficiently large regular cardinal, and let $M$ be a countable
elementary submodel of ($\mathcal{H}_{\theta},$ $\in,$ $f,\tilde{\sigma}\rangle$ . Note that $i^{*}$ $:=M\cap\omega_{1}\in w_{1}$ .

By induction on $n\in w$ we take $a_{n},\beta_{n}\in\omega_{2}$ so that $\beta_{n}\in M$ . Suppose that
$n\in w$ and that $\langle a_{m},\beta_{m}|m<n\rangle$ has been taken. Then let

$a_{n}$ $:=$ $\sigma_{i}\cdot(\langle\beta_{m}|m<n\rangle)$

$\beta_{n}$ $;=$ $\sup\{\sigma_{i}(\langle\beta_{m}|m<n\rangle)|i\in\omega_{1}\}$

Clearly $\alpha_{n}\leq\beta_{n}<w_{2}$ . Moreover $\beta_{n}\in M$ because $\{\beta_{m}|m<n\}\subseteq M\prec\langle \mathcal{H}_{\theta},$ $\in$

$\tilde{\sigma}\rangle$ .
Now \langle $a_{n},\beta_{n}$ I $n\in\omega\rangle$ is a sequence of moves in $D(f, i”)$ in which BAD has

played according to the winning strategy $\sigma_{i}\cdot$ . Hence BAD wins with this moves.
On the other hand cl$f(i^{*}\cup\{\beta_{n}|n\in w\})\subseteq M$ because $M$ is closed under $f$

and $i^{*}\cup\{\beta_{n}|n\in w\}\subseteq M$ . Thus cl$f(i^{*}\cup\{\beta_{n}|n\in w\})\cap w_{1}=i^{*}$ , that is, G0OD
wins with the moves $\langle a_{n}, \beta_{n}|n\in w\rangle$ .

This is a contradiction. $\square$

Now we can prove Lemma 4.1:

Proof of Lemma 4.1. Take an arbitrary function $f$ : $[w_{2}]<warrow w_{2}$ . We find
$x^{*}\in T$ closed under $f$ .

By Lemma 4.2 take $i”\in\omega$ such that G0OD has a winning strategy $\sigma^{*}$ in
$D(f,i^{*})$ . Let $\theta$ be a sufficiently large regular cardinal, and let $M$ be an uncount-
able elementary submodel of \langle $\mathcal{H}_{\theta},$ $\in,$ $f,\sigma^{*}$ ) such that $M\cap\omega_{2}\in E_{i}\cdot\backslash w_{1}$ . Note
that $w_{1}\subseteq M\cap\omega_{2}\in w_{2}$ .
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Take an increasing sequence \langle $\alpha_{n}$ I $n\in w\rangle$ converging to $M\cap\omega_{2}$ , and let
$\beta_{n}$ $:=\sigma^{*}((\alpha_{m}|m\leq n\rangle)\in M$ for each $n\in\omega$ . Moreover let

$x^{*}:=c1_{f}(i^{*}\cup\{\beta_{n}|n\in\omega\})$ .

It $s$uffices to show that $x^{*}\in T$ .
First note that $supx^{*}\geq\sup_{\mathfrak{n}\in\omega}\beta_{n}\geq\sup_{n\in w}a_{n}=M\cap\omega_{2}$ . On the other

hand, $x^{*}\subseteq M$ because $i”\cup\{\beta_{n}|n\in w\}\subseteq M$ and $M$ is closed under $f$ . Hence
$supx^{*}\leq M\cap\omega_{2}$ . Therefore $supx^{*}=M\cap\omega_{2}\in E_{i^{*}}$ . Moreover $supx^{*}\not\in x^{*}$ .

Note also that $\langle a_{\mathfrak{n}},\beta_{n}|n\in w\rangle$ is a sequence of moves in $D(f,i^{*})$ in which
G00D has played according to the winning strategy $\sigma^{*}$ . Hence $x^{*}\cap\omega_{1}=i$“.

Therefore $x^{*}\cap\omega_{1}\in w_{1}$ , $supx^{*}\not\in x^{*}$ and $supx^{*}\in E_{x^{*}\cap w_{1}}$ , that is, $x^{*}\in T$ . $\square$

5 Proof of Theorem 1.2 and 1.3
Here we prove Theorem 1.2 and 1.3. In fact we prove slightly more.

To state our result we introduce the following subsets of $\mathcal{P}_{w_{1}}w_{2}$ for a $\square _{w_{1}^{-}}$

sequence $c=\sim\langle c_{\alpha}|a\in Lim\omega_{2}\rangle$ :

$S_{0}^{c}arrow:=$ the set of all $x\in \mathcal{P}_{w_{1}}w_{2}$ such that

(i) $x\cap w_{1}\in w_{1}$ and. $\sup x\not\in x$ ,
(ii) o.t. $c_{\sup x}<x\cap w_{1}$ ,
(iii) $c_{\sup x}\subseteq x$ .

$S_{1}^{\partial}$ $;=$ the set of all $x\in \mathcal{P}_{w_{1}}w_{2}$ such that

(i) $x\cap w_{1}\in w_{1}$ and $8Upx\not\in x$ ,
(ii) o.t. $c_{\sup x}=x\cap\omega_{1}$ ,
(iii) $c_{\sup x}\subseteq x$ .

The difference between $S_{0}^{\theta}$ and $S_{1}^{c}\sim$ is the property (ii) of their elements. As we
see in the following lemma, these sets have maximality properties with respect
to the stationary reflection. Note that the folowing lemma implies that (every
subsets of) $\mathcal{P}_{\omega_{1}}\omega_{2}\backslash S_{0}^{\partial}$ does not reflect to any ordinal in $E_{0}^{2}$ and that (every
subset of) $\mathcal{P}_{w_{1}}w_{2}\backslash S_{1^{\vee}}^{c}$ does not reflect to any ordinal in $E_{1}^{2}$ :

Lemma 5.1. Let $c’=\langle c_{\alpha}|.a\in Lim\omega_{2}$ ) be $a$ $\coprod_{w_{1}}$ -sequence. Then the following
holds:

(J) $S_{0}^{\partial}\cap \mathcal{P}_{w_{1}}\alpha$ contains a club in $\mathcal{P}_{w_{1}}$ $a$ for $eve\eta\alpha\in E_{0}^{2}\backslash w_{1}$ .
(2) $S_{1}^{l}\cap P_{w_{1}}\alpha$ contains a club in $\mathcal{P}_{w_{1}}a$ for eve$\eta a\in E_{1}^{2}$ .

In particular both $S_{0}^{\delta}$ and $S_{1}^{c}\sim are$ stationary in $\mathcal{P}_{\omega_{1}}\omega_{2}$ .
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Proof. (1) Suppose that $a\in E_{0}^{2}\backslash \omega_{1}$ . Note that o.t. $c_{\alpha}$ is countable. Let $C$ be
the set of all $x\in \mathcal{P}_{w_{1}}$ $a$ such that $c_{\alpha}\subseteq x$ and o.t. $c_{\alpha}<x\cap\omega_{1}\in w_{1}$ . Then $C$ is a
club in $\mathcal{P}_{w_{1}}a$ , and $C\subseteq S_{0}^{c}\sim$.
(2) Suppose that $a\in E_{1}^{2}$ . Let $\langle\beta_{i}|i<w_{1}\rangle$ be the increasing enumeration of $c_{\alpha}$ .
Let $C$ be the set of all $x\in \mathcal{P}_{\omega_{1}}\alpha$ such that $x\cap w_{1}$ is a countable limit ordinal,
$supx=\beta_{x\cap w_{1}}\not\in x$ and $\{\beta_{i}|i\in x\cap w_{1}\}\subseteq x$ . Then it is easy to see that $C$ is a
club in $\mathcal{P}_{w_{1}}a$ .

We claim that $C\subseteq S_{1}^{\mathcal{E}}$. Note that if $x\in C$ then

$c_{\sup x}=c_{\beta_{x\cap u_{1}}}=\{\beta_{i}|i\in x\cap w_{1}\}$

by the coherency of $carrow$. Hence if $x\in C$ then $c_{\sup x}\subseteq x$ and o.t. $c_{\epsilon upx}=x\cap w_{1}$ .
Therefore $C\subseteq S_{1^{\vee}}^{c}$. $\square$

We prove the following:

Theorem 5.2. Assume that GCH and $\square _{w_{1}}$ holds. Let $c\sim be$ a $\square _{w_{1}}$ -sequence.
Then there exzsts an $\omega_{2}-c.c$ . w-distributive forcing extension in which $SR_{k}(S_{k}\mathfrak{h}$

holds for both $k=0,1$ .

In the above theorem note that both $S_{0^{\wedge}}^{c}$ and $S_{1}^{\mathcal{E}}$ are absolute between the
ground model and the forcing extension because the extension preserves all
cardinais and adds no new countable subsets of ordinais.

The extension of the above theorem will be obtained by making all nonre-
flecting stationary subsets of $S_{0}^{\delta}$ and $S_{1}^{\partial}$ nonstationary by a countable support
iteration of club shootings.

First we describe the club shooting used in each stage:

Deflnition 5.3. Let $S$ be a subset of $\mathcal{P}_{\omega_{1}}w_{2}$ . Then let $\mathbb{C}(S)$ be the forcing notion
consisting of all $p$ such that

(i) $p$ is a function ffom $d\cross d$ to $w_{1}$ ,

(ii) if $x\in S$ and $x\subseteq d$ then $x$ is not closed under $p$ .
for some $d\in \mathcal{P}_{w_{1}}w_{2}$ . $p\leq q$ if and only if $p\supseteq q$ for each $p,$ $q\in \mathbb{C}(S)$ . For each
$p\in \mathbb{C}(S)$ we let $d_{p}$ denote $d\in \mathcal{P}_{\omega_{1}}\omega_{2}$ satisfying (i) and (ii) above.

Below we present easy facts on $\mathbb{C}(S)$ :

Lemma 5.4. Let $S$ be a subset of $\mathcal{P}_{w_{1}}\omega_{2}$ .
(1) For every $y\in \mathcal{P}_{\omega_{1}}\omega_{2}$ the set $\{p\in \mathbb{C}(S)|y\subseteq d_{p}\}$ is dense in $\mathbb{C}(S)$ .
(2) Suppose that $G$ is a $\mathbb{C}(S)$ -generic filter over V. Then $\cup G$ is a total

function from $w_{2^{V}}\cross w_{2^{V}}$ to $w_{1^{V}}f$ and there are no $x\in S$ closed under
$\cup G$ .

$(S)\mathbb{C}(S)$ is better.
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Proof. (1) Take an arbitrary $y\in \mathcal{P}_{\omega_{1}}\omega_{2}$ and an arbitrary $p\in \mathbb{C}(S)$ . We must
find $p^{*}\leq p$ with $y\subseteq d_{p}\cdot$ .

Let $d^{*}$ be $d_{p}\cup y$ , and take $\gamma\in w_{1}\backslash d^{*}$ . Then let $p^{*}$ be a function $homd^{*}\cross d^{*}$

to $w_{1}$ defined as follows:

$p^{*}(a)=$ $\{\begin{array}{ll}p(a) if a\in d_{p}\cross d_{p}\gamma \end{array}$

otherwise

All we have to show is that if $x\in S$ and $x\subseteq d^{*}$ then $x$ is not closed under $p^{*}$ .
This implies that $p^{*}$ is a condition in $\mathbb{C}(S)$ below $p$ and that $y\subseteq d_{p}\cdot=d^{*}$ .

Suppose that $x\in S$ and $x\subseteq d^{*}$ . First consider the case when $x\subseteq d_{p}$ . In
this case $x$ is not closed under $p$ because $p\in \mathbb{C}(S)$ . Hence $x$ is not closed under
$p^{*}$ which extends $p$ . Next consider the case when $x\not\subset d_{p}$ . In this case there
exists $a\in(x\cross x)\backslash (d_{p}\cross d_{p})$ . Then $p^{*}(a)=\gamma\not\in d^{*}\supseteq x$ , and thus $p^{*}(a)\not\in x$ .
Therefore $x$ is not closed under $p^{*}$ .
(2) Clear from (1).

(3) Clearly $\mathbb{C}(S)$ satisfies the properties (i) and (ii) in Definition 3.6. We check
that $\mathbb{C}(S)$ satisfies (iii) and (iv).

First we check (iii). Suppose that $p,q\in \mathbb{C}(S)$ and that $pr$ (dom$p\cap domq$) $=$

$qr$ (dom $p\cap$ dom $q$). We must find a common extension $p^{*}$ of $p$ and $q$ .
Let d’ be $d_{p}\cup d_{q}$ , and t&e $\gamma\in w_{1}\backslash d^{*}$ . Then let $p^{*}$ be a function $hom$

$d’\cross d^{*}$ to $w_{1}$ defined as follows:

$p^{*}(a)=$ $\{\begin{array}{ll}p(a) if a\in d_{p}xd_{p}q(a) if a\in d_{q}xd_{q}\gamma \end{array}$

otherwise

$p^{*}$ is wel-defined because $p$ and $q$ coincide on dom $p\cap domq$ . An we have to
show is that if $x\in S$ and $x\subseteq d^{*}$ then $x$ is not closed under $p^{*}$ .

Suppose that $x\in S$ and $x\subseteq d^{*}$ . If $x\subseteq d_{p}$ then the same argument as in
the proof of (1) shows that $x$ is not closed under $p$ and thus that $x$ is not closed
under $p^{*}$ . Similarly, if $x\subseteq d_{q}$ then $x$ is not closed under $q$ , and hence $x$ is not
closed under $p^{*}$ .

So suppose that $x\not\subset d_{p}$ and $x\not\subset d_{q}$ . In this case take an $a\in x\backslash d_{p}$ and an
$\beta\in x\backslash d_{q}$ , and let $a$ $:=\langle a,\beta\rangle$ . Then $a\in x\cross x$ but $a\not\in d_{p}\cross d_{p}$ and $a\not\in d_{q}\cross d_{q}$ .
Hence $p^{*}(a)=\gamma\not\in x$ . Therefore $x$ is not closed under $p^{*}$ .

Next we check (iv). Suppose that $\langle p_{n}1n\in w\rangle$ is a descending sequence in
$\mathbb{C}(S)$ which has a lower bound. Let $p^{*}$ be a lower bound of $\langle p_{n}|n\in w\rangle$ .

Then $\bigcup_{\mathfrak{n}\in w}p_{n}$ is a restriction of $p^{*}$ to $( \bigcup_{n\in w}d_{p_{n}})\cross(\bigcup_{n\in w}d_{Pn})$ . IFYom this
it is clear that $\bigcup_{n\in w}p_{n}\in \mathbb{C}(S)$ . $\square$

Club shootings which we iterate will be T-complete for some stationary
$T\subseteq \mathcal{P}_{w_{1}}\omega_{2}$ . Here we present a sufficient condition for $\mathbb{C}(S)$ to be T-complete:

Deflnition 5.5. For $S,T\subseteq \mathcal{P}_{w_{1}}w_{2}$ let $\Phi(S,T)$ be the following principle:
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There enist a regular cardinal $\theta>2^{w_{2}}$ and an expansion $\mathcal{M}$ of the
structure $\langle \mathcal{H}_{\theta}, \in\rangle$ such that if $M$ is a countable elementary submodd
of $\mathcal{M}$ with $M\cap\omega_{2}\in T$ then $S\cap \mathcal{P}(M)\subseteq M$ .

While we do not use, the standard argument shows that $\Phi(S,T)$ is equivalent
with the following:

If $\theta$ is a sufficiently large regular cardinal, and $M$ is a countable
elementuy submodel of $\langle \mathcal{H}_{\theta}, \in,S,T\rangle$ with $M\cap w_{2}\in T$ then $S\cap$

$\mathcal{P}(M)\subseteq M$ .
Now we prove that $\Phi(S,T)$ is a sufficient condition for $\mathbb{C}(S)$ to be T-

complete:

Lemma 5.6. Suppose that $S,T\subseteq \mathcal{P}_{w_{1}}\omega_{2}$ and that $\Phi(S,T)$ holds. Then $\mathbb{C}(S)$ is
T-complete.

Proof. Let $\theta$ and $\mathcal{M}$ be witnesses of $\Phi(S,T)$ . Suppose that $M$ is acountable
elementary submodel of $\mathcal{M}$ with $M\cap\omega_{2}\in T$ and that $\langle p_{n}|n\in w\rangle$ is an
$(M, \mathbb{C}(S))$ -generic $sequen\infty$ . By Lemma 3.3 it suffices to show that $\langle p_{n}|n\in w\rangle$

has alower bound. Moreover it suffices for this to show that $p^{*}$ $:= \bigcup_{n\in w}p_{n}$ is
acondition in $\mathbb{C}(S)$ .

Let $d^{*}$ be $\bigcup_{n\in w}h_{\mathfrak{n}}$ . Then $d^{*}\in \mathcal{P}_{w_{1}}w_{2},$ $\bm{t}dp^{*}$ is afunction $bomd^{*}\cross d^{*}$ to
$w_{1}$ . We show that if $x\in S$ and $x\subseteq d^{*}$ then $x$ is not closed under $p^{*}$ .

Suppose that $x\in S$ and $x\subseteq d’$ . First note that $d_{p_{\hslash}}\subseteq M$ for eai $n\in w$

because $d_{Pn}i_{8}$ acountable set whii belongs to $M\prec(\mathcal{H}_{\theta},$ $\in\rangle$ . Hence $d^{*}\subseteq M$ ,
and so $x\subseteq M$ . Thus $x\in M$ by $\Phi(S,T)$ .

Then the set $D:=\{p\in \mathbb{C}(S)|x\subseteq d_{p}\}$ belongs to M. Moreover $D$ is dense
open in $\mathbb{C}(S)$ by Lemma 5.4 (1). Hence there exists $n\in w$ with $p_{n}\in D$ . Then
$x\subseteq d_{Pn}$ , and $x$ is not closed under $p_{n}$ because $p_{n}\in \mathbb{C}(S)$ . Therefore $x$ is not
ako $c1_{08}ed$ under $p^{*}$ which extends $p_{n}$ . $\square$

Next we present a stationary $T\subseteq \mathcal{P}_{w_{1}}\omega_{2}$ such that club shootings which we
iterate wil be T-complete. For a $\square _{w_{1}}$ -sequence $c=arrow(c_{\alpha}|\alpha\in Lim\omega_{2}\rangle$ let

$T^{\delta}$

$:=$ the set of al $x\in \mathcal{P}_{w\iota}w_{2}$ such that

(i) $x\cap w_{1}\in\omega_{1}$ and $\sup x\not\in x$ ,
(ii) $0.t.c_{\epsilon upx}>x\cap w_{1}$ .

The main difference of $T^{\partial}$ from $S_{0}^{8}$ and $S_{1}^{\mathcal{E}}$ is the property (ii) of its elements.
It is easy to see that $T^{\partial}$ is stationary using Lemma 4.1:
Lemma 5.7. $T^{\mathcal{E}}$ is $stationa\eta$ in $\mathcal{P}_{w_{1}}\omega_{2}$ for every $\square _{w_{1}}$ -sequence $c\sim$.
Proof. Suppose that $c=arrow\langle c_{\alpha}|a\in Limw_{2}\rangle$ is a $\Pi_{\omega\iota}$ -sequence.

For each $i\in w_{1}$ let $E_{i};=$ { $\alpha\in E_{0}^{2}|$ o.t. $c_{\alpha}>i$}. Note that $E_{i}\cap\beta$ contains
a club in $\beta$ for every $\beta\in E_{1}^{2}$ . Hence $E_{i}$ is a stationary subset of $E_{0}^{2}$ .

Here note also that
$T^{\delta}= \{x\in \mathcal{P}_{w_{1}}w_{2}|x\cap\omega_{1}\in\omega_{1}\wedge\sup x\not\in x\wedge\sup x\in Eae\cap\omega_{1}\}$ .

Therefore $T^{\mathcal{E}}$ is stationary by Lemma 4.1. $\square$
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We want to show something like that if $S$ is a nonreflecting subset of $S_{0^{\vee}}^{c}$ or
$S_{1}^{c}\sim$ then $\mathbb{C}(S)$ is $T^{c}\sim$-complete. For this we slightly reduce $S_{0^{\vee}}^{c}$ and $S_{1}^{c}arrow$ as follows:

We call a sequence $\tilde{\pi}=\langle\pi_{\alpha}|\alpha\in w_{2}$ ) a $su\dot{\eta}ection$ system if $\pi_{\alpha}$ is a surjection
from $\omega_{1}$ to $a$ for each $\alpha\in\omega_{2}$ . For a $\square _{w_{1}}$ -sequence $c\sim$, a surjection system
$\tilde{\pi}=\langle\pi_{\alpha}|a\in w_{2}\backslash w_{1}\rangle$ and $k=0,1$ let

$S_{k}^{\partial,\#}$ $:=\{x\in S_{k}^{c}\sim|\forall\alpha\in x, x\cap\alpha=\pi_{\alpha}(x\cap w_{1})\}$ .
Note that $S_{k}^{\partial}\backslash S_{k}^{\delta,\#}$ is nonstationary.

We claim the following.

Lemma 5.8. Suppose that $c\sim=\langle c_{\alpha}|\alpha\in Limw_{2}\rangle$ is a $\square _{w_{1}}$ -sequence and that
$\tilde{\pi}=\langle\pi_{\alpha}$ I $\alpha\in\omega_{2}\backslash w_{1}$ } is a surjection system.

(J) Let $S$ be a subset of $S_{0}^{c}arrow,\pi$ which does not reflect to any $0$rdinal in $E_{0}^{2}\backslash w_{1}$ .
Then $\mathbb{C}(S)$ is $T^{c}arrow$-complete.

(2) Let $S$ be a subset of $S_{1}^{\delta,P}$ which does not reflect to any ordinal in $E_{1}^{2}$ . Then
$\mathbb{C}(S)$ is $T^{\delta}$-complete.

To prove Lemma 5.8 we need the following easy lemma:
Lemma 5.9. Suppose that $c’=\langle c_{\alpha}|\alpha\in Lim\omega_{2}$ ) is a $\square _{w_{1}}$ -sequence. Let $\theta$ be
a sufficiently large regular $ca$rdinal and $M$ be a countable $elementa\eta$ submodel
of \langle $\mathcal{H}_{\theta},$ $\in,$ $c\gamma$ . Moreover let $\alpha^{*}$ be an ordinal in $E_{0}^{2}$ such that $a^{*}< \sup(M\cap w_{2})$ ,
$a^{*}\not\in M$ and $\sup(M\cap a^{*})=a^{*}$ . Then o.t. $c_{\alpha}\cdot=M\cap\omega_{1}$ .
Proof. Let $\beta^{*}$ $:= \min(M\backslash \alpha^{*})$ . Then $\beta^{*}\in M\cap w_{2}$ , and $\sup(M\cap\beta^{*})=a^{*}<\beta’$ .
Moreover it easily follows $hom$ the elementarity of $M$ that $\rho*\in E_{1}^{2}$ . Let $\langle\beta_{i}|i\in$

$w_{1}\rangle$ be the increasing enumeration of $c_{\beta}\cdot$ . We claim that $\sup(M\cap\beta^{*})=\beta_{M\cap w_{1}}$ .
First note that $c_{\beta}\cdot\in M$ by the elementarity of $M$ . Hence $\{\beta_{i}|i\in M\cap w_{1}\}\subseteq$

$M$ . Thus
$\sup(M\cap\beta^{*})\geq\sup\{\beta_{i}|i\in M\cap w_{1}\}=\beta_{M\cap w_{1}}$ .

On the other hand assume that $\sup(M\cap\beta^{*})>\beta_{M\cap d_{1}}$ . Then we can take
$\beta\in M\cap\beta^{*}$ with $\beta\geq\beta_{M\cap\omega_{1}}$ . Let $j$ be the least ordinal $<w_{1}$ such that $\beta_{j}\geq\beta$.
Then $j\geq M\cap w_{1}$ because $\beta\geq\beta_{M\cap w_{1}}$ . But $j\in M\cap w_{1}$ by the elementarity of
$M$ . This is a contradiction. Therefore $\sup(M\cap\beta^{*})\leq\beta_{M\cap w_{1}}$ .

Now we have shown that $\sup(M\cap\beta^{*})=\beta_{M\cap w_{1}}$ . Recall that $a^{*}= \sup(M\cap$

$\beta^{*})$ . Hence $a^{*}=\beta_{M\cap\omega_{1}}$ . Then $c_{\alpha}\cdot=\{\beta_{i}|i\in M\cap w_{1}\}$ by the coherency of $c\sim$.
Therefore o.t. $c_{\alpha}\cdot=M\cap w_{1}$ . $\square$

Now we prove Lemma 5.8:

$s_{0}^{c,\pi},s_{1}^{\zeta_{\pi_{andT^{\delta}re\epsilon pective1y}}^{Lemma5.8.Forsimp}}P_{\sim}mof_{0}$.licity of our notation let $S_{0},$ $S_{1}$ and $T$ denote

(1) By Lemma 5.6 it suffices to show that $\Phi(S,T)$ holds. Let $\theta$ be a sufficiently
large regular cardinal, and let $M$ be a countable elementwy submodel of $(\mathcal{H}_{\theta},$ $\in$

, $S_{C}^{\vee},R\rangle$ with $M\cap w_{2}\in T$ . Moreover suppose that $x\in S$ and $x\subseteq M$ . We show
that $x\in M$ . Before starting note that $x\cap w_{1}\leq M\cap w_{1}\in w_{1}$ .

First we claim the following:
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Claim 1. $supx\in M$ .
Proof of Claim. On the contrary assume that $supx\not\in M$ . Then note that
$M\cap w_{1}\leq 0.t.c_{\sup x}$ : If $supx=\sup(M\cap w_{2})$ then $M\cap w_{1}<0.t.c_{\sup x}$ because
$M\cap w_{2}\in T$ . On the other hand, if $s$up $x< \sup(M\cap w_{2})$ then $M\cap\omega_{1}=0.t.c_{\sup x}$

by Lemma 5.9.
Note also that $x\cap w_{1}>$ o.t. $c_{\sup x}$ because $x\in S_{0}$ . Hence $M\cap w_{1}\leq$

o.t. $c_{\epsilon upx}<x\cap w_{1}$ . This contradicts that $x\subseteq M$ . $\square (Claim)$

Next we claim the following:

Claim 2. $x\cap w_{1}<M\cap\omega_{1}$ .
Proof of Claim. Assume not. Then $x\cap w_{1}=M\cap w_{1}$ . First note that $M\cap a=$

$\pi_{\alpha}(M\cap w_{1})$ for each $\alpha\in M\cap\omega_{2}$ by the elementarity of $M$ . Hence

$M \cap\sup x=\bigcup_{\alpha\in x}\pi_{\alpha}(M\cap w_{1})=\bigcup_{\alpha\in x}\pi_{\alpha}(x\cap w_{1})=x$ .

The last equality follows from $x\in S_{0}$ .
Here note that $S \cap \mathcal{P}_{\omega_{1}}(\sup x)$ is nonstationary by the assumption on $S$ .

Moreover $supx\in M\prec\langle \mathcal{H}_{\theta}, \in, S\rangle$ by Claim 1. Hence there exists a function
$f \in Mhom[\sup x]<w$ to $supx$ such that every element of $S \cap \mathcal{P}_{\omega_{1}}(\sup x)$ is not
closed under $f$ . But $x=M \cap\sup x$ , and so $x$ is closed under $f$ by the elementarity
of $M$ . Because $x \in S\cap \mathcal{P}_{w_{1}}(\sup x)$ this is a contradiction. $\square (Claim)$

Now $x=\cup\{\pi_{\alpha}(x\cap w_{1})|\alpha\in c_{\sup x}\}$ because $x\in S_{0}$ . Hence $x$ is definable
in $\langle \mathcal{H}_{\theta}, \in, carrow,\tilde{\pi}\rangle hom$ the parameters $x\cap w_{1}$ and $supx$ . But both $x\cap w_{1}$ and $supx$
belong to $M$ by Claim 1 and 2, and $M\prec\langle \mathcal{H}_{\theta}, \in,\overline{c},\tilde{\pi}\rangle$ . Therefore $x\in M$ .
(2) We show that $\Phi(S,T)$ holds. Let $\theta,$ $M$ and $x$ be as in the proof of (1). We
show that $x\in S$ .

First we claim the following:

Claim 3. $supx\in M$ .
Proof of Claim. First note that $supx<\sup(M\cap\omega_{2})$ : Otherwise $supx=$
$\sup(M\cap w_{2})$ , and

$M\cap w_{1}<0.t.c_{\epsilon upx}=x\cap\omega_{1}$

because $M\cap w_{2}\in T$ and $x\in S_{1}$ . This contradicts that $x\subseteq M$ .
Now assume that $supx\not\in M$ . Then $M\cap w_{1}=$ o.t. $c_{\sup x}$ by Lemma 5.9.

Hence $M\cap w_{1}=x\cap\omega_{1}$ because $x\in S_{1}$ . Then the same argument as in the
proof of Claim 2 shows that $M \cap\sup x=x$ .

Let $\beta^{*}$ be $\min(M\backslash \sup x)$ . Then $\beta’\in E_{1}^{2}$ , and thus $S\cap \mathcal{P}_{\omega_{1}}\beta^{*}$ is nonstationary
by the assumption on $S$ . Because $\beta^{*}\in M\prec(\mathcal{H}_{\theta},$ $\in,$ $S\rangle$ there exists a function
$f\in Mhom[\mathcal{B}^{*}]<\omega$ to $\beta$ such that every element of $S\cap \mathcal{P}_{w_{1}}\beta^{*}$ is not closed
under $f$ . But $x=M \cap\sup x=M\cap\beta^{*}$ , and so $x$ is closed under $f$ by the
elementarity of $M$ . This contradicts that $x\in S$ . $\square (Claim)$
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Note that $x\cap\omega_{1}=0.t.c_{\sup x}\in M\cap\omega_{1}$ by Claim 3 and the elementarity of
$M$ . The rest of the proof is similar as (1).

First $x=\cup\{\pi_{\alpha}(x\cap\omega_{1})|a\in c_{8Upx}\}$ , and thus $x$ is definable in $\langle \mathcal{H}_{\theta}, \in, carrow,\tilde{\pi}\rangle$

from the parameters $supx$ and $x\cap\omega_{1}$ . Moreover both $supx$ and $x\cap w_{1}$ belongs
to $M$ , and $M\prec\langle \mathcal{H}_{\theta}, \in, carrow,\tilde{\pi}\rangle$ . Therefore $x\in M$ . $\square$

Now we can prove Theorem 5.2 by combining lemmata above:

Proof of Theorem 5.2. Take a surjection system $\tilde{\pi}$ in $V$ . We make all nonre-
flecting subsets of $S_{0}^{\delta,\#}$ and $S_{1^{\vee}}^{c,i}$ nonstationary by a countable support iteration
of club shootings.

First note that $S_{k}^{\overline{c},\pi}$ and $T^{\delta}$ are absolute in all $w_{2^{-}}c.c$ . $\omega$-distributive forcing
extensions of $V$ . Let $S_{0},$ $S_{1}$ and $T$ denote $S_{0}^{\sim},$ $S_{1}^{\sim}$ and $T^{c}\sim$ respectively. Note
also that $|\mathbb{C}(S)|=w_{2}$ for every $S\subseteq \mathcal{P}_{w_{1}}w_{2}$ in all such extensions.

Then, by Lemmata 3.4, 3.5, 3.8, 5.4, 5.8, by GCH and by the standard book
keeping method, we can construct a countable support iteration $\langle \mathbb{P}_{\xi},\mathbb{Q}_{\eta}|\xi\leq$

$\omega_{3},\eta<w_{3}\rangle$ with the $f_{0}n_{oW}ing$ properties:

(i) $\mathbb{P}_{\xi}$ has the $\omega_{2}- c.c$ . and is $\omega$-distributive for each $\xi\leq w_{3}$ .
(ii) If $\eta<w_{3}$ then $|\vdash\eta$

“ $\dot{\mathbb{Q}}_{\eta}=\mathbb{C}(\dot{S})$ for some $\mathbb{P}_{\eta}$ -name $\dot{S}$ such that either

$|\vdash\eta$
” $\dot{S}\subseteq S_{0}\wedge\dot{S}$ does not reflect to any ordinal in $E_{0}^{2}$ ,

or
$|\vdash\eta$

“ $\dot{S}\subseteq S_{1}\wedge\dot{S}$ does not reflect to any ordinal in $E_{1}^{2}$ “.

Hence $|\vdash\eta$
“

$\dot{\mathbb{Q}}_{\eta}$ is T-complete and better $\wedge|\dot{\mathbb{Q}}_{\eta}|\leq\omega_{2}’$ .

(iii) If $\xi<\omega_{3}$ and $\dot{S}$ is a $\mathbb{P}_{\xi}$-name such that either

$|\vdash\epsilon$

“ $\dot{S}\subseteq S_{0}\wedge\dot{S}$ does not reflect to any ordinal in $E_{0}^{2}$
‘

or
$|\vdash\epsilon$

“ $\dot{S}\subseteq S_{1}\wedge\dot{S}$ does not reflect to any ordinal in $E_{1}^{2}$
“

then there exists $\eta\in w_{3}\backslash \xi$ such that $|\vdash\eta$
“ $\dot{\mathbb{Q}}_{\eta}=\mathbb{C}(\dot{S})$ .

Then $\mathbb{P}_{\omega_{3}}$ has the $w_{2^{-}}c.c$ . and is $\omega$-distributive. Let $G$ be a $\mathbb{P}_{w_{3}}$-generic filter
over $V$ . Then the standard argument shows that the folowing both hold in
$V[G]$ :

$\bullet$ If $S\subseteq S_{0}$ and $S$ does not reflect to any ordinal in $E_{0}^{2}\backslash w_{1}$ then $S$ is
nonstationary.

$\bullet$ If $S\subseteq S_{1}$ and $S$ does not reflect to any ordinal in $E_{1}^{2}$ then $S$ is nonsta-
tionary.

That is, $SR_{k}(S_{k})$ holds for both $k=0,1$ in $V[G]$ . But note that $S_{k}^{\delta}\backslash S_{k}$ is
nonstationary. Therefore $SR_{k}(S_{k}^{c})\sim$ holds for both $k=0,1$ in $V[G]$ .

This completes the proof. $\square$
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