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Abstract. In this paper, we prove a fixed point theorem on partial random-
ness in a self-contained manner.

1 Introduction
The fixed point theorem on partial randomness, Theorem 3.1 below, was introduced by Tadaki
[11] in the context of a statistical mechanical interpretation of algorithmic information $th\infty ry$,
where the theorem is called a fixed point theorem on compression rate. We isolate the flxed
point theorem on partial randomness and its proof from [11], and describe them in this paper
in a self-contained manner. While Tadaki [11] contains a physical and informal argument in the
last of the paper, this paper consists only of purely mathematical arguments. For the variants
of the fixed point theorem on partial randomness and their related topics, see [11].

2 Preliminaries
2.1 Basic notation
We start with some notation about numbers and strings which will be used in this paper.
$N=\{0,1,2,3, \ldots\}$ is the set of natural numbers, and $N^{+}$ is the set of positive integers. $\mathbb{Z}$ is
the set of integers, and $\mathbb{Q}$ is the set of rational numbers. $\mathbb{R}$ is the set of real numbers.

$\{0,1\}^{*}=\{\lambda,0,1,00,01,10,11,000,001,010, ...\}$

is the set of finite binary strings where $\lambda$ denotes the empty string. For any $s\in\{0,1\}^{*},$ $|s|$ is
the length of $s$ . A subset $S$ of $\{0,1\}^{*}$ is called a prefix-free set if no string in $S$ is a prefix of
another string in S. $\{0,1\}^{\infty}$ is the set of infinite binary strings, where an infinite binary string
is infinite to the right but finite to the left. For any $\alpha\in\{0,1\}^{\infty},$ $\alpha_{n}$ is the prefix of $\alpha$ of length
$n$ . For any partial function $f$ , the domain of definition of $f$ is denoted by dom $f$ . We write
“r.e.” instead of “recursively enumerable.”

Normally, $o(n)$ denotes any one function $f:N^{+}arrow \mathbb{R}$ such that $\lim_{narrow\infty}f(n)/n=0$ . On
the other hand, $O(1)$ denotes any one function $g:N^{+}arrow \mathbb{R}$ such that there is $C\in \mathbb{R}$ with the
property that $|g(n)|\leq C$ for an $n\in N^{+}$ .

Let $T$ be an arbitrary real number. $T$ mod 1 denotes $T-\lfloor T\rfloor$ , where $\lfloor T\rfloor$ is the greatest
integer less than or equal to $T$ . Hence, $T$ mod $1\in[0,1$ ). On the other hand, $\lceil T\rceil$ is the smallest
integer greater than or equal to $T$ . We identify a real number $T$ with the infinite binary string
$\alpha$ such that $0.\alpha$ is the base-two expansion of $T$ mod 1 with infinitely many zeros. Thus, $T_{n}$

denotes the first $n$ bits of the base-two expansion of $T$ mod 1 with infinitely many zeros. In
particular, if $T\in[0,1$ ), then $T_{n}$ denotes the first $n$ bits of the base-two expansion of $T$ with
inflnitely many zeros.

We say that a real number $T$ is computable if there exists a total recursive function $f:N^{+}arrow$

$\mathbb{Q}$ such that $|T-f(n)|<1/n$ for all $n\in N^{+}$ . We say that $T$ is right-computable if there exists
a total recursive function 9: $N^{+}arrow \mathbb{Q}$ such that $T\leq g(n)$ for all $n\in N^{+}$ and $\lim_{narrow\infty}g(n)=T$ .
We say that $T$ is left-computable $if-T$ is right-computable. Then the following theorem holds.
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Theorem 2.1. Let $T\in \mathbb{R}$ .
(i) $T$ is computable if and only if $T$ is both right-computable and left-computable.

(ii) $T$ is right-computable if and only if the set $\{(m, n)\in \mathbb{Z}\cross N^{+}|T<m/n\}$ is $r.e$ . $\square$

See e.g. $[7, 13]$ for the detail of the treatment of the computability of real numbers.

2.2 Algorithmic information theory

In the following we concisely review some definitions and results of algorithmic information
theory $[3, 4]$ . A computer is a partial recursive function $C:\{0,1\}^{*}arrow\{0,1\}^{*}$ such that dom $C$

is a prefix-free set. For each computer $C$ and each $s\in\{0,1\}^{*},$ $H_{C}(s)$ is defined by $H_{C}(s)=$

min { $|p||p\in\{0,1\}^{*}$ &C(p)=s}. A computer $U$ is said to be optimal if for each computer $C$

there exists a constant $sim(C)$ with the following property; if $C(p)$ is defined, then there is a $p’$

for which $U(p’)=C(p)$ and $|p’|\leq|p|+sim(C)$ . It is then shown that there exists an optimal
computer. We choose any one optimal computer $U$ as the standard one for use, and define $H(s)$
as $H_{U}(s)$ , which is referred to as the prvgram-size complexity of $s$ , the information content of
$s$ , or the Kolmogorov complexity of $s[5,6,3]$ . Thus, $H(s)$ has the following property:

$\forall C$ : computer $H(s)\leq H_{C}(s)+sim(C)$ . (1)

It can be $s$hown that there is $c\in N$ such that, for any $s\neq\lambda$ ,

$H(s)\leq|s|+2\log_{2}|s|+c$. (2)

Chaitin’s halting probability $\Omega$ is defined by

$\Omega=\sum_{p\in domU}2^{-|p|}$
.

Deflnition 2.2 (weak Chaitin randomness, Chaitin [3, 4]). For any $\alpha\in\{0,1\}^{\infty}$ , we say
$that\alpha isweaklyChaitinrandomifthereexistsc\in Nsuchthatn-c\leq H(\alpha_{n})foralln\in N^{+}$ . $\square$

Chaitin [3] showed that $\Omega$ is weakly Chaitin random.

2.3 Partial randomness
In the works $[9, 10]$ , we generalized the notion of the randomness of an infinite binary string so
that the degree of the randomness, which is often referred to as the partial randomness recently
[1, 8, 2], can be characterized by a real number $T$ with $0\leq T\leq 1$ as follows.

Definition 2.3 (weak Chaitin T-randomness). Let $T\in \mathbb{R}$ with $T\geq 0$ . For any $\alpha\in$

$\{0,1\}^{\infty}$ , we say that $\alpha$ is weakly Chaitin T-random if there exists $c\in N$ such that
$Tn- c\leq H(\alpha_{n})\square$for all $n\in N^{+}$ .

Deflnition 2.4 (T-compressibility). Let $T\in \mathbb{R}$ with $T\geq 0$ . For any $\alpha\in\{0,1\}^{\infty}$ , we say
that $\alpha$ is T-compressible if $H(\alpha_{n})\leq Tn+o(n)$ , which is equivalent to

$\varlimsup_{narrow\infty}\frac{H(\alpha_{n})}{n}\leq T$.

口
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In the case of $T=1$ , the weak Chaitin T-randomness results in the weak Chaitin ran-
domness. For any $T\in[0,1]$ and any $\alpha\in\{0,1\}^{\infty}$ , if $\alpha$ is weakly Chaitin T-random and
T-compressible, then

$\lim_{narrow\infty}\frac{H(\alpha_{n})}{n}=T$, (3)

and therefore the compression rate of $\alpha$ by the program-size complexity $H$ is equal to $T$ . Note,
however, that (3) does not necessarily imply that $\alpha$ is weakly Chaitin T-random.

In the works $[9, 10]$ , we generalized Chaitin’s halting probability $\Omega$ to $Z(T)$ by

$Z(T)= \sum_{p\in domU}2^{-\downarrow\#}$ $(T>0)$ .

Thus, $\Omega=Z(1)$ . If $0<T\leq 1$ , then $Z(T)$ converges and $0<Z(T)<1$ , since $Z(T)\leq\Omega<1$ .
Note that $Z(T)$ is denoted as $\Omega^{T}$ in $[9, 10]$ and $\Omega(T)$ in [12].

Theorem 2.5 (bdaki [9, 10]). Let $T\in \mathbb{R}$ .
(i) If $0<T\leq 1$ and $T$ is computable, then $Z(T)$ is weakly Chaitin T-random and T-

compressible.

(ii) If $1<T$ , then $Z(T)$ diverges to $\infty$ . $\square$

Furthermore, $[9, 10]$ showed that (i) $Z(T)$ is infinitely differentiable as a function of $T\in$

$(0,1)$ , and (ii) if $T$ is $co$mputable, then the value of each derived function $d^{k}Z(T)/dT^{k}$ is weakly
Chaitin T-random and T-compressible.

3 Main result
In this section, we prove the following main theorem of this paper.
Theorem 3.1 (flxed point theorem on partial randomness). For every $T\in(O, 1),\dot{|}fZ(T)$

is a computable real number, then the following hold:

(i) $T$ is right-computable and not left-computable.

(ii) $T$ is weakly Chaitin T-random and T-compressible.

(iii) $\lim_{narrow\infty}H(T_{n})/n=T$ . 口

Theorem 3.1 follows immediately from Theorem 3.3, Theorem 3.5, and Theorem 3.6 below.
Theorem 3.1 is just a fixed point theorem on partial randomness, where the computability $\backslash of$

the value $Z(T)$ gives a sufficient condition for a real number $T\in(0,1)$ to be a fixed point on
partial randomness. Note that $Z(T)$ is a monotonically increasing continuous function on $(0,1)$ .
In fact, $[9, 10]$ showed that $Z(T)$ is a function of class $C^{\infty}$ on $(0,1)$ . Thus, since computable
real numbers are dense in $\mathbb{R}$, we have the following corollary of Theorem 3.1.
Corollary 3.2. The set {$T\in(0,1)|T$ is weakly Chaitin T-random and T-compressible} is
dense in $[0,1]$ . $\square$

In order to prove Theorem 3.1, for each $k\in N^{+}$ , we define a function $\tilde{Z}_{k}$ : $(0,1)arrow \mathbb{R}$ by

$\tilde{Z}_{k}(x)=\sum_{i=1}^{k}2^{-\bigcup_{x}:}p$
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Here, we choose any one recursive enumeration $p_{1},p_{2},p_{3},$ $\ldots$ of the r.e. set dom $U$ as the standard
one for use throughout the rest of this paper. It follows that $\lim_{karrow\infty}\tilde{Z}_{k}(x)=Z(x)$ for every
$x\in(O, 1)$ , and $\sum_{i=1}^{\infty}2^{-1p|}:=\Omega=Z(1)$ .

As a first step to prove Theorem 3.1, we prove the following theorem which gives the weak
Chaitin T-randomness of $T$ in Theorem 3.1.

Theorem 3.3. For every $T\in(0,1)$ , if $Z(T)$ is a $ri_{9}ht$-computable real number, then $T$ is
weakly Chaitin T-random.

Proof. First, for each $k\in N^{+}$ , we define a function $\overline{Ti^{I_{k}}}$ : $(0,1)arrow \mathbb{R}$ by

$\overline{W}_{k}(x)=\sum_{i=1}^{k}|p_{i}|2^{-L_{l}^{p}\Delta}$ .

We show that, for each $x\in(0,1),\overline{W}_{k}(x)$ converges $a\sim skarrow\infty$ . Let $x$ be an arbitrary real
number with $x\in(O, 1)$ . Since $x<1$ , there is $l_{0}\in N+$ such that

$\frac{1}{x}-\frac{\log_{2}l}{l}\geq 1$

for an $l\geq l_{0}$ . Then there is $k_{0}\in N^{+}$ such that $|p_{i}|\geq l_{0}$ for all $i>k_{0}$ . Thus, we see that, for
each $i>k_{0}$ ,

$|p_{i}|2^{-\bigcup_{x}:}\rho=2^{-(\frac{1}{l}-\frac{\iota_{\circ\zeta 2}|r:|}{|\rho:|})|p:|}\leq 2^{-|p;|}$.

Hence, for each $k>k_{0}$ ,

$\overline{W}_{k}(x)-\overline{|\phi^{r}}_{k_{0}}(x)=\sum_{i=k_{0}+1}^{k}|p_{i}|2^{-\bigcup_{x}}Pj\leq\sum_{i=k_{0}+1}^{k}2^{-|p:|}<\Omega$.

Therefore, since $\{\overline{W}_{k}(x)\}_{k}$ is an increasing sequence of real numbers bounded to the above, it
$converg\underline{es}$as $karrow\infty$ , as desired. For each $x\in(O, 1)$ , we define a positive real number $W(x)$ as
$\lim_{karrow\infty}W_{k}(x)$ .

On the other hand, since $Z(T)$ is right-computable by the assumption, there exists a total
recursive function $g:N^{+}arrow \mathbb{Q}$ such that $Z(T)\leq g(m)$ for all $m\in N^{+}$ , and $\lim_{marrow\infty}g(m)=$

$Z(T)$ .
We choose any one real number $t$ with $T<t<1$ . Then, for each $i\in N^{+}$ , using the mean

value theorem we see that

$2^{-\bigcup_{x}} p_{l}-2^{-1_{T}^{p:\downarrow}}<\frac{\ln 2}{T^{2}}|p_{i}|2^{-u_{i}}(x-T)p$

for all $x\in(T,t)$ . We then choose any one $c\in N$ with $\nu\dagger$“ $(t)\ln 2/T^{2}\leq 2^{c}$ . Here, the limit value
$W(t)$ exists, since $0<t<1$ . It follows that

$\tilde{Z}_{k}(x)-\tilde{Z}_{k}(T)<2^{c}(x-T)$ (4)

for all $k\in N^{+}$ and $x\in(T, t)$ . We also choose any one $n_{0}\in N^{+}$ such that $0.T_{n}+2^{-n}<t$ for all
$n\geq n_{0}$ . Such $n_{0}$ exists since $T<t$ and $\lim_{narrow\infty}0.T_{n}+2^{-n}=T$. Since $T_{n}$ is the first $n$ bits of
the $base- t\backslash vo$ expansion of $T$ with infinitely many zeros, we then see that $T<0.T_{n}+2^{-n}<t$
for all $n\geq n_{0}$ .
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Now, given $T_{n}$ with $n\geq n_{0}$ , one can find $k_{0},$ $m_{0}\in N^{+}$ such that

$g(m_{0})<\tilde{Z}_{k_{0}}(0.T_{n}+2^{-n})$ .

This is possible from $Z(T)<Z(0.T_{n}+2^{-n}),$ $\lim_{karrow\infty}\tilde{Z}_{k}(0.T_{n}+2^{-n})=Z(0.T_{n}+2^{-n})$ , and the
properties of $g$ . It follows &om $Z(T)\leq g(m_{0})$ and (4) that

$\sum_{i=k_{0}+1}^{\infty}2^{-}p\tau u:=Z(T)-\tilde{Z}_{k_{0}}(T)<\tilde{Z}_{k_{0}}(0.T_{n}+2^{-n})-\tilde{Z}_{k_{0}}(T)<2^{c-n}$ .

Hence, for every $i>k_{0},2^{-*:}p<2^{c-n}$ and therefore Tn–Tc $<|p_{i}|$ . Thus, by calculating the
set $\{U(p_{i})|i\leq k_{0}\}$ and picking any one finite binary string which is not in this set, one can
then obtain an $s\in\{0,1\}^{*}$ such that Tn-Tc $<H(s)$ .

Hence, there exists a partial recursive function $\Psi:\{0,1\}^{*}arrow\{0,1\}^{*}$ such that Tn–Tc $<$

$H(\Psi(T_{n}))$ for all $n\geq n_{0}$ . Using (1), there is $c_{\Psi}\in N^{+}$ such that $H(\Psi(T_{n}))<H(T_{n})+c_{\Psi}$ for all
$n\geq n0$ . Therefore, $Tn-Tc-c_{\Psi}<H(T_{n})$ for all $n\geq n_{0}$ . It follows that $T$ is weakly Chaitin
T-random. $\square$

Remark 3.4. By elaborvsting Theorem 2.5 (i), we can see that the left-computability ofT results
in the weak Chaitin T-randomness of $Z(T)$ . On the other hand, by Theorem S. $S$, the right-
computability of $Z(T)$ results in the weak Chaitin T-randomness of T. We can integrate these
two extremes into th6 following form; For every $T\in(0,1$], there exists $c\in N^{+}$ such that, for
every $n\in N^{+}$ ,

$Tn– c\leq H(T_{n}, (Z(T))_{n})$ , (5)

where $H(s,t)$ is defined as $H(<s, t>)$ uyith any one computable bijection $<s,$ $t>flom(s,t)\in$
$\{0,1\}^{*}x\{0,1\}^{*}$ to $\{0,1\}^{*}$ (see $[3J$ for the detail of the notion of $H(s,$ $t)$ ). In fact, if $T$ is left-
computable, then we can show that $H((Z(T))_{n})=H(T_{n}, (Z(T))_{n})+O(1)$ , and therefofe the
inequality (5) results in the weak Chaitin T-randomness of $Z(T)$ . On the other hand, if $Z(T)$

is fight-computable, then we can show that $H(T_{n})=H(T_{n}, (Z(T))_{n})+O(1)$ , and therefore the
inequality (5) results in the weak Chaitin T-randomness of $T$ .

Note, however, that the inequality (5) is not necessanly tight except for these two extremes,
that is, the following inequality does not hold: For every $T\in(O, 1$ ],

$H(T_{n}, (Z(T))_{n})\leq Tn+o(n)$ , (6)

where $o(n)$ may depend on $T$ in addition to $n$ . To see this, contrarily assume that the inequality
(6) holds. Then, by setting $T$ to Chaitin’s $\Omega$ , we have $H(\Omega_{n})\leq H(\Omega_{n}, (Z(\Omega))_{n})+O(1)\leq$

$\Omega n+o(n)$ . Since $\Omega<1$ , this contradicts the fact that $\Omega$ is weakly Chaitin random. Thus, the
inequality (6) does not hold. $\square$

The following Theorem 3.5 and Theorem 3.6 give the T-compressibility of $T$ in Theorem 3.1
together.

Theorem 3.5. For every $T\in(O, 1)$ , if $Z(T)$ is a right-computable real number, then $T$ is also
a right-computable real number.

Prvof. Since $Z(T)$ is right-computable, there exists a total recursive function $g:N^{+}arrow \mathbb{Q}$

such that $Z(T)\leq g(m)$ for all $m\in N^{+}$ , and $\lim_{marrow\infty}g(m)=Z(T)$ . Thus, since $Z(x)$ is an
increasing function of $x$ , we see that, for every $x\in \mathbb{Q}$ with $0<x<1,$ $T<x$ if and only
if there are $m,$ $k\in N^{+}$ such that $g(m)<\tilde{Z}_{k}(x)$ . It follows from Theorem 2.1 (ii) that $T$ is
right-computable. $\square$
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The converse of Theorem 3.5 does not hold. To see this, consider an arbitrary computable
real number $T\in(0,1)$ . Then, obviously $T$ is right-computable. On the other hand, $Z(T)$ is
weakly Chaitin T-random by Theorem 2.5 (i), and obviously left-computable. Thus, $Z(T)$ is
not right-computable.

Theorem 3.6. For every $T\in(0,1)$ , if $Z(T)$ is a left-computable real number and $T$ is a
right-computable real number, then $T$ is T-compressible.

Proof. For each $i\in N^{+}$ , using the mean value theorem we see that

$2^{-}t|p|-2^{-+}|p|>(\ln 2)|p_{1}|2^{-P}\tau(t-T)\underline{|}\perp|$

for all $t\in(T, 1)$ . We choose any one $c\in N^{+}$ such that $(\ln 2)|p_{1}|2^{-\lrcorner P}\tau|\underline{|}\geq 2^{-c}$ . Then, it follows
that

$\tilde{Z}_{k}(t)-\tilde{Z}_{k}(T)>2^{-c}(t-T)$ (7)

for all $k\in N^{+}$ and $t\in(T, 1)$ .
Since $T$ is a right-computable real number with $T<1$ , there exists a total recursive function

$f:N^{+}arrow \mathbb{Q}$ such that $T<f(l)<1$ for all $l\in N^{+}$ , and $\lim_{larrow\infty}f(l)=T$. On the other hand,
since $Z(T)$ is left-computable, there exists a total recursive function $g:N^{+}arrow \mathbb{Q}$ such that
$g(m)\leq Z(T)$ for all $m\in N^{+}$ , and $\lim_{marrow\infty}g(m)=Z(T)$ . Let $\beta$ be the infinite binary string
such that $0.\beta$ is the base-two expansion of $Z(1)$ (i.e., Chaitin’s $\Omega$). Note that $\beta$ contains infinitely
many ones, since $Z(1)$ is weakly Chaitin random.

Given $n$ and $\beta_{\lceil Tn\rceil}$ (i.e., the first $\lceil Tn\rceil$ bits of $\beta$), one can find $k_{0}\in N^{+}$ such that

$0. \beta_{\lceil Tn\rceil}<\sum_{i=1}^{k_{0}}2^{-|p_{i}|}$ .

This is possible since $0.\beta_{\lceil Tn]}<Z(1)$ and $\lim_{karrow\infty}\sum_{i=1}^{k}2^{-|p_{i}|}=Z(1)$ . It is then easy to see that

$\sum_{i=k_{0}+1}^{\infty}2^{-|p.|}=Z(1)-\sum_{i=1}^{k_{0}}2^{-|p;|}<2^{-\lceil Tn\rceil}\leq 2^{-Tn}$.

Using the inequality $a^{d}+b^{d}\leq(a+b)^{d}$ for real numbers $a,$ $b>0$ and $d\geq 1$ , it follows that

$Z(T)- \tilde{Z}_{k_{0}}(T)=\sum_{i=k_{0}+1}^{\infty}2^{-\forall^{i}}p<2^{-n}$ . (8)

Note that $\tilde{Z}_{k_{0}}(T)<\tilde{Z}_{k_{0}}(f(l))$ for all $l\in N^{+}$ , and $\lim_{larrow\infty}\tilde{Z}_{k_{0}}(f(l))=\tilde{Z}_{k_{0}}(T)$ . Thus, since
$\tilde{Z}_{k_{0}}(T)<Z(T)$ , one can tllen find $l_{0},$ $m_{0}\in N^{+}$ such that

$\tilde{Z}_{k_{0}}(f(l_{0}))<g(m_{0})$ .
It follows from (8) and (7) that

$2^{-n}>g(m_{0})-\tilde{Z}_{k_{0}}(T)>\tilde{Z}_{k_{0}}(f(l_{0}))-\tilde{Z}_{ko}(T)>2^{-c}(f(l_{0})-T)$ .
Thus, $0<f(l_{0})-T<2^{c-n}$ . Let $t_{n}$ be the first $n$ bits of the base-two expansion of the
rational number $f(l_{0})$ with infinitely many zeros. Then, $|f(l_{0})-0.t_{n}|<2^{-n}$ . It follows from
$|T-0.T_{n}|<2^{-n}$ that $|0.T_{n}-0.t_{n}|<(2^{c}+2)2^{-n}$ . Hence

$T_{n}=t_{n},$ $t_{n}\pm 1,$ $t_{n}\pm 2,$
$\ldots,$

$t_{n}\pm(2^{c}+1)$ ,
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where $T_{n}$ and $t_{n}$ are regarded as a dyadic integer. Thus, there are still 2$c+1+3$ possibilities of
$T_{n}$ , so that one needs only $c+2$ bits more in order to determine $T_{n}$ .

Thus, there exists a partial recursive function $\Phi:N^{+}\cross\{0,1\}^{*}\cross\{0,1\}^{*}arrow\{0,1\}^{*}$ such that
$\forall n\in N^{+}$ $\exists s\in\{0,1\}^{*}$ $|s|=c+2$ &\Phi (n, $\beta_{\lceil Tn\rceil},$ $s$ ) $=T_{n}$ .

It follows from (2) that $H(T_{n})\leq|\beta_{\lceil Tn\rceil}|+o(n)\leq Tn+o(n)$ , which implies that $T$ is T-
compressible. $\square$
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