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1 Introduction

In this paer, we illustrate that the renormalization group method, which is originally proposed in [1, 2]
and largely improved in (3], is also useful to analyze the spectrum of the Hamiltonian for the fermion
system.

We consider a system which a fermion field coupled to a quantum system S. The Hilbert space of the
total system is given by

H=Hs®F, (1.1)
where Hg denotes the Hilbert space for the quantum system S which is a separable Hilbert space, and F
denotes the fermion Fock space:
o0 n
F=@®Arm,

n=0

where A"L3(M) denotes the n-fold antisymmetric tensor product of L?(M) with A°L?(M) = C, M :=
R? x L is the momentum-spin arguments of a single fermion with L := {-s,—s+1,...,8—1,s} and
s denotes a non-negative half-integer. The Hamiltonian of the system S is denoted by Hg which is a
given self-adjoint operator on Hs and bounded from below. Let b*(k), b(k), k € M be the kernels of the
fermion creation and annihilation operators, which obey the canonical anticommutation relations:

{b(k),5° (k)} = &, ;(k — k), {b(k),b(k)} = {6 (K), 5" ()} =0, (12)
k=(k1), k=(k,I) eM.
Let 2 =(1,0,0,...) € F be the vacuum vector. The vacuum vector is specified by the condition
b(k)2=0, keM. (1.3)
The free Hamiltonian of the fermion field H is defined by
Hp = / 3 w(k, 1)b* (k, bk, 1)dk,
R JeL

with the single free fermion energy w(k) = clk|¥, k = (k,l) e M.
The operator for the coupled system is defined by

Hy(0) = H3 ®1 + 1 ® Hy + W, (6). (1.4)

Here, the operator W, (@) is the interaction Hamiltonian between the system S and the fermion field, and
6 € C is a complex scaling parameter. We suppose that the interaction Wy(6) has the form.

W@ = D MW (6), (1.5)
M+4+N=1
Waen(6) = /1; ., AKOENIGD, (KON @ b (k) b (ke o) - (), (1.6)
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where g € R is the coupling constant and

KMN) = (ky oo kag kg, kn) € MM+N

/M N dKMN) . /d - Z dk, - - - dkpedk; - - - dky, (1.7)
MM+ R+ )(h, JAa)ELM,
(lly 1lN)eLN

and G(e) are functions with values in operators on Hg. The precise conditions for G( ) M,y are written
in the next section. Suppose that Hg has a non-degenerate discrete eigenvalue E € o4 (HS) Since the
vacuum vector €2 is an eigenvector of Hy with eigenvalue 0, Ho(#) has an eigenvalue E. We are interested
in the fate of the eigenvalue E under influence of the perturbation W, (6).

The fermionic renormalization group is constructed for the operator (1.4), and under suitable condi-
tions, it is proved that Hy(#) has an eigenvalue E,(6) closed to E for small g € R. The eigenvalue E,(6)
and the corresponding eigenvector ¥, (8) is constructed by the same process as in (3].

The (bosonic) operator theoretic renormalization group was invented by V. Bach, J. Frohlich, and
I. M. Sigal [2, 1]. In [1], the operator of the similar form (1.4)-(1.6) is considered, but boson is treated
instead of fermion and M+ N < 2 is assumed. They proved the existence of an eigenvalue of the (complex
scaled) Hamiltonian, and constructed the eigenvalue and the corresponding eigenvector. Moreover, they
gave the range of the continuous spectrum which extended from the eigenvalue. In the paper [3], V
Bach, T. Chen, J. Frohlich, and I. M. Sigal introduced the smooth Fbshbach map and largely improved
the proof of the convergence of the renormalization group.

Our paper is based on the smooth Feshbach map and the improved renormalization group method [3].
Our construction for the fermionic operator theoretic renormalization group is similar as in [3] without
the Wick ordering and its related estimate. The feature of this paper is that we can treat a large class
of interactions. In particular, the interaction Hamlltoma.n W,(6) includes arbitrary order of the creation
and annihilation operators.

The paper is organized as follows. The precise definitions of H,(6) is given in the Section 2, where we
explain the problem in detail. We review the smooth Feshbach map in Section 3 for reader convenience.
The main originality of this paper is to obtain the Wick ordering formula for fermion. The Wick ordering
formula for fermion and related formulas are given in the Section 4. In the last section we sketch the
proof of our main result.

2 Hypotheses and Main Results

Through this paper, we denote the inner product and the norm of a Hilbert space X’ by (-,-}x and || - ||
respectively, where we use the convention that the inner product is antilinear (respectively linear) in the
first (respectively second) variable. If there is no danger of confusion, then we omit the subscript A’ in
(»*)x and || -||. For a linear operator T on a Hilbert space, we denote its domain, spectrum and resolvent
by dom(T), o(T) and Res(T'), respectively. If T is densely defined, then the adjoint of T is denoted by

One can identify a vector ¥ € F with a sequence (W), of n-fermion state ¥(™ € A"L3(M) C
L?(M™). We observe that, for all ¥ € A"L2(M) and 7 € S,,

"p(kﬂ'(l)’ T ’k'rr(n)) = 8@("’)'/’(’511 MR k'n)) a.e. (2'1)

where S,, is the group of permutations of n elements and sgn(wj the sign of the permutation #. The inner
product of F is defined by

[+ <]
(U,8) = ) (¥™, ™) a2 (2:2)
' n=0
for ¥, ® € F, where
(¥, 80) puan = [ TT ke ™ ks, - k) B ks, - ). (2.3)

j=1



We define the free Hamiltonian of the fermion field H; by

i I(He )2 < 00} ;

n=0

dom(Hy) := {Q?E.¢

(HO) ™ (k- kn) = (anw(k,-)) U™ (ky, - kn), n€EN

Jj=1
(Hf‘I’)(o) =0,

where

wk) = ek, k=(k )M,
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(2.4)

(2.5)

(2.6)

with a positive constant c,v > 0. For a nonrelativistic fermion, the choice of the constants c,v are
c =1/2m and v = 2, where m denotes the mass of the fermion. In this paper, for any ¥ € F, b(k)¥ is

regarded as a x2, A" L?(M)-valued function:
b(k) : M 3 k — b(k)¥ € :i’o ARLE(M), a.e.,
(b(k)\I!)(")(h,_- ey kp) = \/,T_ﬁq,(nﬂ)(k’ ki, -+ ykn),
where the symbol “x” denotes the Cartesian product. We set
dom(b(k)) := {¥ € F|b(k')¥ € F a.e.k’ € M}.
Note that dom(b(k)) is independent of k € M. We observe that, for all ¥ € ¥ and ® € dofn(Hf),

00 n+-1
@B =Y [ T]au 0, k)"

n=0 jm=1

n+1l

j=1
o< n
-3 f dk T] ak; (b(RYE) ™) (ks -, k)
n=0 MxMn j=1
x w(k)(b(k)E) ™ (ky, - ,kn)
where we have used the antisymmetry (2.1). Hence we have
(¥, Hy®) = / dkuw(k) (b(k), b(k)®)
M
and, in this sense, write symbolically
Hi = / dkw(k)b* (k)b(k).
M

In the same way as (2.11), the number operator, N, is defined by

N = /M dkb® (K)b(k).

We remark that
dom(H;/?), dom(N}/?) ¢ dom(b(k)),

(2.7)
(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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since, for all ¥ € dom(H}/?) and & € dom(N}'?),
189 = [ koo < o,
M
INV2o)? = / dk||b(k)®|? < oo.
M

The (smeared) annihilation operator b(f) (f € L?(M)) defined by

1) = [ S0y b(kIa, (2.14)
_ M
and the adjoint b*(f), called the (smeared) creation operator, obey the canonical anti-commutation
relations (CAR):
{6(£),5(9)} = (£,9), {b(f),b(g)} = {b°(f),b"(9)} =0 (2.15)

for all f,g € L2(M), where {X,Y} = XY +YX.
The Hamiltonian of the total system is defined by

Hg:=HS®1+1®Hf+Wg,

where the symmetric operator W, is of the form:

o0
W= Y MW, (2.16)
M+N=1
Wun = /M o dKMN Gy n(KMN) @ b* (k) - - - b* (kag)b(Ky) - - - b(kN), (2.17)

and
KMN) = (koo kag By, By) € MMAN

/ dK(MIN) :=/ . E dkl"'dkMdﬁl"'diN' (2-18)
MM+N RA(M+N)

ui....,ly)GLM,
(1,...odn)ELY

Here, for almost every K(M:N) ¢ MM+N Gy v (KMN)) jg g densely defined closable operator on Hs.
Hy := H3®1+1® H; is regarded to the unperturbed Hamiltonian, and W), is regarded to the perturbation
Hamiltonian.

~ In what follows we formulate hypotheses of main theorem and introduce some objects.

Hypothesis 1. (spectrum) Assume that Hs has a non-degenerate isolate eigenvalue E € o4(Hg) such
that

dist(E,o(Hs))\{E}) 2 1. (2.19)

In general, if the operator Hg has a discrete eigenvalue E, it holds that ¢, := dist(E, o(Hs)\{E}) > 0
and dist(c; *E, o(cy *Hs))\{ci * E} > 1. We can assume (2.19) without loss of generality.

Since o(Hs) = [0,00), the spectrum of the unperturbed Hamiltonian is o(Ho) = [Eo, 00) with Ep :=
inf o(Hs). The vector (2 is an eigenvector of Hy with eigenvalue 0. Hence, Hy has an embedded eigenvalue
E. In this paper, we study the fate of E under the perturbation W,(6). To analyze the perturbed
Hamiltonian Hy, for § € R, we introduce the family of operators Hy(6) of the form

Hy(6) = (1® T)Hy(1 ®T5) = Ho(6) + W, (0), (2.20)
where I, is the dilation operator, i.e.,

Tob(k, )T = p=%/b(p 77K, 1), | (2:21)
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and
Ho() = Hs®1+e™1® H; (2.22)
o0
Wo(0) = (1@Teo)W,(10T%) = > g™ VWan(8), (2.23)
M+N=1

Wum,n(0) =T e War,nTos

=/ ., AEOENGED (KON @ b (k) - b (kae)b(Fa) - - b(Ew), (2.29)
MM+

G (K M) 1= AMANII2G,, (o8 (M), (2.25)
KM .= (%K), 1. .. ;% g, Inr; %ka ;. . ek, D). (2.26)

"Hypothesis 2. Assume that, for every 6 in some complex neighborhood of 0, the following hold:

(i) The operator Gy n(e? KM:N)) is defined on dom(Gu,n) that contains dom(Hy(8)) and the map
0 — Gun(K (MN))(Hg + i)~1 is estended to a bounded operator-valued analytic function on
some complex neighborhood of 6 = 0.

(i) For all M + N > 1, Wp,n(0) is relatively bounded with respect to Ho(f) and

o0

Y GMMWan (0)¥] < ag(8)l| Ho(6)T| + be(O)I¥ I, (2:27)
M+N=1

Jor all ¥ € dom(Ho(0)), with some constants ag(6),by(6) > 0,
(i43) limg_0ag(f) = 0 and limy_.0 by(f) = 0.
(iv) There exists a constent v > 1/2 such that

dK (M,N) 0 o
/MM“, o ~ 75y "GS\J),N(K(M'N.))(HS +4)7H2, < o0,
[ jum1 @(K;) [T5m1 W(kj)] ;

holds for all M + N > 1.

By the hypothesis above, one can show that, Hy(6) is closed operator with the domain dom(H,(8)) =
dom(Hy). In particular, Hy is a self-adjoint operator on dom(Hp).

By Hypothesis 2, we can consider the case § = —id/v (0 < ¥ < 7/2). In what follows, we set § =
—1i9/v and fix the parameter 9 € (0, 7/2) so that Hypothesis 2 holds. Then, the spectrum o(Ho(—id9/v))
contains separate rays of continuous spectrum and the eigenvalue E of Ho(—19/v) are located at tip of
a branch of a continuous spectrum. Indeed, we observe

o(Ho(—i9/v)) = {A1 + € x|\, € 0(Hs), Az € 0(Hy)}
S{E+e ™A€ [0,00)}.

In order to study the fate of E under the perturbation of W, we introduce a spectral parameter z € C,
and define a family of operators H|[z] by

H[z) = Hy(—id9/v) - E - 2, ‘ (2.28)

where 0 < ¥ < w/2. By using the fermionic renormalization group method, we will construct a constant
ey and a vector ¥, € dom(Hy(—i9/v)) \ {0} such that

Hleg)¥g =0,

which implies that E, := F + e, is an eigenvalue of H,(—4¥/v) and ¥, is the corresponding eigenvector.
The following theorem is our main result:
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Theorem 2.1. Fiz 6 = —i¥/v as above. There erists a constant go > 0 such that, for all g with |g| < 9o,
Hy(0) has an eigenvalue E; and the corresponding eignevector ¥, with the property

lmE,=E, lim¥,=ps®0, (2.29)

where pg s the normalized eigenvector of Hg.

3 Smooth Feshbach map

In this section we review the smooth Feshbach map [3]. The smooth Feshbach map is the main ingredient
to construct the operator theoretic renormalization group. Let x be a bounded self-adjoint operator on
a separable Hilbert space H such that 0 < y < 1. We set

X:=v1-x2
Suppose that x and  are non-zero operators. Let T be a closed operator on H. We assume that
xT C Tx,

and hence xT' C T'x, which mean that x and ¥ leave dom(T') invariant and commute with T'. Let H be
a closed operator on H such that dom(H) = dom(T") and we set

H, :=T+xWx, H; =T+ xWx,

where W := H — T. We observe that, by the assumptions, the operators W, H, and Hy, are defined on
dom(T) and H, (resp. Hy) is reduced by Ranx (resp. Rank). We denote the projection onto Ran x
(resp. Ranx) by P (resp. P) and have

H, c PH,P + P'TP*, H; c PHyP + PLTP,

where PL := 1 — P (resp. P+ := 1~ P) is the projection on ker x (resp. ker ¥).
We now introduce the Feshbach triple (x, T, H) as follows:

Definition 3.1. Let x,T and H as above. Then, we call (x,H,T) a Feshbach tnple if Hy 18 bozmded
invertible on Ranyx and the following conditions hold: the operators XWXHg X and xWxHi 1xWx
extend to bounded operators from M to Ranx and xHg 1yWx to bounded operators from H to Rany,
where Hg ! denotes the inverse operator of PHXP

We remark that, if Hg is bounded invertible on Ran ¥, then the operators xWxHg 1%, XHg lgWx
and xWxHgz'xWy are defined on dom(7T).

For a Feshbach triple (x, H,T), we denote the closures of the operators xWxHz 1% xWxHg lxWx
and xHy 1¥Wx by the same symbols.

The definition of the Feshbach triple as above implies

XWxHg'x, xWxHg'xWx € B(H;Ran), xHg'xWx € B(H;Ran¥). (3.1)
For a Feshbach triple (x, H,T), we define the operator
Fy(H,T) := Hy — xWxHg'xWx, (3.2)

acting on H. We observe, by the definition of the Feshbach triple, that Fy (H,T) is defined on dom(T).
The map from Feshbach pairs to operators on H

(x, H,T) —> Fy(H,T) ' (3.3)
is called the smooth Feshbach map (SFM). We remark that F,(H,T) is reduced by Ranx and
F,(H,T) c PF,(H,T)P + P*TP+.
The SFM is an isospectral map in the sense of the following theorem.
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Theorem 3.2. (SFM [3]) Let (x, H,T) be a Feshbach triple. Then the following (i)-(v) hold:

(i) If T is bounded invertible on Rany and H is bounded invertible on H then F,(H,T) is bounded
invertible on H. In this case,

Fy(H,T)" = xH 'x + xT'x. (34)
If F,(H,T) is bounded invertible on Ran x, then H is bounded invertible on H. In this case,
H™ = Qu(H,T)F(H,T)7'QF (H,T) + %Hz '%, (3.5)
where we set
Qx(H,T) := x — XHg'xWx € B(Ranx, X), (3.6)
Q¥ (H,T) := x - xWxHz'% € B(H, Ran). 3.7)
(i) If v € ker H \ {0}, then x¥ € ker Fy (H,T) \ {0}:
Fy(H,T)xy =0. (3.8)
(iii) If ¢ € ker F5, (H,T) \ {0}, then Qx(H,T)¢ € ker H:
HQ,(H,T)¢=0. (3.9
Assume, in addition that, T is bounded invertible on Ran. Then, ¢ € Ranx \ {0} and
' Qx(H,T)¢ #0.

4 'Wick ordering

In this section, we give the Wick’s theorem for fermion. Let b*(k), b~ (k), k € M be the kernels of the
fermion creation and annihilation operators, respectively.
For N :={1,...,N} and (01,02,...,0n) € {—1,+1}¥, we denote

T 27 (k5) == b7 (k)62 (ka) - - - 6°™ (kwy). (4.1)
JEN
For any subset Z C N, we denote
II 67 (ks) = T1 x(G € D)2 (5),
JET JeEN
where x(j € Z) is the characteristic function of Z. For T C N, we set T; := {j € Z|o; = +1}. The
Wick-ordered product of ],z b (k;) is defined by

s JI o (ky) s = (H b"’(k,-)) (1’[ b-(kj)) X
JET

JET, JET_

For (01,...,0n) € {—1,1}¥ and any subset Z € N, we define

seN\TLi2) = (A7 7, 7)

:=sgn(.1 2 - K K+1 .- K+1L K.+L+1 N),
i J2 + Ik JK+1 °°° JK+L  JK+L+1 ' JN
where
{J1 42, -k} =N\TI, ' with j1 <j2<:-- <jn,
{ik+1s. - Jx+L} = T4, with jx+1 < jx+2 - <Jx+L,
{ik+L41s.. - N} =1, with jrxtr+1 <Jx+r+2 <-+- <Jn.

The Wick-ordering of the Fermion product (4.1) is given by the following Theorem:
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Theorem 4.1. For any (o4,...,0n) € {+1,—1}¥, the formula

H b1 (k;) = Z sen M\ T;Z;7.)( Q, H b"’(k,-)Q> : Hb"f(lc,-) : (4.2)

JEN ICN < JENNT Jj€T
holds.

Proof. We prove the theorem by induction with respect to N € N. For N = 1, (4.2) is trivial. Assume
that (4.2) is true for all products with up to N factors, for some N > 1, and consider the product of
N + 1-factors. We set N + 1 := N U{N + 1}. For simplicity we write b; 79 1= b%(k;). In the case
on+1 = —1, we have

H by = l'[b"b,\,+1

JEN+1 JEN

= Z sgn(M\Z;Z4;7_) <ﬂ, H b;’9> : Hb;’ tbyia
ICN JEMT JET

=Y sen(MT;74;7.) <9, II "’9> | J AL
IcN JENNT i€z

On the other band, for Z' C N +1,
sgn((V + I\Z'; I,;I) <Q, H °’Q> II b7 by ¢ (4.3)
FEN+INT JET

vanishes if N +1 € (M +1)\Z'. In the case N + 1 € I’, we have
(4’3) = Sgn(N\I;I-HI—_) <Q) II ﬂ,n> H b bN+l *y
JEN\T JET

with T = I'\{N + 1}, where we use the fact that sgn((N + 1)\Z";Z};Z") = sgn(NM\Z;Z;;Z_). Hence,
we obtain

I8 = Y sen(W+I\T;TT0) <n II b’i(kj)9> s T 07 (k5) =
JEN+1 ICN+1 JEWNHINT jET
Next we consider the case o1 = +1. By the CAR, we have
{7, b"’ } ={(Q,b7*b "’Q)

By using this relation and the induction hypothesis, we have

II by = E( —1)Nk(Q, b7 bk . 2) H b + ()b, H b3’

JEN+1 k=1 F€EN\{k} JEN
N
=Y ()N, 5005,,0) Y sen((M\{ED\T T4 T-)
k=1 ICN\{k}

x<9, II b;’fn>=1'[b;.”=
JEN{RINZ i€z

+ (=)o, [T 07
JEN



We note that
N

Yo > FhID=) ) FkI),

k=1ICN\{k} ICN keN\T
for any function F(k,Z). By using (4.4), we observe

It =3 3 (-1N*(0,b2b5,,0) sen((M\ KT T 7.

JEN+1 ICN keN\Z

x<9, II b§fﬂ>:Hb§f:
JEM (INZ i€z

+ (=D)Vbf,, [T 55
JEN

For T C M\{k}, we set

K —1:= |[(M\{kD\Z|, :
{b1,...,8x1} = (M\{ED)\Z, with & <. - <Lk,

Let {jk+1,...,jn} be indexes such that

JK+1 <+ < JN,

and
N
:Hb;’: = H by,
JET s=K+1
namely,

| K-1 N
<n, I b;’ﬂ>:Hb§’:=<Q,HbZ"n.>: II o5 :.

FEN\{EP\T jez j=1 e=K+1
The sign in Eq. (4.6) can be written as
sgn((M\{k\Z; I Z-)

— (1 v« k=1 k k+1 - K-1 K K+1 .- N
=N e ... feer k& ... kg Exey JK41 ... N

For each fixed k € M\Z, we set
n:=max{s € {1,...,K — 1}|¢, < k}
Then we have
(=1)*"sgn((M{ED\T; T4 )

cenf 1Pl on o4l ok B+l K K+1---N)
O\ bo boy kK fn o By B . fky Gkl GN )

Note that
h< o<l 1 <k<ly< - <lg_,.

By changing the names

(211- °"e'n—1a kyln’- . 7ek—11-- . 1eK—1) - (jl,- . ,jn—lsjn’er-l,v- ~,jk,- . ,]'K—l),

56

(4.4)

(4.5)

)

(4.7)

(4.8)

(4.9)
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we obtain that

Jv -t JN
=(-1)*"sgn(M\Z; ;). (4.10)

sgn((M\{k})\Z; Z4;Z-) =(~1) "sgn (1 e N)

By (4.7),(4.8), and (4.10), we have

N
5= 3 (-1)”*"(—1)'°f"sgn(j\/\z;z+;I_)(n,b b1 <n ]'[b‘j"n>= IT b5 -

ICN keN\Z ;:'x‘ l=K+1
' K N
= 3" (ML Z-) Y (-D)V " (Q, b7 b, Q) <Q Hb,"n> IT &5
ICN n=1 ,z;'x‘ I=K+1
N
=Y sga(ML I, ) (- <n | § Ly > IT v
ICN I=] l=K+1
= Z sgn((N + )\T;Z+;Z) <9 H b;”n> : Hbj’ : (4.11)
ICN JEN+IN\T Jj€ezT
where we use the equation
K
Z(—I)y_“ (Q,b:: bx_HQ) <Q H b"nQ>
e i
_ [{a T, i, +1Q> K is odd,
0 K is even.
Similarly, we have
(4.6) = ) sgn((V + )\T; T} IV) <n, II b;’n> : T 85 + (@12
IcN FJEWN+INT JET’

where I’ := T U {N + 1}. By (4.11), (4.12), we obtain the desired result:

II 5= > sgn(N\I;I+;I_)<Q, II b;”ﬂ>:Hb;‘:

JEN+1 ICN+1 JEWN+INT jex
a
Lemma 4.2. Let f;[r]: M- R,, j=1,...,N be Borel measurable functions. Then
N ,
I (&7 (k) £51H,1}
Jj=1
= Y sen(M\Z,: T [ b*(ky)
ICN JElL
N _ ] N
(a1 {roamoensf s 5000+ 35 o] o)
=t & o retty
x II b—(kj),
jeT_

where [b%i *)|XUET) = b2 (k;) for j ¢ T and [b% (k;)|XU¥T) =1 for j € I.
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Proof. Similar to the proof of [1, Lemma A.3]. O

Let
Wmn ¢ (R+) XxM™ xM" — C, m,n € Ny, (413)

be measurable functions. In the following, we use the notations
k™ = (ky,... km) €M™, k™ = (ky,..., k,) € M™.

We assume that each function wm, [r; k™; k()] is antisymmetric with respect to k(™ € M™, k™™ € M",
respectively, i.e.,

Wi [15 K™ K] = (i s K™ E] 2870

1

== 30 Y sgn(m)sga(®)wmnlr; K™ KV, (414)
’ ®ESm ”?Esn

where
K™ = (kaq1)s- - - knmy)y kS 2= (Rqays - - - s Kx(m))-
For L € Ny, we consider the opera.t;or
| JolH Wt Ny fulHf Wy, N, -+ fL-1[Hf Wy N, fLIH], (4.15)
where the operators Wy, ,, is given by

Won = Wm,n-[wm,n]

- / AKmmY b (k™) ), [ He; K™ ]a(E™) (4.16)
Mm+n
We set
K:=M+N,
L L
M:=Y"M, N:=) N. (4.17)
=1 =1

Corresponding to (4.17), we set

kM) :=(k£M‘)){‘=1 eEMMi x ... x MM:

=(k1,1; veey kl.M;; kﬂ,l’ ey k?.Ma; tee ;kL,ls see ’kL,ML)»
EN) = (kNN E | e MM x ... x MPE
=(I.‘;l,l’ ey El,N;; Ez,la ey ’;2,N3; Tty EL.I’ [ERX ,;L,NL)
We define
K :={1,...,K},
-1 -1 ’
Kne:={ 3 (Mj+Nj)+1,...,3 (Mj+N;)+ M, 3,
j=1 j=1

-1 [
Kne:= {Z(Mg +Nj)+Mj+1,---,Z(Nj+Mj)}, £=1,...,L.

j=1 J=1
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Clearly,

L .
U U Kue={Km1,Kn1,Km2,K8,2,-+ . KmL, Kn,L}-
=1 _—.MN -

For m,n,p,q € Ny withm +n+p+¢q > 1, we define

Wm (s k™) k™) .= Mﬁf.lz(p)di(q) bt (2P Y wmipnqglrs K™, z®; kM, £ Db ().

The Wick ordering formula for the operator (4.15) is given by the following result:

Theorem 4.3. Let L € N be a number. Suppose that M; € Ngo, N; € Ng are numbers such that
Mg+ Ny > 1. Let {wp, N, } 5=y be functions defined in (4.18). Then,

SolHslWaty 8y filH\ Wy N, -+ - fL-1[Hf )Wy n, fL[Hy]

_ . . s KM't
- z Z sgn(K\I, : 7 .) £==].—I1 sgn (IM,t K:M,t\IM.l)

I, eCKMe INCKNe
2=1,...,.L &=1,....L

Kn.e (me) g7(ne) oy (me)
X sgn (IN,! KN,z\IN,g) -/M"H'v- H {dk dk } H b (k )

lacl
x { DL[Hpi (Wit e K™ k""’},-l,{ft},go]} I[b (k™) (4.18)
l—l
where
Dyl {Wigtlt, Ne—nei Ks™3 kE Yimys {Fe}ima)
L-1
= e {0 T W B 4 B skt 400
4=1
X Wit No—ny [T+ 7L kme); l}g"')]9>fz,[r + 7],
and
sgn(K\Z,: Z :) :== sgn ( L K L ) (4.19)
’C\I Ut-l T, U¢=1 INe
-1
re =3 Slk{™) + Z k™), £=23,...,L-1, (4.20)
I=1 =841 ’
L L » L-1 _ :
ro=Y k™)), 1= EE™), =Y SE™), (4.21)
I=1 1=2 =1
[4 - L .
o= Y SEM™)+ Y sk™), £=1,...,L-1. (4.22)
=1 =41
L L .
For= Y Sk™), 7= SE™), (4.23)
=1 I=1
L L
=[Tmely, ne:=\Ing, mi=d_my, n:=) ne. - (429)
=1 =1
(4.25)

Here, Z[x™)] := T7_, w(x;), (x = ki, k1)
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Proof. By the definition of Wa,,~,, We have

L
(L.H.S. of (4.18)) = /M IT {H dke; [ dk,,} folHy)

=1 { j=1 J=1
x b (kM Ywa, v, [Hys KM B0~ (RV9) £
x bt (k5™ Yngy vy [Hps RS2 BV 10 (BS™)) £ [ H
woer
xb+(k(ML l))wML W Noo 1[H!, (ML 1) (NL 1)]b—(k(NL ﬂ)fL 1[H)
x b+ (kM Yway v, [Hi & ‘L“”;ki”"]b(k&”L-’)fL[Hfl-
By using Lemma (4.2), we have |
(L.H.S. of (4.18))

/;‘ H{Hdk,_,]‘[ak,_,} Y Y emk\L:Io) [ﬁ 11 b'*'(kt,,-)}

=1 | i=1 J=1 In,CRM,eIN,CKN ¢ 2=1j€Tnm,e
¢=1,....L £=1,..,L

L—-1
X folr + A0]<Qi { H ( II b+(k¢.j)) WMe,Ne [H.f + 7+ Ay kgM‘); ng‘)]

=1 \jeKpm,e\Im,e

X ( H b~ (l;g'_,'_)) fe [Hf +r+Ag+ Z w(l;,z,j)] }
JEXM,\TM ¢ JEIN,: ‘
x ( II b+(k,,,,-)) wagy,ny [Hy + 1+ A k{3 E{""] ( II ¢ (z'c,,,,-)) Q>
JERM,L\TM L JEKM,L\IM,L r=H,
L
x folr+Ap+ Y wkes)| (IT TI & kes) (4.26)
J€INL L=13€IN,. '
where '
£~1 ~ L )
A=Y Y wky)+ D Y wlky), £=23,...,L-1,
I=1j€ZIn, le=l+1 5€TMp .
L L L-1 _
Ao = Z Z w(ku), A1 = Z 2 w(kl,,-), AL = Z Z w(kz,j).
l=1 j€Tn, 1=2 j€Tpm, =1 jeIm,

Next, we move the integral in the variables Kas,¢\Za,e, Kn,e\In,e to the inside of the inner product
Q,---Q):

(L.H.S. of (4.18)) :
= Y % sz TI4 T dkes I dies
Tne, GKM e IN,CKN,e " t=1 | j€Inm,e Jj€In,
lm=l,..L ¢&=1,...,L
L - ) .
X H II bt (kld) G [1"; {{kl-j }jEIM,Z ’ {kl,.‘i }J'GIN,z }l—l ]
| £=15€Tp,e R L - r=H;
L ] 3
x {IT II b Geea)| (4.27)
| 2=1 5€Zne ]
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where

G I:T; {{kl,j YieTmer {fcl.j Yiezn.e }:___1 ]
= fo[r + Ao]<9a { Lff/ [ II dkes I dEt,j:I
=1

FEKM,e\TM,e FEKN,e\IN,e
X ( II b+(kl.:i)) WM,,N, [H_f +r+ Ay k£M¢); ,.ggNl)] ( H b~ (Ez,j))
JEKA,\TM,e JELN,\IN,e
X fl[Hf +r+ A+ Z w(’::g,j)]}
JE€INe
X j [ H dch,j H dk[,‘j]
JEKM,L\IM,L JEKN,L\IN,L

x ( H b+(k1,,j)) WML, N [H + 7+ AL kMY, I“cﬁ”‘)] ( H b~ (’:’L.j)) ﬂ>

JECM,L\TM,L JEKM,L\INM,L

X fL [‘I‘ +ArL + Z w(h,j)]

JEINL

Here we used the fact that Ag, £=1,...,L and ¥z, , w(ke,;) are independent of kz,;(j € K, \Tne),

Eg_,- (4 € KN,e\IN,t). We rename the variables in (4.26) as follows

kej — e, 7€ Kme\Impe,
kej — %5, j€KN\INe-

Then we have

WM,,N, [r; kEM‘); ESN‘)]

kej=%e,5,5€KM,e\Im,e
ke, i=%¢,5,JEXN,\IN,e

- Kne Kn.e )
sen (IM,l ’CM,t\TM,t) EM\In: Kno\Ine

X WM,,N, [7'; {kl.j }jEIM,l ) {zl.J' }J’EICM,z\Iu.z |{kl,j }J'€1'~,¢ ’ {57!,.1' }J'E’CN.t\IN.:] ’
and

Jl0 e 1w T s

JECM,\Tn e JEKXN\IN,¢ F€kam,e\Irm,e

X WMy, Ne [H_f +r+ Ag kMO TcgN')] ( II v (IE,,,-))
JECN\INe

- K, Ky,
=fen (IM,z ’CM.e\IM.z) ogn (IN.t | SYAVAYY
x WK;:T,:,"Nl_"‘ [Hf +r+ Ay {kl,.’i }jEIM.t; {El,j}jGIn,g] ’
where

me = |Inel, |nel:=1Inel, £=1,...,L
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Hence we have

- L
G [r; {{kz,a‘ YieTu,er (ke.j}ietn.e } =1 ]

L
_ Kum,e Kn.
- Lg Sgn (IM,t KM,:\TM,t) Sgn (IN,l ’CN,e\IN,e)] folr + Ao

L-1
x <Q’ H [ M::-nv:u.Nz—m [Hf +7+Ag {ktyj}jei'u,z; {kl»j}jEIN.l]
=1 i

x fr [Hf +rthet Y W(’;td)]] Witttk ymng 1+ Az (ke } ez (R }J'EIN.L]Q>

J€IN.

x fr [r + AL+ Z w(EL,j)] . (4.28)

JE€INL
By changing the names of the variables {ke,;}jeZu,., {ke,j}iezn,. in (4.27) with (4.28):

{kl,j}:iezu.t - Sm‘)’ {El,j}jEIN.z - Egm)’

we have

L
- K ¥
(LHS.of (418)= Y. ¥ Ssn(’c\fﬁz-)[gsgn (IM,, KA:sz\IM,t)

T, eCKmM,e IN,eCKN,e
£=1,..,.L' ¢=1,..L

L L
Kn.e (me) 47.(ne) +r1.(me)

=1
L.
X Dp[Hyi AWttt e K™ B Yoy (et TT 6 (RO).
=1
Finally, by using this fact and the anticommutativity of b=, b+, we obtain the formula (4.18). O

We set

W .= Z Wun.
N+M>1

Theorem 4.4. Let W be a operator defined above. We write as

foW LW - W f,, = H, (4.29)
where W = (Wm,n)m+n>0. Then
Bma(r K™y = ) Y sgn({me}fer; {ne}iz,)
myit-+mp=m Pe,qe20
et =n fnz+m-;m+thl
L - L
/ H {dksmt)dksﬂz)} H b+(k$m'))
MmEn a1 t=1

- L
1. asym -
x { Do [Hys Wgnients K™ KO Yoy { febo] ) TG,
. ’ =1
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where Dy [- -] is the function defined in Theorem 4.8,

s({maby ndi) = 3 Y saK\L:T9)
Ip,eCKM,e IN2CKN:
me=|Ipel ne=|In,el

e=1,..., t=1,...,
L
’CM,t ’CN, ¢
x gsgn (IM,e ICM,!\IM,t) sgn (IN,t K, l\IN,z) ; (4.30)

and sgn(K\Z,: I :) is a constant defined in Theorem 4.3.
Proof. Note that
(L.H.S.of (420))= > - . @) (4.31)
Mi+N1>21  Np+Mp21
It is easy to see that, forall £=1,...,L,

M: N,

)IREEDIND I D D I (4.92)

Me+Ne21 T eCKM e IN,eCKN,e  Me+Ne21 me=0ne=0TIpn,eCKMe INCEKN,e
[Za,el=me  |In,el=ne

Furthermore, for any function X{- - .}, we have
M, N
Z Z ZX(Mbthhnl) = Z X(M[,Nz,ﬂ'lt,ﬂt)
Ml+N‘21 m=0n=0 (Mt-thz.ﬂz)GNa
M¢2me20; Ne2ne20
Me+Ne>1
= Y X(me+pe,netge,men). (4.33)

(Pe,qe,me,ne) ENG
Petqe+metne21

By connecting (4.31)-(4.33) with Theorem 4.3, one can obtain the desired result. O

5 Sketch of proof

We hereafter assume Hypotheses 1-2. By using the smooth Feshbach map, we eliminate the degree of
high energy fermion, and restrict the degree of the system S to the normalized eigenvector ¢s. Let

o [T
x := P ®sin [5:. (Hf)] , (5.1)
where P is the orthogonal projection onto the eigenspace ker(Hg — E) and the function Z: R — [0,1] is

smooth in (0,1) and obeys
D) = 1 (0 sr< %) ’ .
=(r) = {0 (r<0,7<1), (5.2)

where 3/4 < 7 < 1. Then we have

gi=11-x3=P®cos [—;-E (H,)] +Plol. (5.3)
Let ‘ .
T|2] := Ho(-1¥/v)— E — z (5.4)
and
W := H[z] — T(z] = Wy(-id/v). (5.5)

It is evident that T'[z] is closed, commuting with x. Furthermore, we have the following lemma.
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Lemma 5.1. T[z] is bounded invertible on Rany for all z with
|z| < min{3/4,sin(¥/v)}.

Proof. Let us first note that the orthogonal projection Pg onto RanY is of the following form

Py=P®ly,3+P 01, (5.6)
and hence ;
P;T[z)Py = Ly + Ly, (5.7
where the function 14 is the indicator of a set 4 and
Ly =P®Ly,>q (€7 Hr — 2) Ly, (5.8)
Ly=P'(Hs~E)P*®1+P+® (e"H; - 2). (5.9)

We need only to prove L, and L, are bounded invertible, i.e., z € Res(L1) NRes(L2), since, by (5.7), (5.8)
and (5.9), P;T[2]Py is reduced by Ran P® 1z,>3) and Ran P ® 1. Indeed, we observe z € Res(L;) and

z € Res(L3) provided |z| < 3/4 and |z| < sin(#/v), respectively. ]
Let T[] be the inverse of PxT[2] Py for all z with |2| < po:
T[] := (PgTlzl Py) ", (5.10)
where we set 3
' Po = min {Z,sin(ﬂ/u)} . (5.11)
Then, we have, for all z with |z| < po/2, '
Res(P;T[2]Pg) D D,y s, (5.12)
where
De:={z2€C||z|<¢} (5.13)
for all ¢ > 0. Let
: Hgl2] := Tlz) + xWx. | (5.14)

We have the following lemma.

Lemma 5.2. For all z € D,, /2, (H(2],T[2],Xx) is a Feshbach triple and

Fy(H2), T{2)) = T(z] + 3 (~1)5"xW (T ~*[}xW) " x. (5.15)
L=1
Proof. By Hypothesis 2, we ha\fe
IWXT~ %Y || < ag(=i9/v) ||Ho(—i8/v) XT~*[2]%¥|| + by(—id/v) || xT~* (2] |
| < {ag(=i9/v) + (ag(—iO/V)|E + 2| + by(~i8/v)) | T~ (2]} 1% 2|, (5.16)
where a,(—i9/v) and by(—i9/v) are defined by (2.27). Since, for g € R with |g| sufficiently small,

2a,(~i9/v) + % (1Elag(—i8/v) + by(—i¥/v)) < 1, (5.17)

we observe that

; WxT? 1, | 5.18
seszl)l,po,, Wk [z]"B(R.a.ni;.‘F) < (5.18)
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which implies that Hy[2] is bounded invertible on Ran ¥ and that the Neumann series expansion of the
inverse

[= ]
- _ oy L
Hil[z] = E (=1)ET 1] (xwWxT 1(z]) (5.19)
=0
is norm convergent. It is easy to see, from (5.19) and Hypothesis 2, that (H|[z],T[z],x) is a Feshbach
triple. By the definition of the Feshbach map (3.2) and the equation (5.19), we obtain

Fy(H[2), T(z]) = T2] + xWx — xWxH [2lxWx

= T[z] + xWx + i(—l)"‘“xWZT"IIZI (EWET[2])" xWx

L—O
= Tla] + xWx+ 3 (-5 (37 [2]2W) S x
L=0
which is equivalent to (5.15). (]
Let P, be the orthogonal projection onto Ran x:
) Px =PQ® 1[Hf<‘r]7 (520)

where the constant 3/4 < 7 < 1 is defined in (5.2). According to Theorem 3.2 (iii), we need only to
consider the spectrum of P, Fy (H|z], Tz]) Py since T[] is bounded invertible on Ran ¥ with z € D, /2.
We note that the operator Hg)[z] on Ran 1, <, can be defined by

P ® H)z] = Py Fy(H[2], T[2]) Py (5.21)

since, by Hypothesis 1, the eigenvalue E is simple.
Let us next derive H(gy from (5.21) and arrange the annihilation and creation operators in order. We
observe, from Lemma 5.2 and (5.1), that

PR (HIE) TIE) Py = BT(elBy + 3 (-5~ B (R B

L=1
. |
=P® 1[Hf<'r] (e—wa - z) 1[Hl<‘l'] + Z(‘I)L_l Z 92{‘-1 (Mi+N)
L=1 Mi+Ni 21;i=1,--- L .
xPQ® 1[Hc<r]K("'i"9/.V; {M,Nl}{;ﬂp ® Yapery . (5.22)
where
K (~i/v; {Mi, No}fe,) = P @ sin [ 25 (Hy)| Waty, v, (~i8/v)RWit,,ny (~i8/V)R -
s [T
X RWty_y, s (—39/v)RWit, (=i8/v)P @sin [32 (H)]  (5.29)
and
R := 3T [2]x. (5.24)

Lemma 5.3. (chk ordering) Let ¢ be the normalized eigenvector of P. Let sgn(---), Km.e, KN, Te,
S(E™) be symbols defined in Theorem 4.9. Then

K ("'“9/1/; {Mh Nl}t:l)

= K Kn,
= Z Z sgn(K\Z,: I :) Hsgn (IM, p ,CALtl\IM t) (IN,g ICI;,vtz\IN.e)

ITrm, eSSk e INeCKN,e =1
t=1,..,L" t=1,.L

L L
xP® / kO dRO LT b* (k§™)
Mm+n l=H1 { ¢ ¢ } l=lIl ¢

» 2:ne (me), z.(ne) L ssym o f.(ne)
x { Do [Hy; {Wpge: KR R} [T o),
T t=1

M¢=mg,Ne=ngd
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where

Delr AW Ne—ne ke k"‘"},=1,R1

= sin [2(r + o) <*0 e { T W3OS ORI 7470+ zwml’)}}

=1
W:JIETT:L,NL—ﬂL [ gnL) (nL)](P ® Q> sin [*-...(r + TL)]
and
Wm,n [k(m) k(")] — e da:("‘)d:'é(")b*(x("))Gf,f_),,p i [ K("“"""""‘)]b‘ (:z:("))
G(A:;?N[ KM = i Gun (e-w/zu K(M,N)) :
R[r] := x[r](Hs + e W/vr B~ 2)"%r] ® 1.
Proof. Similar to the proof of Theorem 4.3. |
Let H;eq be the closed subspacé of F given by

Mred := Ran iy, <1y = g, <) F- (5.25)

Similar to the proof of Theorem 4.4, we observe that the operator Hp)(z] is a bounded operator on Hreq
of the form

Hol?) = Toylz: He) = Eyldd + Y. lm<yWenn [0S [2ll1{m<1)s 2 € Dyyy2,
m+Nn21
where Eg)(z] € C, T(g)[zi] € C*([0,1]) with T(o) (2;0] = 0 and the operator T(g)(z; Hf] 1s defined by

functional calculus. Here the operators Wy, ,.[wm )alz]] is defined by (4.16) and functions wial2] : 0,1] x
R3(m+n) ., C are antisymmetric in the sense (4.14). By Hypothesis 2, we observe that the functions

w{O, 2] obey the following norm bound:

sup "wsg,)n[z]”‘r"' sup ”a"wsg,)n[z]”"l <°°’
z€Dpy /2 2€Dpy/2

where 12

SUPre(o,1) [wQnl2)[r; K(™m™)2

[ (k) [Ty ()]

Here we note that the above constant v > 0, which is given in Hypothesis 2, makes our renormalization
group contractive. With a little modefication of the (bosonic) renormalization group method (3] one can
prove that there exists a complex number e, € C such that Hg)[e,] has the eigenvalue 0. Moreover, one
can construct the corresponding eigenvector 1g:

Hg)[egltyg = 0.

By Theorem 3.2 and the sxmphcxty of the eigenvalue E, we observe that H[z] has the elgenva.lue 0 if
H(g)[2] has the eigenvalue 0. Hence, the eigenvalue E; of the Hamiltonian H, (0) is given by E, = E+e,
and, thanks to Theorem 3.2, the elgenvector by

) QX (908 ®¢9) )

lwulell = | [ axcmo
. (BaxL)mtn

where

Qx =X — XHg ' [eg]xWx.
It is easy to see, from the constructions of ey and 1, (see (3] for details), that E, and ¥, have the desired
property (2.29).
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