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A Simulation Study on Bayesian
Simultaneous Demand and Supply Model
with Market-Level Data

Yutaka YONETANI,! Yuichiro KANAZAWA? and Satoshi MYOJO3

1 Introduction

When predicting consumers’ purchasing behavior in a differentiated prod-
uct market, it is necessary to account for price endogeneity and consumers’
heterogeneity. In many situation, the price are endogenously determined
within the demand and supply: Based on the market’s response, firms set
the prices which in turn affect consumers’ choices. Ignoring the endogene-

ity leads to estimation bias with both market-level and consumer-level data
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(Berry, 1994; Villas-Boas & Winner, 1999). Consumers’ heterogeneity re-
flects each consumer’s preference in each product characteristics and allows
flexible substitution patterns (Berry, Levinsohn & Pakes, 1995; henceforth
BLP). |

There are two research streams to account for the endogeneity and het-
erogeneity. One is by BLP (1995), Sudhir (2001), Petrin '(2002) and Myojo
and Kanazawa (2007) in a frequentist’s framework, and the other is by Yang
et al. (2003), Jiang et al. (2007), Romeo (2007) and Yonetani et al. (2008)
in a Bayesian framework. Both are simultaneous demand and supply mod-
els to address the endogeneity. Both incorporate the heterogeneity in the
utility functions: The frequentists’ models use a random coefficient utility;
and the Bayesian models assume that utility coefficients have distributions.
To estimate the model parameters, the frequentists’ models use the General-
ized Method of Moment (GMM) with instruments using market-level data.
The Bayesian models use Markov Chain Monte Carlo (MCMC). Yang et al.
(2003) develop a full- and limited-information models using consumser pur-
chase incidence data. Romeo (2007) incorporates a GMM objective function
in the MCMC using market-level data. Yonetani et al. (2008) extend the
Yang et al.’s (2003) full-information model for market-level data while Jiang
et al. (2007) extend the limited information model for market-level data.

In this paper, we will present the latest Yonetani et al.’s (2008) model
among these simultaneous demand and supply models and perform a simula-
tion study on it. This paper is organized as follows. In Sections 2 and 3, we
briefly review Yonetani et al.’s (2008) model and estimation method respec-

tively. Section 4 contains the simulation study. Conclusions and discussions
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are presented in Section 5.

2 Model specification

2.1 Demand Model

We assume that there are J products indexed by j = 1,...,J in a differen-
tiated product market. Let us denote j = 0 as the index of the outside good.
A consumer i chooses one of the J + 1 alternatives with the highest util-
ity. Researchers observe a J x 1 sales volume vector v° = (v9,...,v3)" and
the overall market size M = E}LO v where v§ is the number of consumers
choosing the outside good 57 = 0.

The utility of a consumer i for product j is the log-transformation of a

Cobb-Douglass function as
wij = ui; (Dj> T4, &, Yir 03, €45) = i log (yi — p;) +x;8; + & + ey, (2.1)

where y; is a consumer i’s income; p; is an observed unit price; x; is a
1 x (Q — 1) vector of observed product characteristics; 6; = (a;, 3;)" are
respectively consumer i’s marginal utility for log(y; — p;) and (@ — 1) x 1
marginal utility vector for z;; §; is an unobserved product characteristic term;
and ¢;; is refered to a consumer-level sampling error term. There are four
points to be noted. First, o; and B; reflect consumers’ heterogeneity with
respect to log(y; — p;) and x; respectively. Second, the term log(y; — p;) is
appropriate when we require to formulate the fact that a higher price affects

the utility of a high-income consumer much less than that of a low-income

4This assumption is valid for purchasing a durable product.
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consumer. Third, the presense of both observed and unobserved product
characteristics, ; and §;, in (2.1) reflects an assumption that researchers
observe only some of the product characteristics consumers and producers
observe. The presence of unobserved product characteristic &; also allows for
a product-level source of sampling error. Fourth, we assume that p, = 0,
g = 0 and & = 0. |
We assume that ¢;; is independent of o;log(y; — p;) + x;8; + §; and
that it is also independently and identically Gumbel (type I extreme value)
distributed across consumers and products in (2.1). Then we derive the logit

choice probability s;; for a consumer ¢ choosing product j as

exp {o log (u; — p;) + 238, + &} (2.2)
Z;{:o exp {o; log (y; — px) + B, + &} ’

where X = (z},...,z}), p=(p1,...,ps) and § = (&,...,&s)".

Sij = Sij (P,X,&%, 9,-) =

The market share of product j in the population is
s =s5(p,X,€) = //Sijfo () f° (6;) dy:d6;, (2.3)

where f%(y;) and f(0;) are the population densities of y; and ; respectively.

A sample counterpart of (2.3) is

I
1
sj =s;(p, X,§,9,0) = 7 E Sijs (2.4)
i=1

where y = (y1,... ,yr) and @ = (64,... ,0;). We denote s as a J x 1 market

share vector for product 7 =1,...,J:

s=38(p,X,¢,v,0) = (s1,...,s5) . (2.5)
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We define the sales volume v; in the I consumers as

N
'UJ—ln : M .

for j = 1,...,J, where int(-) is the integral part in the expression (). We
also define the number of consumers choosing the outside good 7 = 0 in the
I consumers as vp = [ — Z]Ll v;. We then denote v as a J x 1 sales volume
vector for product j = 1,...,J in the I consumers:

'U=(’U1,... ,'UJ)-’.

2.2 Supply Model

We assume that there are a fixed number F of firms in an oligopolistic market
of the J products with Bertrand competition. We also assume that each firm
f=1,...,F produces a subset of the J products and sets price for each of
its products according to its pricing strategy that maximizes the total profit
function,

=Y Ms;(p)(p; —cj), (2.6)

Jjef

where s;(p) = s;j(p, X,&,y,0) in (2.4) and ¢; is a unit cost. Let us denote
c=(c,...,cs) and (8G/8p) = (8s/8p)+*5 where the sign * represents the
element-by-element multiplication-of the matrices it connects and the (j, k)
element &, of d is 1 if the products j and k are produced by the same firm

and 0 otherwise.® Then we obtain the first order conditions for j =1,...,J

from (2.6) as
p= —{(%—g)’}—ls+c, (2.7)

5We specify the elements of (8s/8p) and (8G/8p) in Appendix A.
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assuming the inverse above exists.

Similar to observed and unobserved product characteristics in (2.1), we
may decompose coSt c; into observed and unobserved cost characteristics.
However, researchers rarely have even specific observed cost characteristics.
Therefore, for the observed cost characteristics, we employ alternative but
reasonable variables in the sense that they are expected té be related to the
total cost ¢;.® We- often call this observed cost characteristic “cost shifter”
which comes from the alternative. Then we assume that c; is log linear in a

1 x S observed cost shifter vector z; and an unobserved cost term 7; as
logc; = z;v + 1,

where v is a S x 1 coefficient vector for z;. Note that each element of 4 has

the interpretation of elasticity of c; with respect to its corresponding cost
shifter with logarithmic form in z;.

Let us denote Z = (2},...,2%) and n = (m,...,ns). Substituting
Z~ + n for ¢ in (2.7) leads to the following pricing equation:

log [p + { (%g)’}‘l sj' = Zv+n. (2.8)

We can also write p as

P=P(3>X,5,5,'y,9,za77,‘7)- (29)

SFrequently, the alternative valiables include the observed product characteristics z;.
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2.3 Simultaneous demand and supply model

From the demand model in Section 2.1 and supply model in Section 2.2, we

can see the market share s-and price p are simultaneously determined as

s|p, X,&,v,0, (2.5)
p|s, X,€,0,4,0,Z,1,. (2.9)

Given the overall market size M, that product j has the market share s; is
equivalent in saying its sales volume is v; for j = 1,...,J in the I consumers.

We thus rewrite the simultaneous demand and supply model as

v|p,X,§, 9,0, (2.5)'
plv,X,€,0,y,0,Z,1n,7. (2.9’

3 Bayesian Estimation

3.1 Model parameters and their prior distributions

We will extend our simultaneous demand and supply model by using the

Bayesian hierarchical modeling. For the marginal utilities 05, ... ,0; of the

I consumers, we assume
0,16,9 ~ MVN (6,%g), (3.1)

where 0 is the Q x 1 mean vector and X g is the Q x @ covariance matrix.

In terms of unobserved product and cost characteristics & and 7, we assume

§|X4 ~MVN(0,%y), (3-2)
n|S, ~ MVN(0,3,). (3.3)
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With these assumptions on 8;, € and 77, the simultaneous demand and supply

model is rewritten as

v|p,§,0, (2.5)’
p|v,&,0,m,v,  (29)
0:|6,%g, (3.1)
€| XZq, (3.2)
n| 3. (3.3)

Note that the exogenous variables of income y, observed product character-
istic X and cost shifter Z are left out from (2.5) and (2.9)' for notational
simplicity. We call 8, 0, 3, 7, Xa and X; the model parameters. The joint
posterior distribution of the model parameters requires us to hypothesize in

addition to (3.1) prior distributions for @, X9, v, X4 and X, respectively as

6 ~MVN (ug, Vé) ,
Sg ~ IW,, (Gg) ,
~~MVN (3,V~),
Y~ IW,, (Ga),

3, ~ IW,, (G) .

Note that these priors are independent each other. We call kg Vé, 90 G’o,

¥, V~, 94, Ga, gs and G, the hyperparameters.

3.2 Distribution of endogenous observed data

The joint posterior of the model parameters also requires us to formulate

a joint distirubtion of endogenous observed data of the sales volume v and
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price p. Using the demand (2.5)" and supply (2.9)' models, we will specify
the joint distribution of v and p with the conditional distribution of v given
p and the marginal distribution of p. We substitute (2.5)’ for v in (2.9)’, and

the the simultaneous demand and supply model becomes

v|p,§, 9, (2.5)
pl&,0,m,y,  (2.9)"
0:16,%g, (3.1)
€| Zq, (3.2)
n| Xs. (3.3)

In distributional form, we specify the joint distribution of v and p as

f(v,pl€,60,7,v)=f(v|p,&0)f(pl&6,n,7).

The conditional distribution of v given p is obtained with the market share

s; in (2.4) for j =0, ... ,J as a multinomial distribution:

I!

f(v|p,&,0)= v o’

008y, (3.4)
We notice that the pricing equation (2.8) is implicit in price p. We thus
use the transformation of variable with the pricing equation in (2.8) and the
multivariate normal distribution on unobserved cost 7 in (3.3) to obtain the

marginal distribution of p as”

f(pl§, 0,7, %)
Gl
<o [~ [l [p+ {(32)} o] - 2] =5 s [ {(32) } 4] - 2] 39)

"We specify the elements of (8717/8p) in Appendix A.

= (2m)~ % ||} l
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This transformation reduces p|€, 0,7, and n|X; to p|€, 0,v, X in the si-

multaneous demand and supply model as

v|p, &, 0, (3.4)
pl§,0,7,%;, (3.5)
016, Zg. (3.1)
| X4, (3.2)

3.3 Specifying the | joint posterior of the model param-
eters |

Since unobserved product characteristic £ is still intricately embeded in the
model, it is difficult to obtain the joint posterior of the model parameters by

calculating
£(6.6,9. 750 B lv,p) = [ £(€,6,6,59,7. 50 . v,p) d&, (3
where, with the distributions obtained so far, we can specify

f (5797 éa 20, 7> Zd’ s I’vap) X f (vvpv 5797 61 29, 34, 23)
I!
vl -vy!
i ()]

[_; e [p+{(%§)'}“‘,]‘ -zv]rz:‘ [ [p+{(g.g '}’1,,] z]]

xMVN (0,%,) [f[ MVN (6, Ee)]

i=1

S ... g%

xMVN (pg, V) IWgq (Gg) IWg, (Ga) MVN (3,V) IW,, (Gs).

Alternatively, we may obtain an approximate joint posterior of the model

parameters as follows. Denoting ¢ = (6, 0, 20,7, X4, 3;) for notational
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convenience, we rewrite the equation (3.6) so that the joint posteior f(1|v, p)

appears on both sides as®

f@iop)= [ f @1 v,p) [/f(e b, v,p) f (¥ lv,p)d¢] . (3.7)

This equation suggests an iterative process as follows:

Step A In the brackets, generate v, from f(%|v,p) and then generate §,
from f(ehbl’ 'U,P) to obtain €1a s )&L'

Step B Calculate a Monte Carlo estimator of f(¢|v, p) as Zle f(pl€,v,p)/L

from which we generate 1, in Step A.

We will next explain how we obtain random draws of ¥ and € and develop
the Markov chain Monte Carlo (MCMC) alrogrithm in Appendix B from the
algorithm with Steps A and B above.

We first consider how to obtain random draws of 9 from the Monte Carlo

estimator. We can write f(y|§,,v,p) as
f(|&,v,p)=f (9, o, 20: v, s lel""?p) f(Zal&), (3.8)

where f(9, 8, 39,7, Xs|&;, v, p) is a nonstandard parametric form while f(Xg4(€;)
is an inverse Wishart distribution. Therefore, the Monte Carlo estimator has
a nonstandard parametric form. |

One efficient way to obtain random draws of 9 from the Monte Carlo

estimator which has a nonstandard parametric form uses the equation (3.8)

8This basic idea is known as that of the data augmentation technique (Tanner & Wong,
1987).
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without the subscript ! which is obtained by setting L = 1 in the estima-
tor.®’® Then we apply the Gibbs sampler to f(6,8,Xg,~, X;|§,v,p). The

conditional posteriors of each component of
(97 é’ 291 RE 23) = (917 s 017 é) 267 7> 28)

given all of the other components in the Gibbs sampler is. obtained in Ap-
pendix C. Notice that the conditional posterior of 6; for ¢ = 1,...,[ has
a nonstandard parametric form while the conditional posteriors of 8, g,
~ and X, have standard parametric forms from which we can easily obtain
their random draws. We thus apply the Metropolis-Hastings algorQithm to
the conditional posterior of @;. We also obtain random draws of 34 directly
from f(X4|€;) which is a inverse Wishrat distribution in Appendix C. As
for the generation of random draws of § from f(§|vy,v,p), we apply the
Metropolis-Hastings algorithm f(&|v,v,p) = f(€|0,~, X5, X4, v, p) which

has a nonstandard parametric form in Appendix C.!

4 Simulation study

Using a simulated data from a prespecified set of the model parameters, we

test if the proposed method can recover the true model parameters. We

9 Justification for being able to reduce L = 1 is from Tanner & Wong (1987).
10We can apply the Metropolis-Hastings algorithm directly to the Monte Carlo esti-

mator. However, it is less efficient because all proposal draws of the model parameters
Y = (6,0, 29,7, X4, E,) are rejected with 1 minus an acceptance probability at one

iteration.
11'We use random walk Metropolis-Hastings algorithms in Chibs and Greenberg (1995)

to generate @; and £ respectively.
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assume that there are 1,000 consumers (I = 1000) and three products (J =
3) from three different manufacturers in an oligopolistic market of a durable
product where a consumer purchases one unit of a product during the course
of observation.

We first set the utility u;; of a consumer 7 for product j in (2.1) and pricing
equation in (2.8). We assume the utility u;; to have a consumer ¢’s income
y;, a unit price p; and one observed product characteristic z; (Q = 2), an

unobserved product characteristic term ; and an extreme value error term
€i; as
ui; = o log (Y — pj) + Bix; + & + €ij. (4.1)

We assume the pricing equation to have one cost shifter z; (S = 1) and an

unobserved cost term 7); as

log [pj + {(%g)’}: 8] = vz; + 1, - (4.2)

where {(8G/8p)'}; ! is the jth row of {(8G/8p)'} .

We next set the true model parameters as 8 = (&, ) = (2,2), g =
107'E,, y=v=1, ¥; =107%*E; and ¥, = 10~*E; where E; and E5 are
the 2 x 2 and 3 x 3 identity matrices respectively. Then we generate each of
0.,...,601000 from MV N(8, Xg) in (3.1), &€ = (&1,&2,&3)' from MV N(0,Xy)
in (3.2) and n = (1, 72, m3)" from MV N(0, ;) in (3.3).

We have the exogenous y; and z; in (4.1) and z; in (4.2). We generate
positive values for y1,..., %1000 independently from the log normal distri-
bution with mean 1 and standard deviation 0.1. We also generate positive
values for 1, 7 and z3 independently from the log normal distribution with

mean 0 and standard deviation 0.1. We then set 2; = logz; for j = 1,2, 3.
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We numerically obtain the endogenous sales volumes v = (vq, vz, v3)’ and

prices p = (p1,p2,p3)’ in the demand and supply system as follows. We
first set initial values for p = (p1,p2,ps)’ at the level of the 4/5 of the low-
est income min(yl, ... »Y1000) SO that all the 1,000 consumers can aﬁ'ofd the
three products. Given the initial p, we calculate choice probabilities si; for
i=1,...,1000 and j = 1,2, 3 in (2.2) and the market share s, for j =1,2,3
n (2.4). We then obtain three pairs of (s;, p;) for j = 1,2, 3 by the Newton-
Raphson method to solve the six dimensional nonlinear simultaneous equa-
tions where three of them are from the market share specification (2.4) and
the other from the pricing equation (2.8). The sales volumes v = (v1, V2, v3)’
are obtained by multiplying the number of consumers 1,000 with the market
shares 8 = (s1, 82, s3)' from the Newton-Raphson method.

Using the simulated data of exogenous y, X and Z and endogenous
v and p, we next estimate the joint posterior of the model parameters
(0, 5,‘29, v, X4, X;s) through the MCMC algorithm in Appendix B. At MCMCO0
in the algorithm, we set the hyperparameters as pg = (2,2), Vg = 1073E,,
99=13,Gg=E;, y=7=1,V4=V,=10"%,gs =7, Ga =3 x 107 Ej3,
gs = 7 and G, = 3 x 107*E;. We also set the covariance matrices of the
pfoposed distributions of 8; and & as g = 25-3E, and 2£~_ = 25 5F,
respectively.

We run 10 MCMC sequences with different initial values of the model
parameters for 10, 000 iterations. We assess the convérgence of the MCMC by
inspecting time-series plots of the draws of the model parameters in Figure 1.
We then estimate each model parameter using the last 4,000 draws of it.

The result in Table 1 shows that the 95% posterior interval of each model
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Table 1: Estimated posterior mean, standard deviation (Std.Dev.) and quan-

tiles (2.5%, 50% and 97.5%) for the model parameters in the simulation study.

Parameter Mean Std.Dev. 2.5% 50% 97.5%  True value
’ 2.00 0.016 1.97 2.00 2.03 2
B 2.00 0.030 1.94 2.00 2.06 2
o2 0.087 0.038 0.041 0.077 .0.19 0.1
o} 0.097 0.042 0.044 0.085 0.20 0.1
v 1.05 0.059 0.93 1.05 1.16 1
o, 11x10-% 12x10"* 25x107% 75x107% 3.8x107* 10—4
o2, 11x107% 11x10"% 26x1075 7.9x1075 3.6x107¢ 10—4
o2,, 9.4x10°5 1.1x10"% 23x10"%® 6.8x1075 3.2x10"* 10-4
o3, 99x107% 1.1x10"*% 24x10"% 69x10°% 35x107* 104
032a 1.0x10"% 13x10"*% 23x10"% 6.9x107% 3.8x10"* {1
ol 1.0x10~* 1.3x107% 24x1075 6.9x10"% 3.6x10"* 104
Note. We denote o2, ag, o2 ,...,0%,, and aﬁu,... ,0333 as the variances of a3, fi, m,... ,n3 and

€1,...,€3.

parameter includes the true value. Thus the result provides an evidence for
the validity of the proposed method. The algorithm takes about 20 hours,
52 minutes and 19 seconds to complete one sequence using a standard C++
compiler of the Microsoft Visual C++.net Standard Version 2003 on a 2.66
GHz Xeon processor with 2 GB of RAM.
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Figure 1: Panels (a) thorugh (k) are plots of 10 parallel sequences corre-
sponding to different starting values of &, 3, 02, 03, 7, the (1,1), (2,2) and

(3,3) components of X; and those of 3, in the simulation study.
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5 Conclusion and discusion

In this paper, we presented a Bayesian simultaneous demand and supply
model with market-level data by Yonetani et al. (2008). Then we performed
a simulation study on the model. We found that, with 1,000 consumers and
three products from three different manufacturers in an oligopolisitic market
of durable goods, our proposed method worked reasonably well, but that a
considerable amount of computation resources was necessary. In this section,
we briefly provide some discussions on the model.

First, unlike Yang et al. (2003), Yonetani et al. (2008) do not model the
game between manufacturers and retailers. This model would be suitable if
we analyze a market where the retailers are affiliate companies of each parent
manufacturer. We can model a game between manufacturers and retailers
with market-level data with relatively minor effort.

Yonetani et al. (2008) assume that each coefficient for cost shifters is
universal across the manufacturers. This assumption would lack flexibility if
a specific cost might be different among the manufacturers given the same
amount of cost shifter. We can, however, incorporate this manufacturers’
heterogeneity into the cost specification as we did for the coefficients for the
demand side product characteristics to reflect consumers’ heterogeneity.

The comment “there is thé possibility that a given set of exogenous ob-
servable and unobservable variables could be associated with a different equi-
librium set of prices and quantities, that is, there is no longer a one-to-one
map between the unobservables and the endogenous prices” by Berry, Dube
and Chintagunta, and Bajari, and rejoinder by Yang et al. (2003) is well

taken and further research is needed that addresses these concerns.
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A Calculation of the building blocks for ma-
trices used in the supply side specification

The (8s/8p) and (8G/8p) consist of Js;/Ipx and OG;/Opx respectively as

each (7, k) element:

ds; _98G; _ _1. : ai%f(l—%?

= = — , 3 =19
Op;j apj I Yi — Pj (i=J)
asj _7k: azszjszk . .
= Bpk Z (i # 5)

The (8n/8p) consists of On;/Opi as the (j, k) element:

gZﬁ T+ {(ac;/ap)'}}.1 il * [‘;’J {(%g),}j o {(‘39_5),}: (%) -a‘] ’

- (E=17)
SZZ T opit {(aGI/ap)'};ls _[Bik {(Zﬁ) }j. } o {(%) }j. (g%>-kJ,
(i # J)

e g {(5)) =A@ @G HE T
where = - = — | == == i
Opk Op Op Opx \ Op dp
The (8/0p;)(8G/8p) in (8n/8p) consists of 8°G/Op;0p; as its (k,1) ele-

ment:

0°G, ;855 (1 — 845) (2048 — 0 + 1) .
, i=k=1
apaapa I Z (yi — Pj)2 ( )

62Gk 1 O! SijSik (Zs,k -_ 1)

G#k=1)

Bp;opr 1 = (% — p;) (vi — px)’
G ]g a- SijSil (28,']' - 1) .
(] R — k l
dp; ap, Z (vi — pj) (v — 1) v 70
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0%Gy, ‘519_7 Qi SijSik (QOAiSij — o; + 1) .
E : ) j=l#k
apjapj 1 i (yi — ')2 ( )
9?Gy, 25kt of SUSszu .
E . k#£1
Op;Op 2 G#kE#D

B MCMC algorithm

We estimate the model parameters using the following MCMC algorithm.

MCMCO Set the hyperparameters kg Vé-, 90> Go: ¥, V~, 94, Ga, gs and
G, the covariances of the dumping distributions, Ee- and Xg-, and
initial values £©, 8@ §© Eg), +© and =,

Fort=1,...,

MCMC1 Generate a proposal £* from MV N1, 25—).
MCMC2 Calculate

i (5* ) ,v,p)
RE(e) = min — ,
f (f(t—l) le(t—l),.y(t—l), Egt—l), zl(i* ),'v,p)

MCMCS3 Set £€¢) = £* with probability Rgw or £® = ¢¢-1 with prob-

1

ability 1 — Re(t).
For:=1,...,1
MCMC4 Generate a proposal 8; from MV N (0?—1), Xo:)-

MCMCS5 Calculate
R f (0:' ggt)a cee 10?)1’ at(-ti——ll)a chy 9§t_1),w(t“1), €(t)>v>p)
(t)y = min 7 ’ 1 ,
00 = T oo, 00000 07 D e, 0,p)

where w0 = (9, 5§V, 4¢-1, BE-D).
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1

MCMCS Set 8 = 6; with probability Ry or 6" = 0%~V with
probability 1 — Rogt).
MCMCT7 Return to MCMC4 until we obtain 0§t), e ,0?).
MCMCS8 Generate 8 from f(8]6®, £§7Y).
MCMC9 Generate Eg) from f (29[6(t),§(t)).
MCMC10 Generate "f(t) from f(v]|0®, =D ¢0 p).
MCMC11 Generate =) from f(X,|09,~+®, 9, p).
MCMC12 Generate £ from f(Z4]€®).
MCMC13 If the Gibbs sampler for f(8, 9, 29,7, Zs|€, v, p) converges when

using

7(0:]69,...,60:,6%,,... 60,0 D,60,v,p)

fori=1,...,1 at the end of MCMC?7, f(8]6®, £5™) in MCMCS,
f(Zpl0®,8%) in MCMC9, f(~]69, =D, €9, p) in MCMC10 and
F(2,109, 4 £ p) in MCMC11, and if f(Z,4/¢®) in MCMC12
converges as well, the standard MCMC argument guarantees that the}
stationary distribution is f(¢|v, p) = £(6,0, 29,7, T,|€, v, p) f (Z4l€).
Hence, stop the iteration. Otherwise increase ¢ by one and return to

MCMC1.

C Conditional posteriors

We obtain the conditional posterior distributions in the MCMC as follows.

f(E IG!'Ya zdazlavvp)
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v
o 8g% -+ 857,

ol
x exp [:—12- [log [T+{—(%)§) } a] —Z’r] ;! [log [p+{(%%) } s] _z—rH

f (91 ]9-.’,5, 20:‘7:20as’v,p)

M,
————gVO ., gYJ
o '30 SJ .

o (g_g)“ - | -
xexp[—%[los[pﬁ-{(%)} s}—Z’Y] =;! [IOS[P+{(%§ } aJ—Z’Y]]

X IEOI_% exp{—% (6: -97'251 (8: "‘9—)} )

X IE,,]‘%

5|6,5g ~ N ((1251 +V51)°1 (1251V+V51“§),(1251 +V9—_1)—1)

I
1
where v = ; ZB;,

=1

I
0100 ~ Woger (3 (0:-) (0~ +Go ).

=1
_\~1 e _ i\ —1
10,8060 ~ N (222 +v3) T (e v3ia), (B + vy T,
aGg\'\ !
where u=2Z'%;? [log [p+ {(—b—) } a“ and 2;'=2'2;12,
P
25 la,'Y,ﬁ,P

v (o {5520 ({5 )2 )

Byl€ ~ Wy, (66’ +Ga) .
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