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Abstract

In two Bernoulli sequences each with the probability p; of success for ¢ = 1,2, we
choose either sequence based on the previous observations. We consider the problem to
maximize the expectation of the number of success. In this paper we obtain a minimax
procedure which minimizes the maximum regret for all possible values of parameters
among the class of rather simple procedures. The numerical treatment is also given.

1. Introduction

Suppose that there are two Bernoulli sequences X131, Xi2, - -, Xin, - - -3 X21, Xa2,. .1,
Xon, - .. each with probability of success P{X;; = 1} = p;, 1 = 1,2. And we consider to
choose some procedure N times as follows. For j = 1,..., N, let Y; be a random variable
defined by

Y, = 1, if one takes the procedure 1 at the j-th trial,
371 0, if one takes the procedure 2 at the j-th trial.

Then we want to maximize

N
T = {¥iXy; + (1-Y;) Xy} (L.1)

=1
This is a case of sequential medical trial formulated by Armitage (1975). The same
case is sometimes called the two-armed bandit problem. There has been a substantial
amount of literature published since 1950’s (see, e.g. Maurice (1959), Anscombe (1963),
Chernoff (1967), Armitage (1985), Bather (1981, 1985), Bather and Coad (1992), Bather
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and Simons (1983)). But it seems that the definitive answer to the problem is yet to be
established.

In this paper we shall obtain a minimax procedure which minimizes the maximum
regret for all possible values of parameters among the class of rather simple procedures. We
shall discuss two types of procedures, one the fixed sample procedure, where we fix n and
observe X1, ..., Xin; X241, - -, X2,2n, and for the remaining (N — 2n) cases we observe
all from one of the sequence depending on 37, X1; S zj;n +1 X2;. And we seek for such
n depending N which minimizes the maximum regret for all values of p; and p;. The
second procedure is such that we make pairs of observations (X1,2j-1, X2,2i), 3= 1,2,...
sequentially and when 3 Xi2;-1 — Y X2,2; reaches either k or —k, we stop the paired
observations and the rest are all taken from either of the sequences. We want to choose
such k depending on N which minimizes the maximum regret. It is shown that the second
procedure is superior to the first, because the minimax regret for the second procedure
is 0.375N/2 where N is large, while for the first it is 0.246 N 2/3_ These approximations
are actually quite accurate for N not necessarily large, e.g. N = 100. Lastly it will
be shown that for any sequential procedure the minimax regret can not be smaller than
the magnitude of order N'/2, and one lower bound is given by 0.2649N 1/2 (which is not
sharp). The results of this paper are mostly analogous to that of Bather and Simons
(1985), but the approach is not the same.

2. Minimax regret solution for a fixed sample procedure

Now, let us consider the fixed sample procedure. We are to take first n observations
from the first population and then next n observations from the second, and compare
> =1 X1 and Z ™ wr1 X2; and if the former is larger than the latter, we take the remaining
from the first population, and if the latter is larger from the second, and if both happen to
be equal, we choose between the two populations randomly with equal probability. Then
the expected number of success is expressed as

(T)*n(p1+pz)HN—2n{ ( {ZXI, Z Xg,}+ P{be zzn ij}>

i=1 j=n+1 =1 j=n+1

e

For the sake of simplicity of notation, we write

P{injZ :Vf: ij}:_ {ZX17> S Xg,}+ P{;Xl, Z Xz,}

j=1 j=n+1 j=n+1 j=n+1
Now the maximum possible expected number of success is N max(pi, p2 ), hence the regret
is defined as

R := N max(p1, p2) — E(T).



156

It follows that for p; > p2

R————A{n"l—(N—ZTL)P{iXIj < f: ij}},

=1 j=n+l

where A = p; — p;. We want to choose n so that sup,, ,, R is minimized. Assuming that
n is large, we can approximate the distribution of 3_7_; X, — E " i1 X2; by the normal
distribution, and we get

(g )

j=n+l
n n
_P{ZX“ < z Xz,}-i—%P{ZXU: Z ij}
j=n+1 j=1 j=n+l1

~ P (n(pz - P1)/\/npl 1—-p)+npa(l— P2))
=1-2(van/Vnl-m) + o - ). 2.1)

where ® is the standard normal distribution function. Note that by the definition of P,
as above, the continuity correction is not required here. Accuracy of the approximations
will be checked below and it will be shown that the approximation does not affect the
result. Since

pi(l—p1) +p2(l —p2) =p1 + D2 — (P% +p§)
1 1 1
=5~ §(P1 +py—1)2— §(P1 — po)?
1
< 2(1— A2

for given A, the denominator of ®(-) in (2.1) is maximized when p; + p2 = 1, hence we
have

sup R
P1>p32

zA[n—i—(N—Zn){l——(I)( 1inAA)}] = Ra (say). (2.2)

The same applies to the case when p; < p2. Now, for fixed n, in order to calculate the




maximum value of the right-hand side(RHS) of (2.2) with respect to A, we have

dRa VonA
E—A—=n+(N—2n){1—~<I> (——————m)}
— (N -=2n)A \/“A ¢ _____\/2—nA
dA \/1——_& V1-A?

V2nh
= N —2 1-¢| ——=
n+( n) { ( —
1 V2nA é V2n
A2 JT-AT \/1- A2
where ¢(z) = (1/v/2x)e~**/2. If we transform as § = V2nA/\/1 — A? and denote Ra by
R(¢) or Ran, we obtain

2RE) ot (7 —2m) (1 - (e} — (¥ — 2m) (1 + 52)&#(@

—(N—2n)1

since
R SN Ly 1+§2—
1—-A2 1—-A2 2n

Hence, by putting f := N/n, we have

1 dR(¢) 1 Ez
N — 2n dA :f_2+1—¢(€)“( )£¢(§)

Now define : 5
H(E) = 1 - 3(€) ( ¢ )w(e)

rI"hen we have

HO =0+ (5-Ere-1)e0
- {g% - (1 + %) % ~2} 8(6).

¢ 3\ .
S S \g2_o—
om 1T )¢ 0

has one positive and one negative roots in 2, we have one positive root in &, which is
denoted as €. Then, for £ > &, H'(€) > 0, and for 0 < £ < &, H'(§) < 0, hence H(£)
is minimized in the range of £ > 0 at £ = &, and it is easily shown that H (0) > 0 and
H(c0) = limg—,00 H(€) = 0. Therefore, if

H(SO) < "’1/(f - 2)7

Since the equation

157
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we have two roots & and &; with & < & < & for the equation dRa/dA =0, and it is
shown that Ra is locally maximized when ¢ = &;. And, if H(£) > —1/(f —2), dRan/dA
is always positive, hence Ra , is maximized when A =1, i.e. ¢ = oo and maxa Ba =n.
And, in the case H(¢) < —1/(f — 2) we have

sup Rp = max{R(cc), R(£1)} = max{n, R(§1)}-
The condition R(¢:) Z n is equivalent to
A1+ (F-2)(1-2E)} 21,
Where A = (£, /v2r)/+/1+ (€2/(2n)). Since

it follows that a sufficient condition for R(£;) to be the maximum is

L+ (f—2)(1 - (&) > /20 + & /& (2.3)

Since ¢, satisfies H(€,) = —1/(f — 2), the left-hand side(LHS) of (2.3) is equal to

(f-2) (1 52) £10(61),

hence

1

2Ly /2n + €2 ¢(&) > 3" ( 51 ) &1¢(&1) — {1 — 2(&)}- (2.4)

E

Since

;jgw(s) — €2 - €9)4(6),

it follows that, for & < V2, the LHS of (2.4) is increasing and the RHS of (2.4) is
decreasing. Let £} be a solution of £ of the equation

Cvmrese=(1+5) e - 1- 20

Then, R(€;) > n for & < €, R(&) < n for & > & and R(€}) = n. On the other hand,
the relation between n and &; is

D+ A(f-2{1- )} =1
(ﬁ) &o(€) — {1 - (&)} = ?_1__2.,
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where A = £;/v/2n + €2. Then we have

1 1 1
7:——-2- +1-3(&) = 1Az &16(61) = Z&(_f:—?ﬁ’

which implies

A
7 i 5 = 1= AZ &1¢(61) = ijlzi &19(6) — {1 — 2(&)}-
Since .
T A &14(&1) =1-2(&),
it follows that
A = €1¢(§1) -1

1—- (&)
Hence we obtain A from given &;, get f from A, and get n and N from f. This means that
the relation between n and N is determined through &,. The correspondences n = n(£})
and f = f(£}) to £} is given by Table 1. Since 8R/n < 0 in such a region of n and f, in
a similar way to the above we have

OR|

- < 0.
O acnr(n)

= RA =
anS\iP aN

If for given N we choose £} such that N = n* f* with the correspondences of n* = n(€7)
and f* = f(£}), then n* and f* give a minimax solution of R. Since n must be an integer,
we shall obtain the integer close to n*. If there exists an integer ng near to n* such that

ng < sgp Rang <mng+1,
then it is minimax. Indeed,

sup Ran = Rin =n > ng for n > ng,
A

sup Ran > sup Rang for n < ng.
A a

Summarizing the above, we have the rule as follows. For fited N, find the value n*
corresponding to N from Table 1 (use interpolation if necessary). Take the integer ng
closest to n*. If the condition

ng < sg;i Rany <ng+1

is satisfied, n% is the minimaz solution for fited N. If the condition is not satisfied,
try neighboring integers until the above is satisfied. For all practical cases, ng can be
considered to be the minimaz solution.



13 f A n N f/N?
7519 | oo 0 00 00 4.106
752 | 11116 | .00040 | 1.79 x 10° | 1.99 x 10%° | 4.105
754 | 1049 | .00422 | 1.60 x 10* | 1.68 x 107 | 4.100
.756 550 | .00805 | 4.41 x 103 | 2.43 x 10° | 4.094
758 | 373 | .01188 | 2.04 x 10® | 7.59 x 10° | 4.088
760 | 282 | .01572 | 1.17 x 10% | 3.30 x 10° | 4.083
762 227 | .01957 758 1.72 x 10° | 4.077
.764 189 | .02342 532 1.007 x 105 | 4.072
.766 163 | .02728 394 6.41 x 10* | 4.066
.768 143 | .03115 304 4.33 x 10* | 4.061
770 127 | .03502 241 3.06 x 10* | 4.055
772 114 | .03890 197 2.25 x 10* | 4.050
174 104 | .04279 163 1.70 x 10* | 4.044
776 | 95.3 | .04668 138 1.31 x 10 | 4.039
778 | 88.0 | .05058 118 1.04 x 10* | 4.033
780 | 81.7 | .05449 102 8.35 x 10° | 4.028
785 | 69.3 | .06429 74.3 5.15 x 10 | 4.015
790 | 60.2 | .07412 56.5 3.40 x 10* | 4.002
795 | 53.1 | .08400 44.5 2.36 x 10° | 3.989
.800 | 47.5 | .09392 36.0 1.71 x 10® | 3.976
.805 | 43.0 | .1039 29.7 1.28 x 10® | 3.963
.810 | 39.2 | .1139 25.0 989 3.951
815 | 36.1 | .1239 213 768 3.938
.820 | 33.4 | .1340 18.4 613 3.926
.825 | 31.0 | .1441 16.0 497 3.914
.830 | 29.0 | .1543 14.1 409 3.902
835 | 27.2 | .1645 12.5 340 3.890
.840 | 25.6 | .1748 11.2 286 3.878
850 | 22.8 | .1954 9.10 208 3.855
.860 [ 20.6 | .2162 7.54 155 3.832
.870 | 18.7 | .2372 6.35 119 3.810
.880 | 17.2 | .2583 5.42 92.9 3.788

Table 1 The relation between n and N through given §
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~ Now consider the case when A is small, if §; = 0.7519, then A = 0, hence 1/(f—2) =0,
i.e. f— 00, i.e. n— oo if A — 0. Then we have for small A

and also

f=2+

ST 1(3Y)

_a-49¢
A

1— A?

~ 4.4228N 71,

~ 0.2827A 72,



hence

N =nf = 1.2502472,
i.e. N3 =~ 1.0773A L.
For large N

f ~ 4.105N*3.

For example, we consider the case N = 1000. It is seen from Table 1 that N = 1280, 981
correspond to & = 0.805, 0.81, respectively. Since, for 12801/3 = 10.86, 981/ = 9.94,
f/N'/® = 3.963, 3.951, respectively, by the method of interpolation for 10001/ = 10.00
we have f/N'/3 =3.952. Hence f = 3.952 x 10 = 39.52, n = 10000/39.52 = 25.30. Now,
taking n = 25, we see that sup, Rs,a has the value 25.41 at A = 0.1137. Hence n = 25
gives the minimax solution of R.

For n not large, we shall obtain the range of N for which specified value of n gives
_ the minimax solution. Suppose that n and N are given and denote Ra as R, n(A) and
consider it as a function of A. As is shown above, when f := N/n is not too small,
R, n(4A) has one local maximum at A = A}y in the range 0 < A < 1. Now, for given
n, let 9M(n) be the set of values of N such that R, n(A n) < n + 1. Since, for Ny < N,

Rﬂ,Nl (A;,Nl) < Rn.Nz(A:z,NJ < Rﬂ,Nz(A;,Ng)s

it follows that N € 9%(n) if and only if there exist N*(n) such that 1 < N < N*(n). And
also it has been shown that R.n (A}, ) is decreasing in n, hence N *(n) is increasing in n.
Then, for N satisfying N*(n — 1) < N < N*(n), n gives the minimax solution, because

Roan(Bin) >n,  Ran(Bhy) Sn+1,

hence
sup R, n(A) = max{n, Ran(A5 M)} SR+ 1,
s

and for n' > n, supp Rwn(A) > n' > n+ 1, and for ' < n, supp Ry N(A) >
Ry N(Dyy n) 2 Ran(Dan). For small n we must use the exact formula for the probability
instead of normal approximation. Thus, for n =1

P{X11 > X13} = p1gz + {(21P2 + 0102)/2}

and when p; = p2, we have

Ry = (p1 — p2)[1 + (N = 2){p2qs + {(p1p2 + q102)/2}}].

Putting A := p; — p2, P21 + { (P12 + ¢192)/2} is shown to be equal to (1=24)/2, hence

Ra(8) = 22+ (N -2)(1 - A)) = S{V = (V= 2)8)

161
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which is maximized when A = N/{2(N — 2)} for N > 4, and we have

N2

R85y

and the range of N in which sup, Ryn(A) < 2 is obtained from the inequality N? —
16N —32 < 0, that is, N < 8+ /96 = 18.80. For N = 3, sups Ri,n(A) = Ri,n(1) =9/8.
And when N = 1, 2, Ron(A) = N/2 < 1. Hence n = 1 gives the minimax solution for
4 < N < 18. In a similar way to the above, we get N*(2) = 29, N*(3) = 49, which implies
that the minimax solution is given as

1 for 3 < N L 18,
n=<2 for 19 < N £29,
3 for 30 < N < 49.

3. Minimax regret solution for the sequential procedure
Now we consider the second type procedure. We continue to observe the pair

(X1, X25), 5=1,2,...,N aslongas | 30, X1, — 3_; Xy;| < k, and stop when 37, X1 —
Z?zl X,; = k or = —k and take for the remaining N — 2n cases from the first popula-
tion in the former case and for the second population for the latter case. There is some
probability that the paired observation does not stop until 2k > N. Such a probability
can be evaluated, but if N is large as compared with k, the probability can be ignored.

Denote S; := X1, — X35 ( = 1,.. .,N), and define random variables n* and n~ as
n* =n and n~ = 0 when Y_7_, S; = k is first satisfied, and n~ = n and n* = 0 when
> 7-15; = —k is first done. Put 7 := n* +n~. Let p; > p2. Since R = A for n* >0
and R = {fi + (N — 27)}A for n~ > 0, where A =p; — s, it follows that

E(R) = [NP{n~ > 0} + E(n™ —n7)]A.

In order to calculate the probability P{n~ > 0}, assume that we start from Sp not
necessarily equal to 0 and stop as soon as | >_7_, Sj| = k, and denote

7(j) = P{n~ > 0|So = j}  (j =0,%1,...,%k).

Then we have the recurrence equation (ignoring the case when the procedure does not
stop before 2k > N)

7(j) = e (G + 1) + mor(§) + 7-7(j — 1) (j =0,%£1,...,£k)

where m(k + 1) = n(—k — 1) = 0, my = P{S; > 0} = pige, 7- = P{S; < 0} = aqip2
and mp = P{S; = 0} = 1 — 7y — 7 = p1p2 + quqz. Hence n(j) can be written as
7(j) =a+by (j =0,£1,...,%k), where

T _ D1G2

’Y:——_—_—-——.

Ty P2q1
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Since (k) = 0 and w(—k) =1, it follows that

2k k k

1 b=-—2 .,  P{n" >0} =n(0)=

R 1— 2 1T+F

Now for v(4) := E(7|Se = j), we have
V() = mv(G+1) +mov(G) + mov(G—-1)+1 (G =0,%£1,...,%(k—-1)),
v(k) = v(—k) =0,
and then the solution is given by the form of
v(G)=a +bj+cy  (j=0%1,...,£k).
From the above equation we have

(G4 1) + (1= o) — (G~ 1) =1
—m{v(G+1) —v(} +r-{v() —v(E -} =1,
since 7o = 1 — 7, —m_. Substituting v(j) =a +bj+c+ (j =0,%£1,...,%k), we obtain
—b(ry—7n)=1, b = —1/(my — 7).
Since v(k) =a’ +b'k+c~v*=0and v(—k) =a - bk + cv* =0, we have

v(0)=E@|So=0)=a +c = = 1‘“)
° Ty — T 1+'Yk |

Now we calculate
E(n*)=Y nP{n*=n}, E(n")=) nP{n =n}

For a path of Sy, ..., S, with nt = n, there exists a symmetric path to them with respect
to z-axis such that n~ = n, and the ratio of probabilities of such paths in all the cases is
1:+*. Then we have

P{n~ =n} =+*"P{n~ =n},

which implies E(n~) = v*E(n*).
Since

_ 1 1—~*
E + ‘ = E(R) =
(n n ) (n) Ty — T (1+'Yk) ’

1 1—~* 2
E(nt—n") = .
(n* —n7) Ty — T <1+’Y’°>

we have
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Noting that m. — 71— = p1(1 — p2) — p2(1 — p1) = pr — p2 = A, we obtain

A 7k 1—’7k 2

where
_ e _pl-p)_ @+8)(A-p) 1-{A/0-p)}
. p(l—p2) p(l—p + ) 1+ (A/p)
hence, for A <p; £1 ,
1—-A
<~n< [ Z2) = A,
O=7= (1+A) A

For given A\, we have

(8) NEAPE )
sup E(R)=max{ N + , k.
[p1~p2|=L 1+7Z 1+7Z

So, for given N and k we shall obtain

k kO 2
YA 1—7A
NA k{\ —— . 3.1
stip{ 1+’yg+ (14‘72) } (8.1)
Putting za := (1 — va)/(1 + 7a), we can rewrite {---} in (3.1) by
- NA

R:= —2——(1 — zp) + k2A.

Then we have

dR NA N da
Zi_Z—Z = ——‘2“‘ + ZkZA + -2—(1 — Za)&'z.

dZA__d’)/A.dZA_ _El“ I_A)z _é_ 1—'7[25 :
dA ~ dA dya ldA\1+ A dya \ 14+9%
C2(1-4) 2k (1-1R)

T A+ay (1+9R)?
41-4) k

Since

— 2T = (1 -
(1+A)2 ’YAZA( ZA)
4k
=1 Aza(l - za),
it follows that
dR _ NA N(1-2A4)
EZ—A' = > + 2kzp + Akon

N /(1-A
_3- (2sz —A) + 2kza.



Now, since 2 is monotone increasing function of A and zp = 0, z; = 1, it follows that

dR _ Joo for z=0,
dz -—%’-+2k for z =1.

If N > 4k, there is at least a solution za = 24 of dR/dza =0, hence such A* also exists
that za» = zA. The solution of the equation

#R_ N[ 1-2 1\ dA
— — 2k =
A2 { T (1 + 2sz) dzA} +2k=0

is not necessarily unique, but we consider one of the solutions corresponding to the max-

imum. Then, since

‘5*1—_1—5 (T—szA) (1+ZA)=O,

_1\1 1— ZkA(l + ZA) n ZkZA(l + ZA)
2 1— A2 1—A?

it follows that
= ()’

1. €.
k*za(1+ za)
2kA(1 + zp) — (1 — AZ)

which implies that for given k the relation with A maximizing R is provided. We also

N =

have

R* =maxR = Néé(l — zp) + k24

_ 4k202p(1 — 23)
T 2kA(1+ zp) — (1 — A?)

+ k4.
If k is comparatively large with a sufficiently large N, letting n = kA we have

={1_-_(2/_k2}2 L {1+ (/Y™ — {1 = (o/R)}
1+ (n/k) {1+ (/k)}* + {1 — (n/k)}**’

hence

e —e M 1—e ¥

FR G yem  14em = A
N 8z(1+ 2y) '
kT 214z =1
B
k

4 1—22
77271( zr)) + zz
2n(l4+2y)—1 7

Q

165
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Since each RHS of the above depends on only 7, putting

Az (14 z)
H(n) = 2n(1n+ zy) —1
we have N 12
=)
and
R~ \/g {n(1 = z)H(m)*/* + Z2H(n)"**}. (3.2)

Letting n* be 7 minimizing the RHS of (3.2), we obtain the value of k minimizing R*, i.e
the minimax solution is given by the form of

k* = {ZH(W*)}—l/QNl/Z.

By a numerical calculation, we have n* = 0.552, and then H (n*) = 5.8424, R* =
0.530331/N/2 = 0.3750N /2, and k* = 0.2925N/2.

For example, when N = 1000, we have k* = 9.25. If we take k = 9 as the nearest to
the value, then R(A) must be the maximum value at near point to A = n* /k = 0.0613,
hence we shall calculate R(A) in the neighborhood of A = 0.061. Let

04 1-~%\?°
re=a () ++(15)

When k = 9, the values of Ry in a neighborhood of /A = 0.061 are as follows.
A Q=0+ "] R

0.058 0.77992 11.8568
0.059 0.78690 11.8594
0.060 0.79368 11.8589
0.061 0.80027 11.8556

Hence, for k = 9, Ry has the maximum value 11.8594 at A = 0.059. On the other hand,
when A = 0.059, we have, for k = 10, Ry = 11.9313, hence supp Rio > supp Rg. In a
similar way to the above, for k = 8, Rg = 12.094 when A = 0.059, hence k = 9 gives
the minimax solution. Then Ry = 11.8594 is seen to be extremely close to the value
0.3750v/N = 11.8585. Letting N = 100, we have k* = 2.925. Taking k =3 as the closest
integer to the value of k*, we see that Rs has the maximum value 3.7314 at near point
to A = 0.19. If, for the value of A, k = 2 or 4, then Ry has the values 4.194 or 4.435,
respectively, hence k = 3 gives the minimax solution, and then the value of R is seen
to be very close to 0.375v/N = 3.75. As is seen in the above, the approximation is very
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accurate for not so large N.
For the case of small k, the exact computation is not difficult and we have

e 1 for 3 < N < 25,
T )2  for26< N <73

On the other hand, if 0.2925 N 1/2 < 1.5 0r 2.5, then N < 26 or 73, hence the approximation
is sufficiently accurate for even such regions of N. And such a procedure is seen to be
more efficient than a fixed sample one.

Therefore we have the rule as follows. For fized N, the minimaz solution for k can be
obtained to be the nearest integer to k* = 0.2925N/2.

4. The lower bound for the order of minimax risk

In this section, we shall show that the order of minimax risk is not smaller than
N2 under any procedure. Now we carry out two sequential procedures ¢ (i = 1,2) N
times, and denote their results by Xi1,.. ., X1y and Xz, ..., Xan, respectively. Since,
for each j = 2,..., N, Y; depends on only Xiy,... , X1, j-1 and Xa1,..., X2, j—1, it follows
from (1.1) that

N N
B(T) =B _Y;Xy; + (1~ Y;5)X3)

j=1
N
= Np, + (p1 — p2) ZE(YJ)
j=1

Hence, the regret is given by

N
A{N =Y E(Ylp1, )} for ;1 > pa,
7j=1

N
A E(Ylp1,p2) for py <pa

=1

In the minimax solution, when p; = p2, we can deduce Z;\;l E(Y;|p1,p2) = N/2 from
the symmetry of the problem. And now, comparing the case when p; = (1 + A)/2 and
p2 = (1 — A)/2 and the case when p; = p; = 1/2, we obtain the maximum value of

N
S EWlp = (1+8)/2, p2 = (1= 8)/2)

under the condition E;v:l E(Y;|p, = pz = 1/2) = N/2. For each j, Y; depends on only
X1, .-y X1, j-1; Xo1,---, X2, j-1, but we relax the condition and assume that for each j,
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Y; depends on X1, ..., Xin; Xa1,.--, Xon. Then, in order to maximize E;v E(Yjlm =
(1+4)/2, p = (1 —A)/2) under the condition E, LE(Y;|p1 = p2 = 1/2) = N/2, for
each j we take Y; = 1 when

2N

P X1 — py) M- X X (1 py) T X > @) |
This means that for each j, ¥; = 1 if 30 Xp; > EJ_ Xy Y = 0if YL, Xg5 <
Z] , X15, and the value of Yj is chosen at random if ZJ L Xoj = Z;il Xij. Then we
have for a large N

V2NA
P E X1 > _;_ Xoit~1— —_
{ 17 yos 2_7} ( = A2
hence
VvV2NA
Rz NAS1 =@ | ——= s 4.1
02221 - 02221 { (‘ /1 — A2 (4.1)

so we consider A maximizing the RHS of (4.1). Since the RHS of (4.1) is given by

sup NA{1—<I>(\/— A)}

0<AKl

=@ sup mA{l—Q(mA)}

0<h<1

= \/gsup&{l — ®(£)}
13
= 0.170[12! = 0.12N/?

it follows that for a large N

sup R > 0.12N%/2, (4.2)

0<AKL]

The inequality (4.2) is not sharp, and the more accurate evaluation will be possible, but
(4.2) is enough to show the order of minimax regret to be N 1/2,
Next we shall discuss the above more accurately. If we get the lower bound of

R* := R(p1,p2) + R(p2,p1),

then the minimax value of R is not smaller than R*/2. Since

N
R* = AN = Y {E(Y;lp1, p2) = E(¥;lp2, p1)}),

=1
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for each j = 1,..., N, we shall obtain the lower bound of
E(Y;|p1,p2) — E(Y;|p2, p1)-

Now, for each j, Y; depends on only Y1, ..., Yj_1; Y1 X1, ..., Y51 X1, -1 1-Y1) Xz, --,
(1 — Y;_1)Xq, j—1, which is denoted by Z;_;. For each j we express Y; = y;j(zj—1) as a
function of z;_;, and denote the probability function of Z;_; by p(zj_1|p1,p2). Then we
have for each j

E(Y;lp1, p2) — E(Yjlp2, p1)
= Zya‘(zj—l){P(zj—llphpz) - p(zj-llpz,m)}- (4.3)

Zzj—1
In order maximize (4.3) we obtain for each j

pi(251) = 1 for p(zj_1lp1,p2) > p(2i-1lp2:p1),
T 0 for p(2;j-1lp1,p2) < P(2j-1lP2, P1)-

Now, let P{Y; = 1} = P{Y; = 0} = 1/2. For each j > 2, Y; is determined so that it
depends on only Y3,...,Yj_1; YiXu,. .., Yim1 Xy, o1 (1= Y1) Xa, ..., (1 = Y1) X3, -1
Since the conditional probability functions are given by

p(yiz11, (1 — y1)zarlys) = o (1 — py)¥r(t=m)p{lm¥man (1 pg)(1-yn)(1=aa)

p(y2z12, (1 — Y2)T22|21) = p2m2(] _ pyn(m)-212)
. pgl—yz(zl))xzn(l _ pz)(l—yz(zl))(l—zgg),

we consequently have

(Y111, - - > Y121, -1, (1 — Y1)T21, - - -, (1 — ¥j-1)%2,5-1|P1, P2)
1
2

pormi a1 VST we-TE0 warnp S (1W)52k () VAT (Lown) = T (mwdaa
Putting wj_1 1= 390 Yk, Uj—1 == St ykzax and vy = 971 (1 — yk)zax, we have
p(¥1Z11, -+ - ¥5-1%1,5-1 (1-y)za,---, (1~ yj—l)xz,j—llphpz)

1 , .
= P (L= ) g (1= T

Then we take for each j

1 for P((lhwu, ey Yi—1%1,5-1s (1 - y1)$21, ceey (1 - yj—1)$2,j~1lpl,p2)
Y; = > p(y1%11, - - - » Yj—121, 51, (L — Y1)Z21, - - -, (1 — ¥5-1)T2,5-1|P2, 1),
0 otherwise.
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In particular, we consider the case when

p=01+8)2=p>p=(1-D)/2=1-p=g¢g.

Since
p(ylx].l’ .o ayj—lxl,j—l) (1 - yl)lea ey (1 s yj—l)xz,j_llpl’pz)
= ,_;_puj—l +(—-1-wj-1 -uj—l)qu_l —ug1tus
putting
i1 = ZY1X1k + Z(l —Y3)(1 — Xax)
we have

p(y1$11, ey Yi—1T, 51, (1 - yl)xm, ceey (1 - yj—-l)xZ,j—1|php2)
1 )
= —p¥-1gi—1-%1
2p q7 .
Hence we take
1 for Z;_1> 1(j—1),
Y;=40 for Z;1<3(—-1),
1 with probability 1/2 for Z;—; = 3(j — 1).

Since for each j
P{YiX;; + (1 -Y2)X5; = 1|V;} =p (i=1,2),

it follows that Z;_; is distributed as the binomial distribution B(j — 1,p). We also have
for each 7

j—1] 1 j—1
E(Y;)=P {Z,--l > —2—} +3 {Zj—l = T}

-~ 7 — 1
=:P{Zj__122—é—-}.

N

N-1 .
S E) =3 P{z 23} (4.4)

j=1 j=0

Then we obtain

where the RHS of (4.4) corresponding to the case j = 0 is equal to 1 /2. In this case it is
shown that there exists the best procedure independent of A. And also

N N-1
R=A{N -3 E(Wlpup)} =83 (1-P{Z 21/2}).

=1



Let the probability P{Z; > 1/2} approximate by the normal distribution, ¢.e.

z =1-— __‘/_ié_.. ey
P{ijl./z}-l @(m)+,.

N-1 3 N-1
o VA )
R~AE .{1—@(——7-;—&5 + A £j.

j=1

Then

Putting £ = VNA/+4/1— AZ, we have

N-1 N-1
R= MT% : -117 2{1 ~®¢E/VN)}+ A Zsj.

Since, for a large N, the Riemann sum is approximated by the integral, we obtain

1 N-1 1
L3 - s VR = [ (- avmodn

=1

Transforming 1 = (?/£2%, we have

/0 {1 = ®(v€) Yy
'3
= —6% /0 2¢{1 — B(¢)}dc

= I - 2(©) - 60(6) + (86 ~ 3))

On the other hand, since &; < C/j2, it follows that

RN-I/2 % ¢{1 - 2()} - () + £(2(6) — 5}

In order to obtain ¢ maximizing the RHS of (4.5), differentiating the RHS with respect

to £ and letting it be zero, we obtain

1 a(E) — {20 — 53} + £#(6) =0

which has the unique root in the range ¢ > 0. The solution is given by € = 1.247, and
then RN~1/2 = 0.2649. Hence the minimax value of R is not smaller than 0.2649N 1/2 for
a large N. For not so large N, the lower bound can be obtained from the exact calculation

of the binomial probability.

171
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Remark. Lai and Robbins (1985) obtain the asymptotic lower bound which gives in our
formula ]
lim inf l_c;é—ﬁR(A) > |Al/1(p1, p2),
where A = p, — p2 and I(py,pz) is the Kullback-Leibler information number (see also
Li and Zhang (1992)). But this formula is not of help in obtaining the bound for the
minimax regret, since
lim sup |A|/I(py, p2) = oo.
|Aj—0
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