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Grobner bases on projective bimodules
and the Hochschild cohomology *
Part III. Syzygies

YUuJi KOBAYASHI

Department of Information Science, Toho University
Funabashi 274-8510, Japan

This is a continuation of the previous papers [2] and [3]. We develop the theory
of Grobner bases on projective modules over an algebra based on a well-ordered semi-
group. We discuss syzygy modules on projective modules and construct generators
of the modules in terms of Grobner bases. The results can be used to compute the
intersection of given submodules (see [1] for the polynomial algebra case).

9 Derivation graphs

Let § = B U {0} be a well-ordered reflexive semigroup with 0 and K be a
commutative ring with 1. Let F' = K - B be the K-algebra based on B and let
I be a (two-sided) ideal of F. Let A = F/I be the quotient algebra of F by I
and p : F — A be the natural surjection. We fix a reduced Grébner basis G of
I. For f € F, f denotes the normal form of f modulo G.

Let X be an left edged set and F'-X be the projective left F'-module generated
by X. Let T be a (not necessarily complete) rewriting system on F - X. Set

H=Hr={s—-t|s—>teT}.

The set H is assumed to be uniform and is considered to be a left edged set;
for an element h in H, a(h) is defined by o(h) = o(z), where lt(h) = z - &
(z € B,§{ € X). We consider the projective left F-module F - H generated
by H. For h € H, [h] denotes the formal generator of F' - H corresponding to
h € H. An element f of F - H is written as a finite sum

f=> kizi[hi] (9.1)

with k; € K\{0},h; € H,z; € Bo‘(hi)-
We define a graph D = D(T, G) called the derivation graph associated to T
and G as follows. The set of vertices is the projective F-module F - X and for

*This is a preliminary report and the details appear elsewhere




f,9 € F- X an (positive) edge e from the source f = o(e) to the target g = 7(e)
is a one-step (7, G)-reduction from f to g, that is, f has a term k - £ with
k€ K\O, z € By¢), § € X, and

i)z —ogz and g=f+k- (' — x)&, or
(i) z =x2'2,h=26—t€ H and g= f+k- 2'(t — 2£).

In case (i), e is called a G-edge, and in case (ii), e is called a T-edge (or an
H-edge). The label of the T-edge e in (ii) is the element k-z'[h] of F- H. For an
edge e from f to g, we have the reverse (negative) edge e~! from o(e™!) = g to
and 7(e~!) = f. The label of the reverse e~ of the T-edge e in case (ii) above
is —k - z'[h]. A path p in D is a concatenation

p=e 0ezyo0---0ey (92)
of (positive or negative) edges e; with 7(e;) = o(e;41) fori =1,...,n — 1. The
path p is positive if all the edges e; in p are positive. Define the source o(p) and
the target 7(p) of p by o(p) = o(e1) and 7(p) = 7(e,) respectively. Here, p is
closed if o(p) = 7(p). For two paths p and g such that 7(p) = o(g), we have a
path p o g which is a concatenation of p and ¢ at 7(p) = o(q).

We define a mapping [ from the set of all paths in D to F - H as follows.
Let p be a path given in (9.2). If p is trivial, that is, n = 0, then [(p) = 0. If
n2>1letp =eo---o0e, If e is a G-edge, then [(p) = [(p'). I e is a
T'-edge with label k - z'[h], then

J() =k-z[h] + [(p").

Thus [ sums up all the labels of T-edges in p. We also define a mapping d called
the boundary mapping from the set of paths to the projective module F' - X by

d(p) = o(p) — 7(p)-
It is easy to see that for paths p and ¢ with 7(p) = o(g),

Joq) = [(®)+ [(g)

and
d(p o q) = d(p) + d(g).
Let 6 be a morphism of left F-modules from F - H to F - X defined by

6([p]) = A
for he H.
Proposition 9.1. We have
6o f(p) =d(p) (mod G) (9.3)
for any path p in D. In particular,
do [(p) =0 (mod G),
for a closed path p in D.

143




144

Let A- X and A - H be the projective left A-modules generated by X and
H, respectively. We consider a morphism 0 : A- H — A - X of left A-modules
by 8([h]) = px(h) for h € H. Then we have a commutative diagram

F-H % F.X

% 1 px (94)
A-H % A.x,

where px and pg are the canonical surjections. Clearly we have Im(d) = L(H)
and Im(8) = La(H). Set [ = px o [ and d = py od, which are mappings from
the set of paths to A- X and to A - H respectively.

Corollary 9.2. We have _ B
9o [(p) = d(p)

in A- X for any path p in D. In particular,
8o [(p) =0

for any closed path p in D.

10 Standard reductions and the linear map [

Suppose that a rule z - § —+ t € T is applied to a term ky - of f € F - X,
where y = y'z, and we have f =1 f — ky'(z - € —t). If (v, z€) is an leftmost
(resp. rightmost) appearance of Left(T") in y - £, the application is leftmost
(resp. rightmost). Since T is reduced only one rule can be applied to y - £ at
the leftmost (rightmost) position.
A positive path
fi @16 fa 216 =16 fn (10.1)

in D is standard, if for every ¢t = 1,...,n — 1,

(i) when f; is G-reducible, f; =1 ¢ fit+1 is a G-edge, and

(ii) when f; is G-irreducible, the edge f; = 1,¢ fi+1 is by a leftmost applica-
tion of a rule from T to the greatest I-reducible term of f; with respect to >,
thatis, z- & >t €T,z € ¥*, k € K\{0}, k- zz - £ is the greatest T-reducible
term of f; and no rule z’ - £ — ¢’ in T can be applied to zz - £ so that z' - £
appears at the left of z - £.

If f1 is reduced to f, through a standard reduction as above, we write as
fi &7 fn- A standard one-step reduction by a rule from T is denoted by =7,
that is, f =7 g if f is G-irreducible and g is obtained by a leftmost application
of a rule of T to the greatest T-reducible term of f.

Since —¢ is complete, if f, is G-irreducible, the standard reduction (10.1)
can be rewritten as

1= 260 =>T792 260 =>T =T gn =6 m = fn, (10.2)




where §; is the G-normal form of g; Since T is reduced, in the step §; =7 gi+1 In
the above reduction sequence, only one rule from T is applicable to the greatest
T-reducible term of §; at a unique leftmost position. In this sense, a standard
reduction from f to f, is unique. In particular, if f, is (T, G)-irreducible, it is
unique. This unique element f,, is called the standard form of f, denoted by f°.
If T is complete modulo G, f°® coincides with the normal form f of f.

Proposition 10.1. Let f, f',9,9' € F-X - F, k,£ € K and assume that there
are standard reductions f =7 5 f' and g =7 9.
(1) There is a standard reduction

kef+0-g=hok-f+L-g

(2) If f' and g' are the standard forms of f and g respectively, then k- f'+£-g'
is the standard form of k- f +-£-g;

(k-f+e-9)°=k-f°+1£-g°.
Now we define a K-linear map [ = [, : F-X — F- H by
J(£) = J®()

for f € F' - X, where p(f) is a standard path from f to the standard form f°.
The reader should not be confused by using the same symbol [ for the mapping
from the module F'- X and for the mapping from the set of paths in D. Clearly,
J(f) does not depend on the choice of the standard reduction of f to f*. So we
can choose the standard reduction

P f=g2h =>T9R2cI=>T =T 9m =6 dm =f° (10.3)

like (10.2) to define [(f). Precisely, for f € F - X let n(f) be the unique
standard path p given in (10.3), then

S == ().

Proposition 10.2. (1) [(f) = [(f) for f € F- X, where f is the normal
form of f with respect to G.
(2) [ is a morphism of K -modules, that is,

J(k1f1 + kaf2) = k1 [(f1) + k2 [(f2)
for ki, ko € K and f1,fo € F-X.
By the definition, we have
d(n(f)) = f - f°.

Thus, by Proposition 9.1 we obtain
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Proposition 10.3. For fe F - X,

do [(f)=[f—Ff° (mod G),
mF-X.

The assertion (1) in Proposition 10.2 means that [(f) = [(g) follows from
px(f) = px(g). Thus, [ induced a K-linear map f A-X — F - H such that

f = ["opx. The composition f f H = PHO [" with the surjection py is a
K-linear map from A- X to A- H. Thus,

Proposition 10.4. The K-linear map [ induces a K-linear map T A X -
A - H and we have a commutative diagram

F-x 4 rom

px 4 I pH
A-x 4 a.m

Since px(f) = px(g) if and only if f = §, we sometimes regard a G-
irreducible element of F' - X as an element of A - X. Thus, a G-irreducible
element f and its standard form f*, which is also G-irreducible, are considered
to be an element of A - X. With this convention, Proposition 10.3 means

Corollary 10.5. For f € A- X we have

8o [(f)=Ff—f*

11 Cycles made from critical pairs and z-elements

Let K be the kernel of the morphism px 0§ = 80 pgy in (9.4). We are interested
in finding generators of K.

Leth=z-(~t,h=a"- (-t tt'eF-X, € X, z,z’' €r(¢) B) be rules
in Handu—v (u€ B,v € F) bearulein G.

First, we consider a critical pair of the first kind. Suppose that zz = 2’2’ # 0
for some 2,2’ € B, where the appearance (z,z - £) of z - £ is at the right of the
appearance (2',z' - §) of 2’ - £ in zz€ = 2'z'¢, and z and 2’ are left coprime.
Then we have critical pair

(zz- & > 2t, 2'z’ - & -y 2't)
of reductions. For this critical pair define an element ¢, of F - H by

o = z[h) — 2]+ [(z-t) - [(2't). (11.1)

Next, we consider a critical pair of the second kind. Suppose that zz =
z'uz” # 0 for some z,z',2” € B, where z is G-irreducible, the appearance
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(2',u,2" - €) of u and the appearance (z,z&) of € in zz - € are rightmost and 2z
and z' are left coprime. Then we have a critical pair

(zz - € —p 2t, 2'uz” - € 5g 2'v2" - §)
of reductions. For this critical pair we define an element c; of F - H by
cz = z[h] + [(z-t) — [(2'v2"€). (11.2)

Lemma 11.1. If the critical pair (zt,z't") (resp. (zt,2'v2"§)) is resolvable, the
elements c1 (resp. ca) above is in K.

Consider a z2-pair (z,h), that is, h = z€é —t € H, z € B and 2z = 0. We
have an z-element zt and for this z-pair we define an element c3 of F - H by

cz = z[h] + [(z - t). (11.3)
Lemma 11.2. If the z-element zt is resolvable, the element c3 above is in K.

Let C be the collection of all the elements ¢1, ¢; and cs above. If H is
a Grobner basis, then all the critical pairs and the z-elements are resolvable
(Theorem 7.2). Hence, C is contained in K by Lemmas 11.1 and 11.2,. More
strongly we have

Theorem 11.3. If H is a Grébner basis, C generates K.

12 Syzygies

Let Y be a left edged set and let h = (h,),cy be a sequence of left uniform
elements of F - X indexed by Y with o(h,) = o(n). A sequence f = (fa)ney
of right uniform elements of F with 7(f,) = o(n) is a syzygy of h modulo G if
Jn = 0 for all but a finite number of 5 in ¥, and

Z fohn =0
ney

in A-X. The set Syz(h) of all syzygies of h forms a submodule of the projective
left F-module F - Y generated by Y. We call it the syzygy module of h. Let
6:F-Y — F - X be the morphism defined by

é(n) = h,

for n € Y. Then, Syz(h) is nothing but the kernel of the morphism px 00 :
F.Y> A -X.
Let 8: A-Y — A - X be the morphism defined by

9(n) = px (hy),




then we have a commutative diagram

FY &% F.Xx

py { + px
Ay 4 4.x.

Thus, Ker(8) = py (Syz(h)).
By Theorem 11.3 we have

Theorem 12.1. If H = {h,| n € Y} forms a Grobner basis on F - X, the
syzygy module Syz(h) is generated modulo G by the set C' of elements (11.1),
(11.2) and (11.8) made from the critical pairs and the z-pairs with respect to H
and G.

If H is not a Grobner basis; then we take a Grébner basis H = {h5 |7 € Y}
of the submonoid generated by H modulo G. We may apply the completion
procedure to obtain H. We have a morphism § : F-Y — F - X defined by
5(7) = hy for 7 € Y. Then, Im(d) = Im(6). Since F-Y and F-Y are projective
left F—modules we have a morphisms ¢ : F' - Y>F.-Yandy:F.-Y > F.Y
such that 6 = d o ¢ and § = § o 7;

F.Yy 5% F.X

¢ N ¥ I

F.Y % F.x

Let C = {c¢ | ¢ € Z} be the set of elements of F'-Y made from critical pairs
and z-pairs with respect to H and G. We have

Theorem 12.2. The set ¢(C) U {n—o¢((n))|n€Y } generates Syz(h)
modulo G.

Suppose that ¢ (¢ € Z), hy (M€ Y) and h, (n € Y) are written as
=S b= Sy = S ke
7eYy ney neY
with z?, z7}, y! € F. In this situation we have
Corollary 12.3. Syz(h) is generated by the elements
> e e
neEY ,neY

and

n— >, Yzl -n (neY).
n' €Y, 7eY
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13 Intersections of submodules

Let L; and L3 be a submodules of the projective left A-module A-X. Suppose
that they are generated by Hy = {hn, |m € Y1} and Ho = {hy, |m2 € Y3},
respectively. Define a morphism

0:A- XA YIA Y, A XA X
by
6(5’7713772) = (5+hnuf+h’nz)
for{ € X, m €Y; and ny € V5. Let

7T A XA Yi0A Yo - A X

be the projection onto the first component. Then, m(Ker(d)) is equal to the
intersection Ly N L.

Let H = {h,|n € Y} be a Grobner basis on F - X of L; + Ly, which
could be obtained by completing Hy U Ho. Let C = {c; | ¢ € Z} be the set of
elements of F' - Y made from critical pairs and z-pairs with respect to H. We
see that H' = {(£,£)|€ € X }YU{(hy,0)|n € Y} is a Grébner basis of Im(8)
on F-X & F-X and (0,C) is the set of elements of F- X @& F -Y made from
critical pairs and z-pairs with respect to H’. We have a morphism

0:A- XA YA XA X

defined by
| 3(&,m) = (£ + by, §)

for £ € X and n € Y. Then, Im(8) = Im(9) and we have morphisms ¢ :
AXOAYI®AY, 2 AXPAY andy : AXBGAYX 5 AXDAY, 0 AY,
such that 8o ¢ = 0 and § o ¢) = §. Thus, We have a commutative diagram

A-X &S A X0A Y04, 3 A-X0Ad X
1T 1 ¢ Il

A-XoAY 2 A X004 X

Since H is a Grobner basis of L, + L, we can write as

hy= 32 @) by

n’'€Y1UY,

withzg'EAinA-Yl @A Y,forneY, and

hr)’ = Z yg' h"]

ney




150

with y7, € Aforn’ € YUY, in A-Y. Then, ¢ and 1 are given as
7
&M =(E+ D TPhny, Y TN, — Y, TPM)
N2€Y2 meEY: n2€Y2

and

(& M, m2) = (E+ hngy D _ (WD, ~ y2)M)-

neyY

Theorem 13.1. Under the above situation, let

ce = Z zln

ney

with zg € A for ( € Z. Then, Ly N L, is generated by the elements

Z ngzz'hnz (CEZ)a

neY, €Yz
§ : yg;zzz ’ hﬂz (771 € Yl)a
nEY,n2€Yz2
and ,
n
hn, — E , yzzmnz : hn’z (2 € Y2).
nEY, €Y

Corollary 13.2. If H, U Hy forms a Grobner basis, then' Y = Y, UY, and
L, N Ly is generated by the elements

Y 2 kg ((€2)

n2€Y2

and
h-,, (T) (S Y1 N YE;)
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