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1 Introduction
In this article, we study the scattering theory for N-body quantum systems with long-range pair

interactions in a time-periodic electric field whose mean in time is non-zero, where $N\geq 2$ . We
describe the results obtained in [A4] on the asymptotic completeness for such systems.

We consider a system of $N$ particles moving in a given time-periodic electric field $\mathcal{E}(t)\in R^{d}$ ,
$\mathcal{E}(t)\not\equiv 0$ . We suppose that $\mathcal{E}(t)\in C^{0}(R;R^{d})$ has a period $T>0$ , that is, $\mathcal{E}(t+T)=\mathcal{E}(t)$ for
any $t\in R$, and its mean $\mathcal{E}$ in time is non-zero, i.e.

$\mathcal{E}=\frac{1}{T}\int_{0}^{T}\mathcal{E}(t)dt\neq 0$ .

Let $m_{j},$ $e_{j}$ and $r_{j}\in R^{d},$ $1\leq j\leq N$ , denote the mass, charge and position vector of the j-th
particle, respectively. We suppose that the particles under consideration interact with one another
through the pair potentials $V_{jk}(r_{j}-r_{k}),$ $1\leq j<k\leq N$ . We assume that these pair potentials are
independent of time $t$ . Then the total Hamiltonian for the system is given by

$\tilde{H}(t)=\sum_{1\leq j\leq N}\{-\frac{1}{2m_{j}}\Delta_{r_{j}}-e_{j}\langle \mathscr{E}(t),$ $r_{j} \rangle\}+\sum_{1\leq j<k\leq N}V_{jk}(r_{j}-r_{k})$ ,

where $\langle\xi,$ $\eta\rangle=\sum_{j=1}^{d}\xi_{j}\eta_{j}$ for $\xi,$ $\eta\in R^{d}$ . $\sum_{1\leq j<k\leq N}V_{jk}(r_{j}-r_{k})$ will be written as $V$ later. We
now separate the part associated with the center ofmass motion from $\tilde{H}(t)$ by standard procedure:
We equip $R^{dxN}$ with the metric $r \cdot\tilde{r}=\sum_{j=1}^{N}m_{j}\langle r_{j},\tilde{r}_{j}\rangle$ for $r=(r_{1}, \ldots, r_{N}),\tilde{r}=(\tilde{r}_{1}, \ldots , \overline{r}_{N})\in$

$R^{dxN}$ . We usually write $r\cdot r$ as $r^{2}$ . We put $|r|=\sqrt{r^{2}}$. Let $X$ be the configuration space in the
center-of-mass frame:

$X= \{r\in R^{dxN}|\sum_{1\leq j\leq N}m_{j}r_{j}=0\}$ .

$\pi$ : $R^{dxN}arrow X$ denotes the orthogonal projection onto $X$ . We put $x=\pi r$ for $r\in R^{dxN}$ , and

$E(t)= \pi(\frac{e_{1}}{m_{1}}\mathcal{E}(t),$ $\ldots$ ’
$\frac{e_{N}}{m_{N}}\mathcal{E}(t))$ , $E= \frac{1}{T}/0^{\tau_{E(t)dt}}$ .

Throughout this article, we assume that there exists at least one pair $(j, k)$ whose specific charges
are different, that is, $e_{j}/m_{j}\neq e_{k}/m_{k}$ . By virme of this assumption, one sees that $E(t)\neq 0$

whenever $\mathcal{E}(t)\neq 0$ , and that $E\neq 0$ . By separating the part associated with the center of mass
motion from $\tilde{H}(t)$ , we obtain the Hamiltonian

$H(t)=- \frac{1}{2}\Delta-E(t)\cdot x+V$
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on $L^{2}(X)$ , where $\Delta$ is the Laplace-Beltrami operator on $X$ . We will study the scattering theory
for this Hamiltonian $H(t)$ .

A non-empty subset of the set $\{$ 1, $\ldots,$
$N\}$ is called a cluster. Let $C_{j},$ $1\leq j\leq m$ , be clusters.

If $\bigcup_{1\leq j\leq m}C_{j}=\{1, \ldots , N\}$ and $C_{j}\cap C_{k}=\emptyset$ for $1\leq j<k\leq m,$ $a=\{C_{1}, \ldots, C_{m}\}$ is
called a cluster decomposition. $\#(a)$ denotes the number of clusters in $a$ . Let $\mathscr{A}$ be the set of
all cluster decompositions. Suppose $a,$ $b\in$ ,Of. If $b$ is obtained as a refinement of $a$, that is, if
each cluster in $b$ is a subset of a cluster in $a$ , we say $b\subset a$ , and its negation is denoted by $b\not\subset a$ .
Any $a$ is regarded as a refinement of itself. The one and N-cluster decompositions are denoted by
$a_{\max}$ and $a_{\min}$ , respectively. The pair $(j, k)$ is identified with the $(N-1)$ -cluster decomposition
$\{(j, k),$ (1)

$,$ $\ldots,$
$(j\gamma,$

$\ldots,$
$(\hat{k}),$

$\ldots,$
$(N)\}$ .

Next we introduce two subspaces $X^{a}$ and $X_{a}$ of $X$ for $a\in$ szsl:

$X^{a}= \{r\in X|\sum_{j\in C}m_{j}r_{j}=0$ for each cluster $C$ in $a\}$ , $X_{a}=X\ominus X^{a}$ .

In particular, $X^{(j,k)}$ is identified with the configuration space for the relative position of j-th and
k-th particles. Hence one can put $V_{(j,k)}(x^{(j,k)})=V_{jk}(r_{j}-r_{k})$ . It is well known that $X_{a}=\{r\in$

$X|r_{j}=r_{k}$ for each pair $(j, k)\subset a\}$ , and that $L^{2}(X)$ is decomposed into $L^{2}(X^{a})\otimes L^{2}(X_{a})$ .
$\pi^{a}$ : $Xarrow X^{a}$ and $\pi_{a}$ : $Xarrow X_{a}$ denote the orthogonal projections onto $X^{a}$ and $X_{a}$ , respectively.
We put $x^{a}=\pi^{a}x$ and $x_{a}=\pi_{a}x$ for $x\in X$ . We now define the cluster Hamiltonian

$H_{a}(t)=- \frac{1}{2}\Delta-E(t)\cdot x+V^{a}$,
$V^{a}= \sum_{(j,k)\subset a}V_{(j,k)}(x^{(j,k)})$

,

which govems the motion of the system broken into non-interacting clusters of particles. The
intercluster potential $I_{a}$ is given by

$I_{a}(x)=V(x)-V^{a}(x)= \sum_{(j,k)\not\subset a}V_{(j_{t}k)}(x^{(j,k)})$
.

Put $E^{a}(t)=\pi^{a}E(t)$ and $E_{a}(t)=\pi_{a}E(t)$ . Then the cluster Hamiltonian $H_{a}(t)$ acting on $L^{2}(X)$

is decomposed into
$H_{a}(t)=H^{a}(t)\otimes$ Id $+$ Id $\otimes T_{a}(t)$

on $L^{2}(X^{a})\otimes L^{2}(X_{a})$ , where Id are the identity operators,

$H^{a}(t)=- \frac{1}{2}\Delta^{a}-E^{a}(t)\cdot x^{a}+V^{a}$ , $T_{a}(t)=- \frac{1}{2}\Delta_{a}-E_{a}(t)\cdot x_{a}$ ,

and $\Delta^{a}$ (resp. $\Delta_{a}$) is the Laplace-Beltrami operator on $X^{a}$ (resp. $X_{a}$ ).

Now we will state the assumptions on the pair potentials. Let $c$ stand for a maximal element
of the set $\{a\in$ ,Of $|E^{a}=0\}$ with respect to the relation $\subset$ , where $E^{a}=\pi^{a}E$ . Such a cluster
decomposition uniquely exists, and it follows that $(j, k)\subset c$ is equivalent to $e_{j}/m_{j}=e_{k}/m_{k}$ . If,
in particular, $e_{j}/m_{j}\neq e_{k}/m_{k}$ for any $(j, k)\in$ .Of, then $c=a_{\min}$ . Since $E\neq 0$ as mentioned
above, we see that $c\neq a_{\max}$ . We will impose different assumptions on $V_{jk}$ according as $(j, k)\subset c$

or $(j, k)\not\subset c$: Let $\rho>0$ .
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$(V)_{c,L}V_{jk}(r)\in C^{\infty}(R^{d}),$ $(\gamma, k)\subset c$ , is a real-valued function and satisfies

$|\partial^{\beta}V_{jk}(r)|\leq C_{\beta}^{\gamma}\langle r\rangle^{-(\rho’+|\beta|)}$

with $\sqrt{3}-1<\rho’\leq 1$ .
$(V)_{\overline{c},G}V_{jk}(r)\in C^{\infty}(R^{d}),$ $(j, k)\not\subset c$, is a real-valued function and satisfies

$|\partial^{\beta}V_{jk}(r)|\leq C_{\beta}\langle r\rangle^{-(\rho\circ+|\beta|)}$ , $|\beta|\leq 1$ ,
$|\partial^{\beta}V_{jk}(r)|\leq C_{\beta}$ , $|\beta|\geq 2$ ,

with $0<\rho G\leq 1/2$ .
$(V)_{\overline{c},D,\rho}V_{jk}(r)\in C^{\infty}(R^{d}),$ $(j, k)\not\subset c$, is a real-valued imction and satisfies

$|\partial^{\beta}V_{jk}(r)|\leq C_{\beta}\langle r)^{-(\rho+|\beta|/2)}$ .

Under these assumptions, all the Hamiltonians defined above are essentially self-adjoint on $C_{0}^{\infty}$ .
Their closures are denoted by the same notations. If $V_{jk},$ $(j, k)\subset c$ , satisfies $(V)_{c,L}$ , then $V_{jk}$

is called a long-range potential. We note that if $V_{jk},$ $(j, k)\not\subset c$, satisfies $(V)_{\overline{c},G}$ or $(V)_{\overline{c},D,\rho}$ with
$\rho\leq 1/2$ , then $V_{jk}$ should be called a ”Stark long-range” potential.

To formulate the obtained results precisely, we will define modified wave operators: Let $U(t, s)$ ,
$U_{a}(t, s)$ and $\overline{U}_{a}(t, s),$ $a\subset c$ , be unitary propagators generated by time-dependent Hamiltonians
$H(t),$ $H_{a}(t)$ and $T_{a}(t)$ , respectively. The existence and uniqueness of $U(t, s)$ are guaranteed by
virtue of results of Yajima [Ya2] and the Avron-Herbst fornula [CFKS] as follows: We introduce
a strongly continuous family of uiuitary operators on $L^{2}(X)$ by

$\tilde{\mathscr{T}}(t)=e^{-i\tilde{a}(t)}e^{i\tilde{b}(t)\cdot x}e^{-i\tilde{c}(t)p}$ , (1.1)

where

$\tilde{b}(t)=/o^{t}E(\tau)d\tau$, $\tilde{c}(t)=\int_{0}^{t}\tilde{b}(\tau)d\tau$ , $\tilde{a}(t)=\frac{1}{2}\int_{0}^{t}\tilde{b}(\tau)^{2}d\tau$ . (1.2)

We also introduce the time-dependent Hanuiltonian $H^{Sc}(t)$ on $L^{2}(X)$ by

$H^{Sc}(t)=- \frac{1}{2}\Delta+V(x+\tilde{c}(t))$ .

Since the propagator generated by $H^{Sc}(t)$ exists uniquely by virtue of results of [Ya2], we write it
as $U^{Sc}(t, s)$ . Then one sees that the propagator $U(t, s)$ generated by $H(t)$ also exists uniquely by
virtue of the Avron-Herbst formula

$U(t, s)=f\tilde{f}(t)U^{Sc}(t, s)\tilde{\mathscr{T}}(s)^{*}$ . (1.3)

We here emphasize that $U(t, s)$ enjoys the domain invariance property

$U(t, s)\mathcal{D}((p^{2}+x^{2})^{n})\subset \mathcal{D}((p^{2}+x^{2})^{n})$ , $n\in N$ , (1.4)
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and that $U(t, s)$ is strongly continuous in $\mathcal{D}((p^{2}+x^{2})^{n})$ with respect to $(t, s)$ under the assumptions
$(V)_{c,L}$ , and $(V)_{\overline{c},G}$ or $(V)_{\overline{c},D,\rho}$ (sce [A4] for the details).

We now note that for $a\subset c,$ $H^{a}(t)$ is independent of time $t$ because of $E^{a}(t)\equiv 0$ . Thus we
write it as $H^{a}$ . Then $U_{a}(t, s)$ is written as

$U_{a}(t, s)=e^{-i(t-s)H^{a}}\otimes\overline{U}_{a}(t, s)$ . (1.5)

We here introduce

$U_{a,D}(t\}0)=U_{a}(t_{i}0)e^{-i\int_{0}^{t}I_{a}^{c}(p_{a}\tau)d\tau}$ (1.6)

for $a\subset c$ . Here $I_{a}^{c}=I_{a}-I_{c}$ and $p_{a}=-i\nabla_{a}$ is the velocity operator on $L^{2}(X_{a})$ . Under the
assumptions $(V)_{c,L}$ and $(V)_{\overline{c},G}$ , we define the modified wave operators $W_{a,G}^{D,\pm},$ $a\subset c$, by

$W_{a,G}^{D,\pm}= s-\lim_{tarrow\pm\infty}U(t, 0)^{*}U_{a,D}(t, 0)e^{-i\int_{0}^{t}I_{c}(\tilde{c}(\tau))d\tau}(P^{a}\otimes$ Id $)$ , (1.7)

where $P^{a}$ : $L^{2}(X^{a})arrow L^{2}(X^{a})$ is the eigenprojection associated with $H^{a}$ . We call $e^{-i\int_{0}^{t}I_{c}(\tilde{c}(\tau))d\tau}$

the Graf $(or Zorbas)- type$ modifier (see [Al], [ATl], [Gr3], [HMS2] and [Zo]).
One of the main results of this article is the following theorem:

Theorem 1.1. Assume that $(V)_{c,L}$ and $(V)_{\overline{c},G}$ are fillfilled. Then the modified $wa\nu e$ operators
$W_{a,G}^{D,\pm},$ $a\subset c$, exist, and ore asymptotically complete

$L^{2}(X)= \sum_{a\subset c}\oplus$ Ran $W_{a,G}^{D,\pm}$ .

Next we suppose that $(V)_{\overline{c},D,\rho}$ with $0<\rho\leq 1/2$ instead of $(V)_{\overline{c}_{1}G}$ is satisfied. First we consider
the case where $c\neq a_{\min}$ , that is, $\#(c)\neq N$ . Since $2\leq\#(c)<N$ by assumption, $N\geq 3$ is
assumed here. Under the assumptions $(V)_{c,L}$ and $(V)_{\overline{c}_{1}D,\rho}$ with $(\sqrt{3}-1)/2<\rho\leq 1/2$ , we define
the modified wave operators $W_{a,D}^{D,\pm},$ $a\subset c$, by

$W_{a,D}^{D,\pm}= s-\lim_{tarrow\pm\infty}U(t, 0)^{*}U_{a,D}(t_{1}0)e^{-i\int_{0}^{t}I_{c}(p_{c}\tau+\overline{c}(\tau))d\tau}(P^{a}\otimes$Id $)$ . (1.8)

Then we have the following theorem:

Theorem 1.2. Assume that $c\neq a_{\min}$ and that $(V)_{c,L}$ and $(V)_{\overline{c},D,\rho}$ with $(\sqrt{3}-1)/2<\rho\leq 1/2$ are
filfilled. Then the modified wave operators $W_{a,D}^{D,\pm},$ $a\subset c$, exist, $ond$ are asymptotically complete

$L^{2}(X)= \sum_{a\subset c}\oplus$ Ran $W_{a,D}^{D,\pm}$ .

Finally, we consider the case where $c=a_{\min}$ . For example, when $N=2,$ $c=a_{\min}$ is satisfied
by assumption. We here note that if $c=a_{\min}$ ,

$H_{c}(t)=- \frac{1}{2}\Delta-E(t)\cdot x\equiv H_{0}(t)$ ,
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$I_{c}(x)=V(x),$ $x_{c}=x$ and $p_{c}=p$, where $p=-i\nabla$ is the velocity operator on $L^{2}(X)$ . $U_{0}(t, s)$

denotes the unitary propagator generated by $H_{0}(t)$ . Under the assumption $(V)_{\overline{c},D,\rho}$ with $0<\rho\leq$

$1/2$ , an approximate solution of the Hamilton-Jacobi equation

$( \partial_{t}K)(t, \xi)=\frac{1}{2}(\xi+\tilde{b}(t))^{2}+V((\nabla_{\xi}K)(t, \xi))$

can be constructed (see [A4]). If $V\equiv 0$ and $K(0, \xi)\equiv 0,$ $K(t, \xi)$ is written as

$K(t, \xi)=K_{0}(t, \xi)\equiv\frac{t}{2}\xi^{2}+\tilde{c}(t)\cdot\xi+\tilde{a}(t)$ , (1.9)

where $\tilde{a}(t)$ and $\tilde{c}(t)$ are as in (1.2). We here note that $(\nabla_{\xi}K_{0})(t, \xi)$ is written as

$(\nabla_{\xi}K_{0})(t, \xi)=\xi t+\tilde{c}(t)$ . (1.10)

Under the assumptions $c=a_{\min}$ and $(V)_{\overline{c},D,\rho}$ with $0<\rho\leq 1/2$ , we define the modified wave
operators $W_{0,D}^{\pm}$ by

$W_{0,D}^{\pm}= s-\lim_{larrow\pm\infty}U(t, 0)^{*}U_{0}(t, 0)e^{-i\int_{T}^{t}V((\nabla_{\zeta}K)(\tau,p))d\tau}$ . (1.11)

If 1/4 $<\rho\leq 1/2,$ $e^{-i\int_{T}^{t}V((\nabla_{\xi}K)(\tau,p))d\tau}$ in (1.11) can be replaced by $e^{-i\int_{0}^{t}V((\nabla_{\xi}K_{0})(\tau,p))d\tau}=$

$e^{-i\int_{0}^{t}V(p\tau+\tilde{c}(\tau))d\tau}$ , which is called the Dollard-type modifier (see [Al], [AT2], [JO], [JY] and [W]).

Then we have the following theorem:

Theorem 1.3. Assume that $c=a_{\min}$ and $(V)_{\overline{c},D,\rho}$ with $0<\rho\leq 1/2$ are fiulfilled Then the

modified wave operators $W_{0,D}^{\pm}$ exist and are unitary on $L^{2}(X)$ .

Remark 1.1. In our analysis, we need a certain regularity of $V_{jk}$ like being at least in $C_{b}^{8}(R^{d})$ in
order to obtain some propagation estimates which are useful for provin$g$ the asymptotic complete-
ness ofwave operators (see \S 3, in particular Lemma 3.6).

The initial time $0$ can be replaced by any $s\in R$ .

For time-dependent Hamiltonians, the lack of energy conservation is a bamier in studying this
problem. For instance, the time-boundedness ofthe kinetic energy was the key fact for studying the
charge transfer model (see $e.g$ . [Grl]). Howland [Hol] proposed the stationary scattering theory
for time-dependent Hamiltonians, whose formulation was the quantum analogue to the procedure
in the classical mechanics in order to ’recover’ the conservation of energy. Yajima [Yal] applied
this Howland method to the two-body quantum systems with time-periodic shoit-range potentials
and studied the problem ofthe asymptotic completeness for the systems (see also [Ho2] and [Yol]).

His result was extended to the three-body case by Nakamura [N] later (as for the spectral theory
for general N-body systems, see Mller-Skibsted [MS]$)$ . Under the same assumption on $\mathcal{E}(t)$

as in this article, Mller [M] studied the scattering theory for two-body quantum systems with
short-range interactions, and Adachi [A3] also studied the scattering theory for N-body quantum
systems with short-range interactions between particles whose specific charges are different as
mentioned before, by using the so-called Howland-Yajima method.
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The Howland-Yajima method reduces the problem under consideration to the problem of the
asymptotic completeness of the usual wave operators associated with the Floquet Hamiltonian
given by $K=-i\partial_{t}+H(t)$ on $L^{2}(T;L^{2}(X))$ formally. Thus this method matches the quanmm
scattering theory for time-periodic short-range interactions, but seems not sufficient for the time-
periodic long-range ones. For instance, Kitada-Yajima [KY] dealt with the so-called AC Stark
effect, in which the mean of $\mathcal{E}(t)$ in $t$ is zero, for two-body quantum systems with long-range
interactions, by using the so-called Enss method. As implied by this, in studying the scattering
theory for time-periodic long-range interactions, one needs to know some propagation properties
of the physical propagator $U(t, s)$ . One of purposes of this article is to give some propagation
estimates for $U(t, s)$ (see \S 3), that was not done in [M] and [A3]. In the case where $\mathcal{E}(t)=$

$\mathcal{E}+o(1)$ , which is not time-periodic, this was done by Yokoyama [Yo2] for two-body systems
with short-range interactions.

In the argument below, we will consider the case where $tarrow\infty$ only. The case where $tarrow-$ oo
can be dealt with quite similarly. For an X-valued operator $L,$ $(L^{2})^{1/2}$ is denoted by $|L|$ for
brevity’s sake.

2 Asymptotic clustering
In this section, we prove the so-called asymptotic clustering for the system under consideration,

which is the key to showing Theorems 1.1, 1.2 and 1.3. Throughout this and the next sections, we
suppose that $(V)_{c,L}$ and
$(V) \frac{/}{c},D_{1}\rho V_{jk}(r)\in C^{\infty}(R^{d}),$ $(j, k)\not\subset c$, is a real-valued function and satisfies

$|\partial^{\beta}V_{jk}(r)|\leq C_{\beta}\langle r\rangle^{-(\rho+|\beta|/2)}$ , $|\beta|\leq 1$ ,
$|\partial^{\beta}V_{jk}(r)|\leq C_{\beta}$ , $|\beta|\geq 2$ ,

with $0<\rho\leq 1/2$ are fulfilled. We note that under $(V)_{\overline{c}G}\}$ with $\rho=\rho c$ or $(V)_{\overline{c},D,\rho},$ $(V)_{\overline{c},D,\rho}’$ is
fulfilled.

In this article, we often use the following convention for smooth cut-off fimctions $F$ with $0\leq$

$F\leq 1$ : For sufficiently small $\delta>0$, we define

$F(s\leq d)=1$ for $s\leq d-\delta$ , $=0$ for $s\geq d$ ,
$F(s\geq d)=1$ for $s\geq d+\delta$ , $=0$ for $s\leq d$ ,

and $F(d_{1}\leq s\leq d_{2})=F(s\geq d_{1})F(s\leq d_{2})$ . To clarify the dependence on $\delta>0$ in the definition
of $F$ , we often write $F_{\delta}$ for $F$ .

We now introduce the time-dependent intercluster potential $I_{c}(t, x)$ as
$I_{c}(t, x)=I_{c}(x)F_{\epsilon_{1}}(t^{-2}|x-\tilde{c}(t)|\leq 2\epsilon_{1})$ (2.1)

with some sufficiently small $\epsilon_{1}>0$ , where $\tilde{c}(t)$ is defined by (1.2). Since

$\tilde{c}(t)-\frac{E}{2}t^{2}=/o^{t}(\tilde{b}(s)-Es)ds=O(t)$ (2.2)

37



in virtue of the periodicity of $\tilde{b}(t)$ –Et by the definition of $E$ , we see that $I_{c}(t, x)$ enjoys the
estimate

$|\partial_{x}^{\beta}I_{c}(t, x)|\leq C_{\beta}(t+\langle x\rangle^{1/2})^{-(2\rho+|\beta|)}$ , $|\beta|\leq 1$ , (2.3)

for $t>0$ , if $0< \epsilon_{1}<\min_{\alpha\not\subset c}|E^{\alpha}|/4$ . Then we define the time-dependent Hamiltonian $\tilde{H}_{c}(t)$ by

$\tilde{H}_{c}(t)=H_{c}(t)+I_{c}(t, x)$ , (2.4)

and denote by $\tilde{U}_{c}(t),$ $t\geq T$ , the unitary propagator generated by $\tilde{H}_{c}(t)$ such that $\tilde{U}_{c}(T)=$ Id. We
here note that the domain invariance property of $\tilde{U}_{c}(t)$

$\tilde{U}_{c}(t)\mathcal{D}(p^{2}+x^{2})\subset \mathcal{D}(p^{2}+x^{2})$

holds and that $\tilde{U}_{c}(t)$ is strongly continuous in $\mathcal{D}(p^{2}+x^{2})$ with respect to $t$ .
In order to prove Theorems 1.1, 1.2 and 1.3, we will claim that the following asymptotic clus-

tering holds:

Theorem 2.1 (Asymptotic Clustering). Assume that $(V)_{c,L}$ and $(V)_{\delta,D,\rho}’$ with $0<\rho\leq 1/2$ are
fulfilled Then the strong limit

$\tilde{\Omega}_{c}=s-\lim_{tarrow\infty}U(t, 0)^{*}\tilde{U}_{c}(t)$ (2.5)

exists and is unita $y$ on $L^{2}(X)$ .

This property played an important role to prove the asymptotic completeness of N-body quan-
tum systems in a (time-independent or time-periodic) homogeneous electric field in the works of
Adachi and Tamura [ATl, AT2], and Adachi [A3] (see also [Al] and [HMS2]).

In order to prove Theorem 2.1, we need the following propagation estimates for both $\tilde{U}_{c}(t)$ and
$U(t, 0)$ . From now on the norm and scalar product in a Hilbert space $\mathscr{H}_{1}$ are denoted by $\Vert\cdot\Vert$xs
and $(\cdot,$ $\cdot)_{\ovalbox{\tt\small REJECT}}$ , respectively. The norm ofbounded operators on $\mathscr{H}_{1}$ is also denoted by $\Vert\cdot\Vert_{9(\mathscr{J}_{1})}$ :

Proposition 2.2. The$fo$llowing estimates $ho$ldfor $\phi\in \mathcal{D}(p^{2}+x^{2})$ as $tarrow\infty$ :

$\Vert|p-\tilde{b}(t)|\tilde{U}_{c}(t)\phi\Vert_{L^{2}(X)}=O(1)$ , (2.6)

$\Vert|x-$ Ci $(t)|\tilde{U}_{c}(t)\phi\Vert_{L^{2}(X)}=O(t)$ . (2.7)

CoroUary 2.3. Let $\epsilon>0$ . Then thefollowing estimate holds for $\phi\in \mathcal{D}(p^{2}+x^{2})$ as $tarrow\infty$ ;

$\Vert F_{\epsilon}(t^{-2}|x-\tilde{c}(t)|\geq\epsilon)\tilde{U}_{c}(t)\phi\Vert_{L^{2}(X)}=O(t^{-1})$ . (2.8)

These can be shown by computing the Heisenberg derivatives of $H^{c},$ $p_{c}-\tilde{b}(t)$ and $x-\tilde{c}(t)$

associated with $\tilde{H}_{c}(t)$ . Here the Heisenberg derivative of $\Phi(t)$ associated with $H(t)$ is denoted by

$D_{H(t)}(\Phi(t))=\frac{\partial\Phi}{\partial t}(t)+i[H(t), \Phi(t)]$.

For the details, see [A4].
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Theorem 2.4. Let $0< \epsilon<\min_{\alpha\not\subset c}|E^{\alpha}|/4$. Then the following estimates $hold$for $\phi\in \mathcal{D}((p^{2}+$

$x^{2})^{2})$ as $tarrow\infty.\cdot$

$\Vert F_{\epsilon}(t^{-2}|x-\tilde{c}(t)|\geq\epsilon)U(t, 0)\phi\Vert_{L^{2}(X)}=O(t^{-1/2})$ , (2.9)

$\Vert|p-\tilde{b}(t)|F_{\epsilon}(t^{-2}|x-\tilde{c}(t)|\leq 2\epsilon)U(t, 0)\phi\Vert_{L^{2}(X)}=O(t^{1/2})$ , (2.10)

$\Vert|x-\tilde{c}(t)|F_{\epsilon}(t^{-2}|x-\tilde{c}(t)|\leq 2\epsilon)U(t, 0)\phi\Vert_{L^{2}(X)}=O(t^{3/2})$ . (2.11)

Theorem 2.4 is one ofthe main results ofthis article. In the next section, we describe the outline
of the proof. We will now prove Theorem 2.1 under the assumption that Theorem 2.4 holds.

ProofofTheorem 2. 1. We have only to prove the existence ofthe limits

$\lim_{tarrow\infty}U(t, 0)^{*}\tilde{U}_{c}(t)\phi$, $\lim_{tarrow\infty}\tilde{U}_{c}(t)^{*}U(t, 0)\phi$

for $\phi\in \mathcal{D}((p^{2}+x^{2})^{2})$ , because $\mathcal{D}((p^{2}+x^{2})^{2})$ is dense in $L^{2}(X)$ . We here put $\eta(t)=F_{\epsilon_{1}/2}(t^{-2}|x-$

$\tilde{c}(t)|\leq\epsilon_{1})$ . By virtue of Corollary 2.3 and Theorem 2.4, we see that

$\lim_{tarrow\infty}U(t_{t}0)^{*}(1-\eta(t))\tilde{U}_{c}(t)\phi=0$ , $\lim_{tarrow\infty}\tilde{U}_{c}(t)^{*}(1-\eta(t))U(t, 0)\phi=0$ .

Thus we have only to show the existence of the limits

$\lim_{tarrow\infty}U(t, 0)^{*}\eta(t)\tilde{U}_{c}(t)\phi$ , $tarrow\inftym\tilde{U}_{c}(t)^{*}\eta(t)U(t, 0)\phi$ . (2.12)

We here note that
$I_{c}(x)\eta(t)=I_{c}(t, x)\eta(t)$

for $t>0$ , which is the key in the proof. Since

$\frac{d}{dt}(U(t, 0)^{*}\eta(t)\tilde{U}_{c}(t)\phi)$

$=U(t, 0)^{*}[\eta_{1}(t)\cdot\{-2t^{-3}(x-\tilde{c}(t))+t^{-2}(p-\tilde{b}(t))\}+O(t^{-4})]\tilde{U}_{c}(t)\phi$ ,

$\frac{d}{dt}(\overline{U}_{c}(t)^{*}\eta(t)U(t, 0)\phi)$

$=\tilde{U}_{c}(t)^{*}[\{-2t^{-3}(x-\tilde{c}(t))+t^{-2}(p-\tilde{b}(t))\}\cdot\eta_{1}(t)+O(t^{-4})]U(t, 0)\phi$

with $\eta_{1}(t)=F_{\mathcal{E}1/2}’(t^{-2}|x-\tilde{c}(t)|\leq\epsilon_{1})(x-\tilde{c}(t))/|x-\tilde{c}(t)|$ , we obtain from Proposition 2.2 and
Theorem 2.4

$\Vert\frac{d}{dt}(U(t, 0)^{*}\eta(t)\tilde{U}_{c}(t)\phi)\Vert_{L^{2}(X)}=O(t^{-2})$,

$\Vert\frac{d}{dt}(\overline{U}_{c}(t)^{*}\eta(t)U(t, 0)\phi)\Vert_{L^{2}(X)}=O(t^{-3/2})$ ,

which implies the existence of (2.12) by virtue of the Cook-Kuroda method. Thus the proof is
completed. $\square$
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Remark 2.1. If $\rho>1/2$ , that is, if all $V_{jk}$ ’s with $(j, k)\not\subset c$ are Stark short-range,

$s-\lim_{tarrow\infty}\tilde{U}_{c}(t)^{*}U_{c}(t, 0)$

exists and is unitary on $L^{2}(X)$ , by virtue of (2.3) with $-2\rho<-1$ . Therefore it follows from this
and Theorem 2.1 that

$\Omega_{c}=s-\lim_{tarrow\infty}U(t, 0)^{*}U_{c}(t, 0)$ (2.13)

exists and unitary on $L^{2}(X)$ . This gives an altemative proof of the asymptotic completeness ob-
tained in Mller [M] and Adachi [A3].

3 Propagation estimates for $U(t, 0)$

We first move the oscillation arising from $E(t)-E$ into the potential $V$ , and reduce the present
problem to the one for a so-called N-body Stark Hamiltonian with a certain time-periodic potential,
by using a version of the Avron-Herbst formula initiated by Mller [M]: We define T-periodic
fimctions on $R$

$b(t)= \int_{0}^{t}(E(s)-E)ds-b_{0}$ , $b_{0}= \frac{1}{T}/0^{T}/o^{t}(E(s)-E)dsdt$ ,

$c(t)=/o^{t}b(s)ds-c_{0}$ , $c_{0}= \frac{1}{T}/o^{T}(-\frac{1}{2}|b(t)|^{2}+\int_{0}^{t}E\cdot b(s)ds)dt\frac{E}{|E|^{2}}$ ,

$a(t)= \int_{0}^{t}(\frac{1}{2}|b(s)|^{2}-E\cdot c(s))ds$ , (3.1)

where $b(t),$ $c(t)\in X$ and $a(t)\in R$ and a strongly continuous periodic family ofunitary operators
on $L^{2}(X)$ by

.9‘ $(t)=e^{-ia(t)}e^{ib(t)\cdot x}e^{-ic(t)\cdot p}$ . (3.2)

We here note that the constants $b_{0}$ and $c_{0}$ in (3.1) are chosen in order to make $c(t)$ and $a(t)$ T-
periodic. Moreover we define the time-dependent Hamiltonian $H^{S}(t)$ on $L^{2}(X)$ by

$H^{S}(t)=H_{0}^{S}+V(x+c(t))$ , $H_{0}^{s}=- \frac{1}{2}\Delta-E\cdot x$ . (3.3)

$H_{0}^{S}$ is called the free Stark Hamiltonian. We note that the time-periodic potential $V(x+c(t))$ is
written as

$V(x+c(t))=V^{c}(x)+I_{c}(x+c(t))$ , (3.4)

because $c(t)\in X_{c}$ by definition and $V^{c}(x)=V^{c}(x^{c})$ is independent of $x_{c}\in X_{c}$ also by definition.
Put

$b^{S}(t)=/o^{t}Ed\tau=Et$ , $c^{S}(t)= \int_{0}^{t}b^{S}(\tau)d\tau=\frac{E}{2}t^{2}$, (3.5)
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and define .9“$s(t)$ as

$\mathscr{T}^{S}(t)=e^{-ia^{S}(l)}e^{ib^{S}(t)\cdot x}e^{-ic^{S}(t)\cdot p}$, $a^{S}(t)= \frac{1}{2}/o^{t}b^{S}(\tau)^{2}d\tau$ . (3.6)

It is well known that the original Avron-Herbst formula [AH] holds:

$e^{-itH_{0}^{S}}=\mathscr{T}^{S}(t)e^{-itH_{0}^{Sc}}$ , $H_{0}^{Sc}=- \frac{1}{2}\Delta$ (3.7)

Let $U^{S}(t, s)$ be the unitaiy propagator generated by the Hamiltonian $H^{S}(t)$ , whose existence and
uniqueness can be guaranteed by the Avron-Herbst fomula

$U(t, s)=F(t)U^{S}(t, s)\mathscr{T}(s)^{*}$ , or $U^{S}(t, s)=\mathscr{T}^{s}(t)U^{Sc}(t, s)F^{s}(s)^{*}$ . (3.8)

We here note that the domain invariance property of $U^{S}(t, 0)$

$U^{S}(t, 0)\mathcal{D}((p^{2}+x^{2})^{n})\subset \mathcal{D}((p^{2}+x^{2})^{n})$ , $n\in N$ ,

holds and that $U^{S}(t, 0)$ is strongly continuous in $\mathcal{D}((p^{2}+x^{2})^{n})$ with respect to $t$ , by virtue of the
property of $U(t, s)$ mentioned in \S 1. Noting that

$\mathscr{T}(t)^{*}(p-\tilde{b}(t))\mathscr{T}(t)=p-\tilde{b}(t)+b(t)=p-b^{S}(t)-b_{0}$ ,
$\mathscr{T}(t)^{*}(x-\tilde{c}(t))\mathscr{T}(t)=x-\tilde{c}(t)+c(t)=x-c^{S}(t)-(b_{0}t+c_{0})$

by virtue of (3.1), we see that Theorem 2.4 is equivalent to the following:

Theorem 3.1. Let $0< \epsilon<\min_{\alpha\not\subset c}|E^{\alpha}|/4$. Then the following estimates holdfor $\phi\in \mathcal{D}((p^{2}+$

$x^{2})^{2})$ as $tarrow\infty$ :

$\Vert F_{\epsilon}(t^{-2}|x-c^{S}(t)|\geq\epsilon)U^{S}(t, 0)\phi\Vert_{L^{2}(X)}=O(t^{-1/2})$, (3.9)

$\Vert|p-b^{S}(t)|F_{\epsilon}(t^{-2}|x-c^{S}(t)|\leq 2\epsilon)U^{S}(t, 0)\phi\Vert_{L^{2}(X)}=O(t^{1/2})$ , (3.10)

$\Vert|x-c^{S}(t)|F_{\epsilon}(t^{-2}|x-c^{S}(t)|\leq 2\epsilon)U^{S}(t, 0)\phi\Vert_{L^{2}(X)}=O(t^{3/2})$ . (3.11)

Now we introduce the Floquet Hamiltonian associated with $H^{S}(t)$ , which is key in the Howland-
Yajima method (see Howland [Hol, Ho2] and Yajima [Yal]). We let $T=R/(TZ)$ be the torus
and introduce $\mathscr{H}=L^{2}(T;L^{2}(X))\cong L^{2}(T)\otimes L^{2}(X)$ . We define a family ofoperators $\{\hat{U}(\sigma)\}_{\sigma\in R}$

on $\mathscr{H}$ by

$(\hat{U}(\sigma)f)(t)=U^{s}(t, t-\sigma)f(t-\sigma)$ (3.12)

for $f\in \mathscr{H}$ . Since $\{\hat{U}(\sigma)\}_{\sigma\in R}$ fonns a strongly continuous unitary group on $\mathscr{H},\hat{U}(\sigma)$ is written
as

$\hat{U}(\sigma)=e^{-i\sigma K}$ , (3.13)

where $K=D_{t}+H^{S}(t)$ is a self-adjoint operator on $\mathscr{H}$ , where $D_{t}=-i\partial_{t}$ is a self-adjoint
operator on $L^{2}(T)$ with its domain $AC^{2}(T)$ , which is the space of absolutely continuous functions
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on $T$ with their derivatives being square integrable (following the notation in [RS]). $K$ is called
the Floquet Hamiltonian associated with $H^{S}(t)$ .

The following two theorems show some spectral propeities of $K$ , which can be proved in the
same way as in [A3] (see also Herbst-Mller-Skibsted [HMS I]) by using

$|V_{jk}(r)|+|\nabla V_{jk}(r)|=o(1)$

as $|r|arrow\infty$, which is fulfilled under $(V)_{c_{\tau}L}$ and $(V) \frac{/}{c},D_{r}\rho$ with $0<\rho\leq 1/2$ . So we omit the proof.

Theorem 3.2 (Absence of Bound States). Thepurepoint spectrzrm $\sigma_{pp}(K)$ ofthe FloquetHamil-
tonian $K$ is empty.

Theorem 3.3 (mourre Estimate). Let $A=E\cdot p/|E|$ and $0<\nu<|E|<\nu’$ . Then one can take
$\delta>0$ so small uniformly in $\lambda\in R$ that

$\eta\delta(K-\lambda)i[K, A]\eta\delta(K-\lambda)\geq\nu\eta\delta(K-\lambda)^{2}$ , (3.14)

$\eta\delta(K-\lambda)i[K, -\mathcal{A}]\eta\delta(K-\lambda)\geq-\nu’\eta\delta(K-\lambda)^{2}$ (3.15)

hofd, where $\eta_{\delta}\in C_{0}^{\infty}(R)$ satisfies $0\leq\eta_{\delta}\leq 1,$ $\eta_{\delta}(t)=1for|t|\leq\delta$ and $\eta\delta(t)=Ofor|t|\geq 2\delta$ . In
particular, the spectrum of$K$ is purely absolutely continuous.

Now we prepare the maximal and minimal acceleration bounds for $e^{-i\sigma K}$ , by following the
abstract theory of Skibsted [Sk]. For the proofs, see [A4].

Proposition 3.4 (Maximal Acceleration Bound). Let $f\in C_{0}^{\infty}(R)$. $s_{0}\geq s_{1}\geq 0$ , and $\epsilon>0$ .
Then there exists $M>0$ such that thefollowing estimate holds as $\sigmaarrow$ oo:

$\Vert(\sigma^{-1}\langle p\rangle)^{s_{1}}F_{\epsilon}(\sigma^{-1}\langle p\rangle\geq M)e^{-i\sigma K}f(K)\langle p\rangle^{-s_{0}}\Vert_{9(\mathscr{J})}=O(\sigma^{-s_{0}})$. (3.16)

Proposition 3.5 (Minimal Acceleration Bound). Let $f\in C_{0}^{\infty}(R),$ $s_{0}\geq s_{1}\geq 0$ and $\epsilon>0$ . Let
$A,$ $\nu$ and $\nu’$ be as in Theorem 3.3. Then thefollowing estimates hold as $\sigmaarrow\infty.\cdot$

$\Vert(\nu-\sigma^{-1}\mathcal{A})^{s1}F_{\text{\’{e}}}(\sigma^{-1}\mathcal{A}\leq\nu-\epsilon)e^{-i\sigma K}f(K)\langle A)^{-s_{0}}\Vert_{9(\ovalbox{\tt\small REJECT})}=O(\sigma^{-s0})$ , (3.17)

$\Vert(\sigma^{-1}A-\nu’)^{\epsilon_{1}}F_{\epsilon}(\sigma^{-1}\mathcal{A}\geq\nu’+\epsilon)e^{-i\sigma K}f(K)\langle \mathcal{A})^{-s_{0}}\Vert_{9(\ovalbox{\tt\small REJECT})}=O(\sigma^{-s_{0}})$. (3.18)

In order to translate these propagation estimates for $e^{-i\sigma K}$ into the ones for $U^{S}(t, 0)$ , we need

the following lemma.

Lemma 3.6. Let $f\in C_{0}^{\infty}(R),$ $s_{0}\geq s_{1}\geq 0$, and $\epsilon>0$ . Let $\mathcal{A},$ $\nu$ and $\nu^{l}$ be as in Theorem 3.3. Let
$M$ be as in Proposition 3.4. Let $J_{\sigma,s_{1}}$ be one ofthefollowing three operators on $\mathscr{H}$ :

$(\sigma^{-1}\langle p\rangle)^{s_{1}}F_{\epsilon}(\sigma^{-1}\langle p\rangle\geq M)$ , $(\nu-\sigma^{-1}A)^{s_{1}}F_{\epsilon}(\sigma^{-1}A\leq\nu-\epsilon)$ .
$(\sigma^{-1}\mathcal{A}-\nu’)^{\epsilon_{1}}F_{\epsilon}(\sigma^{-1}A\geq\nu’+\epsilon)$ .

Then thefollowing estimate holds as $\sigmaarrow\infty.\cdot$

$\Vert\langle D_{t}\rangle J_{\sigma,s1}e^{-i\sigma K}f(K)\langle p)^{-\epsilon 0}\langle D_{t})^{-1}\Vert_{9(\mathscr{J})}=O(\sigma^{1-s_{0}})$ . (3.19)
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Proof. Since

$-iad_{D_{t}}(K)=\nabla I_{c}(x+c(t))\cdot b(t)$ ,
$(-i)^{2}$ad$2D_{t}(K)=\nabla I_{c}(x+c(t))\cdot(E(t)-E)+b(t)^{*}\nabla^{2}I_{c}(x+c(t))b(t)$ ,

are bounded on $\mathscr{H}$ , it can be shown easily that

$\langle D_{t}\rangle^{2}e^{-t\sigma K}f(K)\langle D_{t}\rangle^{-2}=O(\sigma^{2})$ ,

which implies
$\langle D_{t}\rangle^{2}J_{\sigma,0}e^{-i\sigma K}f(K)\langle D_{t}\rangle^{-2}=O(\sigma^{2})$

because $p$ does commute with $D_{l}$ . Noting that $p$ does commute with $D_{t}$ again, by complex inter-
polation between this and

$J_{\sigma_{t}2s_{1}}e^{-i\sigma K}f(K)\langle p\rangle^{-2s_{0}}=O(\sigma^{-2s0})$

in virtue ofHadamard’s three line theorem, we obtain (3.19). $\square$

Now we will translate the obtained propagation estimates for $e^{-i\sigma K}$ into the ones for $U^{S}(t, 0)$ .
Take $s_{0}=2$ . Let $\phi\in \mathcal{D}((p^{2}+x^{2})^{2})\subset L^{2}(X)$ and put $\phi(t)=U^{S}(t, 0)\phi$ . Then we see that
$\phi(t)\in \mathcal{D}(D_{t})$ and that $D_{t}\phi(t)\in \mathcal{D}(p^{2}+x^{2})$ by virtue of the domain invariance property of
$U^{S}(t, 0)$ mentioned before. Let $\mathscr{U}$ be the unitary operator on $\mathscr{H}$ defined by

$(\mathscr{U}\psi)(t)=U^{S}(t, 0)\psi(t)$ , $t\in T,$ $\psi(t)\in \mathscr{H}$ .

It is known that

$e^{-iTK}=\mathscr{U}$ $(Id\otimes U^{S}(T, 0))\mathscr{U}^{*}$ (3.20)

holds on $\mathscr{H}\cong L^{2}(T)\otimes L^{2}(X)$ (see Yajima-Kitada [YK]). Then we have

$(f(K)\phi)(t)=U^{s}(t, 0)g(U^{s}(T, 0))\phi$ , $t\in T$ ,

where $f\in C_{0}^{\infty}(R)$ supported in $(\lambda_{0}-\pi/T, \lambda_{0}+\pi/T)$ for some $\lambda_{0}\in R$ , and $g$ is the function
on the unit-circle defined by $g(e^{-iT\lambda})=f(\lambda)$ (see Mller-Skibsted [MS]). We here note the
following: Let $J=J(t)$ be an operator on $\mathscr{H}$ , and $\psi=\psi(t)\in \mathscr{H}$ be such that $e^{-i\sigma K}\psi\in \mathcal{D}(J)$ .
Then

$\Vert Je^{-i\sigma K}\psi\Vert_{Jr}^{2}=/0^{T}\Vert J(t+\sigma)U^{S}(t+\sigma, t)\psi(t)\Vert_{L^{2}(X)}^{2}dt$

holds. Noting that $J_{\sigma,s_{1}}$ in Lemma 3.6 is independent of $t$ , we see that

$/0^{T}\Vert J_{\sigma,s1}U^{S}(t+\sigma, 0)g(U^{S}(T_{t}0))\phi\Vert_{L^{2}(X)}^{2}dt=O(\sigma^{-2})$,

$/0^{T}\Vert\partial_{t}\{J_{\sigma,s1}U^{S}(t+\sigma, 0)g(U^{S}(T, 0))\phi\}\Vert_{L^{2}(X)}^{2}dt=O(\sigma^{-2})$
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hold with $0\leq s_{1}\leq 2$ , by virtue of the above formula and Lemma 3.6. From these, we obtain

$\Vert J_{\sigma,s_{1}}U^{S}(t+\sigma, 0)g(U^{S}(T, 0))\phi\Vert_{L^{2}(X)}^{2}\in W^{1,1}(0, T)$ ,

$\Vert\Vert J_{\sigma,s_{1}}U^{S}(t+\sigma_{\}0)g(U^{S}(T, 0))\phi\Vert_{L^{2}(X)}^{2}\Vert_{W^{1,1}(0,T)}=O(\sigma^{-2})$

by the Schwarz inequality. Here $W^{1,1}(0, T)=\{u\in L^{1}(0, T)|u’\in L^{1}(0, T)\}$ is a Sobolev space
on the interval $(0, T)$ . By using the Sobolev imbedding theorem (see e.g. [B]), we obtain

$\Vert\Vert J_{\sigma,s_{1}}U^{S}(t+\sigma, 0)g(U^{S}(T, 0))\phi\Vert_{L^{2}(X)}^{2}\Vert_{L(0_{1}T)}\infty=O(\sigma^{-2})$,

which implies
$\Vert J_{\sigma,s_{1}}U^{S}(\sigma, 0)g(U^{S}(T, 0))\phi\Vert_{L^{2}(X)}=O(\sigma^{-1})$ .

Therefore the following propagation estimates can be obtained by using a partition of unity on the
unit-circle.

Proposition 3.7. Let $0\leq s_{1}\leq 2$ and $\epsilon>0$ . Let $A,$ $\nu$ and $\nu’$ be as in Theorem 3.3. Let $M$ be as in
Proposition 3.4. Then thefollowing estimates holdfor $\phi\in \mathcal{D}((p^{2}+x^{2})^{2})$ as $tarrow\infty.\cdot$

$\Vert(t^{-1}\langle p\rangle)^{s_{1}}F_{\epsilon}(t^{-1}\langle p\rangle\geq M)U^{S}(t, 0)\phi\Vert_{L^{2}(X)}=O(t^{-1})$ , (3.21)

$\Vert(\nu-t^{-1}A)^{s_{1}}F_{\epsilon}(t^{-1}A\leq\nu-\epsilon)U^{S}(t, 0)\phi\Vert_{L^{2}(X)}=O(t^{-1})$ , (3.22)

$\Vert(t^{-1}A-\nu’)^{s_{1}}F_{\epsilon}(t^{-1}\mathcal{A}\geq\nu’+\epsilon)U^{S}(t, 0)\phi\Vert_{L^{2}(X)}=O(t^{-1})$ . (3.23)

Based on these estimates, we will derive some useful propagation estimates for $U^{S}(t, 0)$ . For
the proofs, see [A4].

Proposition 3.8 (Maximal Acceleration Bound). Let $0\leq s_{1}\leq 1/2$ and $\epsilon>0$ . Then there exists
$M’>0$ such thatfollowing estimate holdsfor $\phi\in \mathcal{D}((p^{2}+x^{2})^{2})ostarrow\infty.\cdot$

$\Vert(t^{-2}\langle x\rangle)^{s_{1}}F_{\epsilon}(t^{-2}\langle x\rangle\geq M’)U^{S}(t, 0)\phi\Vert_{L^{2}(X)}=O(t^{-1})$. (3.24)

Proposition 3.9 (Minimal Acceleration Bound). Let $0\leq s_{1}\leq 1/2$ and $\epsilon>0$ . Let $\nu$ and $\nu$
‘ $be$

as in Theorem 3.3. Then thefollowing estimates holdfor $\phi\in \mathcal{D}((p^{2}+x^{2})^{2})$ as $tarrow\infty.\cdot$

$\Vert(\nu/2-t^{-2}z)^{s1}F_{\epsilon}(t^{-2}z\leq\nu/2-\epsilon)U^{S}(t, 0)\phi\Vert_{L^{2}(X)}=O(t^{-1})$ , (3.25)

$\Vert(t^{-2}z-\nu’/2)^{s_{1}}F_{\epsilon}(t^{-2}z\geq\nu’/2+\epsilon)U^{S}(t, 0)\phi\Vert_{L^{2}(X)}=O(t^{-1})$ , (3.26)

where $z=E\cdot x/|E|$ .

Theorem 3.10. Let $\epsilon>0$ . Then thefollowing estimates holdfor $\phi\in \mathcal{D}((p^{2}+x^{2})^{2})$ as $tarrow\infty$ :

$\Vert F_{\epsilon}(t^{-1}|p-b^{S}(t)|\geq\epsilon)U^{S}(t, 0)\phi\Vert_{L^{2}(X)}=O(t^{-1/2})$. (3.27)

$\Vert|p-b^{S}(t)|F_{\epsilon}(t^{-1}|p-b^{S}(t)|\geq\in)U^{S}(t, 0)\phi\Vert_{L^{2}(X)}=O(t^{1/2})$. (3.28)

By virtue of these estimates, one can show Theorem 3.1 in the same way as in [A2]. For the
details, see [A4].
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4 Proof of Theorem 1.1
In this section, we will prove Theorem 1.1. Throughout this section, we assume that $(V)_{c,L}$ and

$(V)_{\overline{c},G}$ are fulfilled. We first note that under $(V)_{\overline{c}_{i}G}$ ,

$|\partial_{x}^{\beta}I_{c}(t, x)|\leq C_{\beta}(t+\langle x\rangle^{1/2})^{-2(\rho G+|\beta|)}$ , $|\beta|\leq 1$ , (4.1)

holds for $t>0$ , which is finer than (2.3).
We introduce the time-dependent Hamiltonian $H_{cG}(t)$ as

$H_{cG}(t)=H_{c}(t)+I_{c}(\tilde{c}(t))$ . (4.2)

$U_{cG}(t)$ denotes the propagator generated by $H_{cG}(t)$ such that $U_{cG}(0)=$ Id. We here note that

$I_{c}(\tilde{c}(t))=I_{c}(t,\tilde{c}(t))$ (4.3)

for $t>0$ , and that $U_{cG}(t)$ is represented as

$U_{cG}(t)=U_{c}(t, 0)e^{-\iota\int_{0}^{t}I_{C}(\tilde{c}(\tau))d\tau}$ . (4.4)

Noticing $D_{H_{cG}(t)}(H^{c})=0,$ $D_{H_{cG}(t)}(p_{c}-\tilde{b}(t))=0$ and $D_{H_{cG}(t)}(x-\tilde{c}(t))=p-\tilde{b}(t)$ , the following
propagation property of $U_{cG}(t)$ can be proved as in the proofofProposition 2.2. We omit the proof.

Lemma 4.1. Thefollowing estimate holdsfor $\phi\in \mathcal{D}(p^{2}+x^{2})$ as $tarrow\infty$ ;

$\Vert|x-\tilde{c}(t)|U_{cG}(t)\phi\Vert_{L^{2}(X)}=O(t)$ . (4.5)

By using this lemma and Proposition 2.2, we obtain the following.

Proposition 4.2. The strong limit

$s-\lim_{tarrow\infty}U_{cG}(t)^{*}\tilde{U}_{c}(t)$ (4.6)

exists and is unitary on $L^{2}(X)$ .

Proof. We have only to show the existence of

$\lim_{tarrow\infty}U_{cG}(t)^{*}\tilde{U}_{c}(t)\phi$, (4.7)

$\lim_{tarrow\infty}\tilde{U}_{c}(t)^{*}U_{cG}(t)\phi$ (4.8)

for $\phi\in \mathcal{D}(p^{2}+x^{2})$ . Using (4.3), we have

$\frac{d}{dt}(U_{cG}(t)^{*}\tilde{U}_{c}(t)\phi)=U_{cG}(t)^{*}i(I_{c}(t,\tilde{c}(t))-I_{c}(t, x))\tilde{U}_{c}(t)\phi$.

Since
$I_{c}(t, \tilde{c}(t))-I_{c}(t, x)=-\int_{0}^{1}(\nabla I_{c})(t, sx+(1-s)\tilde{c}(t))\cdot(x-\tilde{c}(t))ds$

and $\sup_{x\in X}|(\nabla I_{c})(t, x)|=O(t^{-2\rho-2}G)$ by $(V)_{\overline{c},G}$ , the existence of (4.7) can be proved by Propo-
sition 2.2 and the Cook-Kuroda method, because $-2\rho c-2+1<-1$ . The existence of (4.8) can
be proved quite similarly by virtue of (4.5). $\square$
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Combining this with Theorem 2.1, we obtain the following, which is the key to the proof of
Theorem 1.1:

Corollary 4.3. The strong limit

$\Omega_{cG}=s-\lim_{tarrow\infty}U(t, 0)^{*}Uae(t)$ (4.9)

exists and is unitary on $L^{2}(X)$ .

Since
$U_{cG}(t, 0)=e^{-ilH^{c}}\otimes(\overline{U}_{c}(t.0)e^{-i\int_{0}^{t}I_{c}(\tilde{c}(\tau))d\tau})$

by (1.5), Theorem 1.1 can be proved in the same way as in [A3], [ATl] and [HMS2], by combining
Corollary 4.3 and the following result of the asymptotic completeness for $H^{c}=-\Delta^{c}/2+V^{c}(x^{c})$ ,

which is proved by Derezi\’{n}ski [D] (see also [DGl] and [Z]). So we omit the proofs: We introduce
some notations. Suppose $a\subset c$ . We define the cluster Hamiltonian $H_{a}^{c}=-\Delta^{c}/2+V^{a}$ on $L^{2}(X^{c})$

and put
$U_{a,D}^{c}(t)=e^{-itH_{a}^{c}}e^{-i\int_{0}^{t}I_{a}^{c}(p_{a}u)du}$

acting on $L^{2}(X^{c})$ . We put $X_{a}^{c}=X^{c}\ominus X^{a}$ . Then we see that $L^{2}(X^{c})$ is decomposed into $L^{2}(X^{a})\otimes$

$L^{2}(X_{a}^{c})$ . Thus $H_{a}^{c}$ is decomposed into $H_{a}^{c}=H^{a}\otimes$ Id $+$ Id $\otimes T_{a}^{c}$ on $L^{2}(X^{c})=L^{2}(X^{a})\otimes L^{2}(X_{a}^{c})$ ,

where $T_{a}^{c}=-\Delta_{a}^{c}/2$ and $\Delta_{a}^{c}$ is the Laplace-Beltrami operator on $X_{a}^{c}$ . It follows from this that

$U_{a,D}^{c}(t)=e^{-itH^{a}}\otimes(e^{-itT_{a}^{c}}e^{-i\int_{0}^{t}I_{a}^{c}(p_{a}u)du})$ (4.10)

on $L^{2}(X^{c})=L^{2}(X^{a})\otimes L^{2}(X_{a}^{c})$ .

Theorem 4.4. Assume that $(V)_{c,L}$ is fulfilled. Then the modified wove operators

$\Omega_{a}^{c,\pm}=s-\lim_{tarrow\pm\infty}e^{itH^{c}}U_{a,D}^{c}(t)(P^{a}\otimes$ $Id$ $)$

acting on $L^{2}(X^{c})$ , existfor all $a\subset c$ and ore asymptotically complete

$L^{2}(X^{c})= \sum_{a\subset c}\oplus$ Ran $\Omega_{a}^{c,\pm}$ .

5 Proof of Theorem 1.2
In this section, we prove Theorem 1.2. Throughout this section, we assume that $c\neq a_{\min}$ and

that $(V)_{c,L}$ and $(V)_{\overline{c}_{1}D,\rho}$ with $(\sqrt{3}-1)/2<\rho\leq 1/2$ are fulfilled. We first note that under $(V)_{\overline{C}_{1}D,\rho}$,

$|\partial_{x}^{\beta}I_{c}(t, x)|\leq C_{\beta}(t+\langle x\rangle^{1/2})^{-(2\rho+|\beta|)}$ , $t>0$ , (5.1)

holds. Since the proof is quite similar to the one in Adachi-Tamura [AT2], we sketch it.
We introduce the time-dependent Hamiltonians

$\tilde{H}_{aD}(t)=H_{a}(t)+I_{a}^{c}(p_{a}t)+I_{c}(p_{a}t+\tilde{c}(t)-t\tilde{b}(t))$ ,
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$H_{a,1}(t)=H_{a}(t)+I_{a}^{c}(p_{a}t)+I_{c}(t,p_{a}t+\tilde{c}(t)-t\tilde{b}(t))$ .
$H_{c}^{Sc}(t)=H_{c}^{Sc}+I_{c}(t, x+\tilde{c}(t))$ ,
$H_{a,1}^{Sc}(t)=H_{a}^{Sc}+I_{a}^{c}(p_{a}t)+I_{c}(t,p_{a}t+\tilde{c}(t))$

for $a\subset c$ , where $H_{a}^{Sc}=-\Delta/2+V^{a}(x^{a})$ acts on $L^{2}(X).\tilde{U}_{aD}(t),$ $U_{a,1}(t),$ $U_{c}^{Sc}(t)$ and $U_{a,1}^{Sc}(t)$

denote the propagators generated by $\tilde{H}_{aD}(t),$ $H_{a,1}(t),$ $H_{c}^{Sc}(t)$ and $H_{a,1}^{Sc}(t)$ , respectively, where
$\tilde{U}_{aD}(0)=$ Id $U_{a,1}(T)=$ Id9 $U_{c}^{Sc}(T)=$ Id and $U_{a,1}^{Sc}(T)=$ Id. Since $U_{a}(t, 0)p_{a}U_{a}(t, 0)^{*}=p_{a}-\tilde{b}(t)$

for $a\subset c,\overline{U}_{aD}(t)$ is explicitly represented by

$\tilde{U}_{aD}(t)=U_{a,D}(t, 0)e^{-i\int_{0}^{t}I_{c}(p_{a}s+\tilde{c}(s))ds}$.

Then the following Avron-Herbst formula holds:

$\tilde{U}_{c}(t)=\tilde{\mathscr{T}}(t)U_{c}^{Sc}(t)\tilde{F}(T)^{*}$, $U_{a,1}(t)=\tilde{\mathscr{T}}(t)U_{a,1}^{Sc}(t)\mathscr{J}(T)^{*}$ . (5.2)

By virtue of the relation (5.2), we have only to study the asymptotic behavior of $U_{c}^{Sc}(t)$ . We
now apply to $U_{c}^{Sc}(t)$ the result by Derezmski [D] on the asymptotic completeness for long-range
N-body quantum systems without electric fields.

Theorem 5.1. Assume that $(V)_{c,L}$ and $(V)_{\overline{c},D,\rho}$ with $(\sqrt{3}-1)/2<\rho\leq 1/2$ are fulfilled. Then
the modified $wa\nu e$ operators

$\Omega_{a,1}^{Sc}=s-\lim_{larrow\infty}U_{c}^{Sc}(t)^{*}U_{a,1}^{Sc}(t)(P^{a}\otimes$ $Id$ $)$

existfor all $a\subset c$, and are asymptotically complete

$L^{2}(X)= \sum_{a\subset c}\oplus$ Ran $\Omega_{a,1}^{Sc}$ .

The condition $2\rho>\sqrt{3}-1$ is essentially used to prove this theorem only. By virtue of the
Avron-Herbst formula (5.2), the following corollary is obtained as an immediate consequence of
this theorem.

Corollary 5.2. Assume that $(V)_{c_{\dagger}L}$ and $(V)_{\overline{c}_{\}D,\rho}$ with $(\sqrt{3}-1)/2<\rho\leq 1/2$ arefiilfilled Then
the modified wave operators

$\tilde{\Omega}_{a,1}=s-\lim_{tarrow\infty}\tilde{U}_{c}(t)^{*}U_{a,1}(t)(P^{a}\otimes$ $Id$ $)$

existfor all $a\subset c$, and are asymptotically complete

$L^{2}(X)= \sum_{a\subset c}\oplus$ Ran Si$a,1$ .

Let $a\subset c$ . Since $D_{\overline{H}_{aD}(t)}(p_{a}-\tilde{b}(t))=D_{H_{a,1}(l)}(p_{a}-\tilde{b}(t))=0$, we have the following propaga-
tion properties of $\tilde{U}_{aD}(t)$ and $U_{a,1}(t)$ .
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Lemma 5.3. Thefollowing estimates holdfor $\phi\in \mathcal{D}(p^{2}+x^{2})$ as $tarrow\infty.\cdot$

$\Vert|p_{a}-\tilde{b}(t)|\tilde{U}_{aD}(t)\phi\Vert_{L^{2}(X)}=O(1)$ ,

$\Vert|p_{a}-\tilde{b}(t)|U_{a,1}(t)\phi\Vert_{L^{2}(X)}=O(1)$ .

Corollary 5.4. Thefollowing estimates holdfor $\phi\in \mathcal{D}(p^{2}+x^{2})$ as $tarrow\infty.\cdot$

$\Vert F_{\epsilon_{1}/2}(t^{-1}|p_{a}-\tilde{b}(t)|\geq\epsilon_{1}/2)\tilde{U}_{aD}(t)\phi\Vert_{L^{2}(X)}=O(t^{-1})$,

$\Vert F_{\epsilon_{1}/2}(t^{-1}|p_{a}-\tilde{b}(t)|\geq\epsilon_{1}/2)U_{a,1}(t)\phi\Vert_{L^{2}(X)}=O(t^{-1})$ .

By these estimates, we have the following.

Proposition 5.5. The strong limit

$s-\lim_{tarrow\infty}\tilde{U}_{aD}(t)^{*}U_{a,1}(t)$

exists and is unitary on $L^{2}(X)$ .

Proof. We put $\eta_{a}(t)=F_{\epsilon_{1}/2}(t^{-1}|p_{a}-\tilde{b}(t)|\leq\epsilon_{1})$ . By Corollary 5.4, we have only to prove the

existence of the limits

$\lim_{tarrow\infty}\tilde{U}_{aD}(t)^{*}\eta_{a}(t)U_{a,1}(t)\phi$, $\lim_{tarrow\infty}U_{a,1}(t)^{*}\eta_{a}(t)\tilde{U}_{aD}(t)\phi$

for $\phi\in \mathcal{D}(p^{2}+x^{2})$ . Noting

$I_{c}(p_{a}t+\tilde{c}(t)-t\tilde{b}(t))\eta_{a}(t)=I_{c}(t,p_{a}t+\tilde{c}(t)-t\tilde{b}(t))\eta_{a}(t)$ ,
$D_{H_{a}(t)}(\eta_{a}(t))=-t^{-2}F_{\epsilon_{1}/2}’(t^{-1}|p_{a}-\tilde{b}(t)|\leq\epsilon_{1})|p_{a}-\tilde{b}(t)|$,

we obtain the proposition by virtue of Lemma 5.3. $\square$

Combining Corollary 5.2 and Proposition 5.5 with Theorem 2.1, Theorem 1.2 can be obtained
immediately.

6 Proof of Theorem 1.3
In this section, we prove Theorem 1.3. Throughout this section, we assume that $c=a_{\min}$ and

that $(V)_{c,L}$ and $(V)_{\overline{c},D_{2}\rho}$ with $1/\{2(j_{0}+1)\}<\rho<1/(2j_{0})$ for some $J0\in N$ are fulfilled. The

case where $\rho=1/(2j_{0})$ can be included in the $1/\{2(j_{0}+1)\}<\rho<1/(2go)$ by making $\rho$ slightly

smaller than $1/(2j_{0})$ . Since the proof is quite similar to the one in Adachi-Tamura [AT2], we
sketch it with minor modification.

We construct an approximate solution of the Hamilton-Jacobi equation

$( \partial_{t}S)(t, \xi)=\frac{1}{2}\xi^{2}-E(t)\cdot(\nabla_{\xi}S)(t, \xi)+I_{c}(t, (\nabla_{\xi}S)(t, \xi))$ (6.1)
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associated with $\tilde{H}_{c}(t)$ . Putting $K(t_{3}\xi)=S(t, \xi+\tilde{b}(t)),$ $(6.1)$ is translated into

$( \partial_{t}K)(t, \xi)=\frac{1}{2}(\xi+\tilde{b}(t))^{2}+I_{c}(t, (\nabla_{\xi}K)(t, \xi))$ . (6.2)

Thus we will construct an approximate solution of (6.2). $K_{0}(t, \xi)$ denotes the solution of

$( \partial_{t}K_{0})(t, \xi)=\frac{1}{2}(\xi+\tilde{b}(t))^{2}$ , $K_{0}(0, \xi)=0$ .

As mentioned in \S 1, $K_{0}(t, \xi)$ is written by (1.9), and (1.10) holds. We further define $K_{j}(t, \xi)$ ,
$1\leq j\leq j_{0}$ , for $t\geq T$ inductively as the solution of

$( \partial_{t}K_{j})(t, \xi)=\frac{1}{2}(\xi+\tilde{b}(t))^{2}+I_{c}(t, (\nabla_{\xi}K_{j-1})(t, \xi))$ , $K_{j}(T, \xi)=K_{j-1}(T, \xi)$ .

Noting $(\partial_{t}K_{0})(t,\xi)=(\xi+\tilde{b}(t))^{2}/2$, we have

$K_{j}(t, \xi)=K_{0}(t, \xi)+/\tau^{I_{c}(\tau}l,$ $(\nabla_{\xi}K_{j-1})(\tau, \xi))d\tau$, $t\geq T$ (6.3)

for $1\leq j\leq j_{0}$ . We here note that

$\sup_{\xi\in X}|\partial_{\xi}^{\beta}(K_{j}(t, \xi)-K_{j-1}(t, \xi))|=O(t^{1-2j\rho})$ (6.4)

holds for $1\leq j\leq j_{0}$ by virtue of (5.1), which can be proved by the $Faa$ di Bruno formula and
induction in $j$ .

Putting $S_{j}(t, \xi)=K_{j}(t, \xi-\tilde{b}(t)),$ $S_{jo}(t, \xi)$ satisfies

$( \partial_{t}S_{j_{0}})(t, \xi)=\frac{1}{2}\xi^{2}-E(t)\cdot(\nabla_{\xi}S_{jo})(t, \xi)+I_{c}(t, (\nabla_{\xi}S_{jo-1})(t, \xi))$ . (6.5)

We will write $I_{c}(t, (\nabla_{\xi}S_{j})(t, \xi))$ as $I_{c,j}(t, \xi)$ below. We define the Hamiltonian $\hat{H}_{c}(t)$ by

$\hat{H}_{c}(t)=H_{c}(t)+I_{c,j_{0}-1}(t,p)$

for $t\geq T$ , whose definition is slightly different from the one in [AT2]. $\hat{U}_{c}(t)$ denotes the propagator
generated by $\hat{H}_{c}(t)$ such that $\hat{U}_{c}(T)=$ Id.

Lemma 6.1. Thefollowing estimates holdfor $\phi\in \mathcal{D}(p^{2}+x^{2})$ as $tarrow\infty.\cdot$

$\Vert|x-(\nabla_{\xi}S_{jo-1})(t,p)|\tilde{U}_{c}(t)\phi\Vert_{L^{2}(X)}=O(t^{1-2j_{0\beta}})$, (6.6)

$\Vert|x-(\nabla_{\xi}S_{j_{0}-1})(t,p)|\hat{U}_{c}(t)\phi\Vert_{L^{2}(X)}=O(t^{1-2j_{0}\rho})$. (6.7)

For the proof, see [A4]. Since $g(t, x,p)=O(t^{-(2\rho+1)})$ and $r(t, x,p)=O(t^{-(2\rho+1)})$ ,

$I_{c}(t, x)-I_{c,j_{0}-1}(t,p)$

$=O(t^{-(2\rho+1)})(x-(\nabla_{\xi}S_{jo-1})(t,p))+O(t^{-(2\rho+1)})+O(t^{-200+1)\rho})$

holds by virtue of (6.4). By this and Lemma 6.1, the following proposition can be obtained im-
mediately, because $-(2\rho+1)+(1-2j_{0}\rho)=-2(j_{0}+1)\rho<-1$ and $-(2\rho+1)<-1$ by
assumption.
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Proposition 6.2. The strong limit

exists and is unitary on $L^{2}(X)$ .

$s-\lim_{tarrow\infty}\hat{U}_{c}(t)^{*}\tilde{U}_{c}(t)$

We would like to replace $\hat{U}_{c}(t)$ by
$\check{U}_{c}(t)=U_{c}(t, 0)e^{-i\int_{0}^{t}I_{c}((\nabla_{\xi}K_{0})(\tau,p))d\tau}$, $t\geq 0$ , if $j_{0}=1$ ,

(6.8)
$\check{U}_{c}(t)=U_{c}(t, 0)e^{-i\int_{T}^{t}I_{c}((\nabla_{\xi}K_{j_{0}-1})(\tau_{1}p))d\tau}$ , $t\geq T$ , if $j_{0}\geq 2$ .

We note that $\check{U}_{c}(t)$ is the propagator generated by the time-dependent Haniltonian
$\check{H}_{c}(t)=H_{c}(t)+I_{c}((\nabla_{\xi}S_{j_{0}-1})(t,p))$ .

We here used $U_{c}(t, 0)pU_{c}(t, 0)^{*}=p-\tilde{b}(t)$ . We need the following lemma and corollary.

Lemma 6.3. Thefollowing estimates holdfor $\phi\in \mathcal{D}(p^{2}+x^{2})$ as $tarrow\infty.\cdot$

$\Vert|p-\tilde{b}(t)|\hat{U}_{c}(t)\phi\Vert_{L^{2}(X)}=O(1)$ , (6.9)

$\Vert|p-\tilde{b}(t)|\check{U}_{c}(t)\phi\Vert_{L^{2}(X)}=O(1)$ , (6.10)

$\Vert|(\nabla_{\xi}S_{j_{0}-1})(t,p)-\tilde{c}(t)|\hat{U}_{c}(t)\phi\Vert_{L^{2}(X)}=O(t)$, (6.11)

$\Vert|(\nabla_{\xi}S_{j_{0}-1})(t,p)-\tilde{c}(t)|\check{U}_{c}(t)\phi\Vert_{L^{2}(X)}=O(t)$ . (6.12)

Corollary 6.4. Thefollowing estimates holdfor $\phi\in \mathcal{D}(p^{2}+x^{2})$ as $tarrow\infty$ :
$\Vert F_{\epsilon_{1}/2}(t^{-2}|(\nabla_{\xi}S_{j_{0}-1})(t,p)-\overline{c}(t)|\geq\epsilon_{1}/2)\hat{U}_{c}(t)\phi\Vert_{L^{2}(X)}=O(t^{-1})$, (6.13)

$\Vert F_{\epsilon_{1}/2}(t^{-2}|(\nabla_{\xi}S_{j_{0}-1})(t,p)-\tilde{c}(t)|\geq\epsilon_{1}/2)\check{U}_{c}(t)\phi\Vert_{L^{2}(X)}=O(t^{-1})$ . (6.14)

By these results, we have the following.

Proposition 6.5. The strong limit
$s-\lim_{tarrow\infty}\check{U}_{c}(t)^{*}\hat{U}_{c}(t)$

exists and is unitary on $L^{2}(X)$ .

Proof. We put $\eta(t)=F_{\epsilon 1/2}(t^{-2}|(\nabla_{\xi}S_{jo-i})(t, p)-\tilde{c}(t)|\leq\epsilon_{1})$ . By Corollary 6.4, we have only to
prove the existence of the limits

$\lim_{tarrow\infty}\check{U}_{c}(t)^{*}\eta(t)\hat{U}_{c}(t)\phi$, $\lim_{tarrow\infty}\hat{U}_{c}(t)^{*}\eta(t)\check{U}_{c}(t)\phi$

for $\phi\in \mathcal{D}(p^{2}+x^{2})$ . Putting $a(t, \xi)=F_{\epsilon_{1}/2}’(t^{-2}|(\nabla_{\xi}S_{j_{0}-1})(t.\xi)-\tilde{c}(t)|\leq\epsilon_{1})((\nabla_{\xi}S_{j_{0}-1})(t, \xi)-$

$\tilde{c}(t))/|(\nabla_{\xi}S_{j_{0}-1})(t, \xi)-\tilde{c}(t)|,$ $D_{H_{c}(t)}(\eta(t))$ is calculated as
$D_{H_{c}(t)}(\eta(t))$

$=a(t,p)\cdot\{-2t^{-3}((\nabla_{\xi}S_{jo-1})(t,p)-\tilde{c}(t))$

$+t^{-2}((\partial_{t}\nabla_{\xi}S_{jo-1})(t,p)+E(t)\cdot(\nabla_{\xi}^{2}S_{jo-1})(t,p)-\tilde{b}(t))\}$

$=a(t,p)\cdot\{-2t^{-3}((\nabla_{\xi}S_{jo-1})(t,p)-\tilde{c}(t))+t^{-2}(p-\tilde{b}(t)+(\nabla_{\xi}I_{c-2}\theta 0)(t, p))\}$,

where we used (6.5). Therefore the proposition can be obtained by virtue ofLemma 6.3. $\square$

Combining Propositions 6.2 and 6.5 with Theorem 2.1, Theorem 1.3 can be obtained immedi-
ately.
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