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1 Introduction

In this paper we explore the possibility whether we can find superradi-
ance [2, 28] in the spectrum of the differential operators describing a non-
commutative harmonic oscillator [19, 20, 25, 26, 27], where the superradiance
is a physical phenomenon. Before illustrating the spectral property arising in
the superradiance, let us explain the differential operator that we consider
in this paper. The differential operator as a free Hamiltonian is given in the
following: Let a non-commutative quadratic form be defined by

Q(p,9) = Aup® + A12pqg + Asgp + Anag? (1.1)

for variables p, ¢ into which some operators are inserted, where A € M, (C),
the set of all 2x 2 matrices with complex coefficients (k, ¢ = 1, 2). By the canon-
ical quantization we mean replacement of p and g by the differential operator
—id/dz and the multiplication operator zx respectively in Eq.(1.1). Thus, a
canonical quantization Q(—id/dz,zx) is a kind of matrix-valued Schrédinger
operator [1, 7, 10] as A;; # 0. The differential operator Q(—1id/dx,xzx) is
the free part of the differential operator describing non-commutative harmonic
oscillator [19, 20, 25, 26, 27 setting Ay (k, £ = 1,2) as:

a+ [ a— L
4 oo + 4 O3

and Ajp = Az = 0. We denote the Pauli matrices by

(10 (o1 (o =\ _ _(1 0
7 o) T o) T o) BT o -1

Ap = Ap = (1.2)
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throughout this paper, where 7 := /—1.

As one of spectral properties caused by superradiance, we are interested
in the following phenomena: Let us consider a differential operator Hy which
has only discrete spectrum (i.e., eigenvalues). We denote them by Ey(0) <
Ei(0) < -+ < Ep(0) < -+, n € Zy = {0} UN. Introduce by A € R
the strength of the coupling operator (or an interaction operator). Then, \
is called the coupling constant. When |A| is so small that the regular per-
turbation theory is available for an interaction operator AV, each eigenvalue
E.(A\) of H(A) := Hp + AV sits near its original position E,(0) [35, Theorem
XII.13], so that Ex(A) < Ey(A) < -+ < Ep(A) < ---. On the other hand, as
in [23] some crossings among eigenvalues take place for a model of the non-
commutative harmonic oscillator. Moreover, the phase transition of the Dicke
superradiance tells us about a possibility that E(\) is less than Eg()\). Then,
it may have a chance to become a new ground state energy for some strong |A|.
As || becomes much stronger, even E,(\) may be less than Ey()\) because of
superradiant energy loss [2]. The Dicke-type crossing is how we describe this
phenomenon among eigenvalues in this paper. Moreover, E,(\) may usurp the
position of the ground state energy. We call such a new ground state energy the
superradiant ground state energy. We will give differential operators H(\) of
a non-commutative harmonic oscillator with the interaction in a class, which
have such the Dicke-type crossing. Also we will investigate dynamics of the
eigenvalues of H(A(t)) by controlling the strength of |A(¢)| with a parameter
t > 0. We will explain the physical background of our mathematical set-ups in
§3.

Here we introduce some notations that we will use in this paper. The sets
{0}UN and [0, co) are respectively denoted by Z, and R... For a Banach space
H, we denote its norm by || ||». In the case where H is a Hilbert space, we
denote its inner product by ( , ), and the norm induced by the inner product
is also expressed by || ||. We use the symbol Id for the identity operator on
H. The symbol D(A) stands for the domain of an operator A. For a closable
operator A we denote by A its closure. For a closed operator, o(A) (or p(A)) is
the spectrum (or resolvent set). For a self-adjoint operator A, in particular, we
mean the essential spectrum of A by oess(A). So, the discrete spectrum og;5(A)
is given by 04is(A) := 0(A) \ 0ess(A). In addition, we call inf 6(A) the ground
state energy of A (i.e., the infimum of ¢(A)) if inf 0(A) > —o0. By an ezcited
state energy of A we mean an eigenvalue of A which is more than the ground
state energy.
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2 Mathematical Results

In this section some results are stated without their proofs. All the proofs
are in Ref.[16].

Let w > 0 be an arbitrary constant, which is the angular frequency. Then,
the Hamiltonian A%, of quantum harmonic oscillator with w is defined by the
following 1-dimensional Schrodinger operator:

1d®>  w?,

he = — —— 4+ —1z°.

2dz?2 2
We define a differential operator Hy acting in C? ® L?(R) by

HO = (Q;BUO + @ ; /80'3) K h‘c‘)js (21)

for a,8 > 0. Then, Hy is a self-adjoint operator acting in C? ® L?(R) since
{27 a(oo+ 03) +2718(0p — 03) } ® kY, is essentially self-adjoint on the domain
C?® S(R), where S(R) is the Schwartz space on R. This H, is the differential
operator used by Ichinose, Parmeggiani, and Wakayama [19, 20, 25, 26, 27]
picking w so that w = 1. The Hamiltonian Hj is the free part of the differential
operator describing the non-commutative harmonic oscillator.
We assume that
B>a or a>30 (2.2)

throughout this paper.
The spectrum o(Hy) of Hy consists of only isolated eigenvalues of Hy with
each multiplicity less than 2:

o(Hp) = { (n + —;—) ow, (n + %) Bw
We call n a quantum number.

We consider the following type of interaction: Let Vo (t) and W (t) be differ-
ential operators acting in C?> @ L?(R) for every t € R, and let v : R, — R
be a continuous function with lim;_,, y(¢) = 0. Then, our interaction operator
V(t) is given by

V(1) i= Violt) + /()W (2)

for every t € R,. We call V,(t) and v(t)W (t) the source potential and error
potential for the Dicke-type crossing, respectively.
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Let A : R, — R be a continuous function satisfying that A(0) = 0 and that
[A(t)] is strictly increasing in ¢ as t — oo, i.e., |A(s)| < |A(¢)| if s < t. Then,
the differential operator Hj,(t) that we consider in this paper is given by

Hy(t) == Ho + A(t)V (¢)
for every t € R.,.

Definition 2.1 We say an eigenvalue Fq4es(t) of H) ,(t) is a descendant of the

ground state energy of Hy if E4.5(t) is a continuous function of ¢t € R, so that
Ees(0) = inf o'(Ho).

Definition 2.2 Let us assume all eigenvalues of H) . (t) are continuous func-
tions of ¢ € Ry. Then, we say the family {H,,(t)},cg, of the differential
operators has the Dicke-type crossing if there exists an eigenvalue E) ,(t) of
H, . (t) for every t € Ry such that the following (DC1) and (DC2) hold:

(DC1) E,,(0) is an excited state energy of Ho;

(DC2) there exists a certain ¢, > 0 such that Ej,(t.) < Eges(ts) for all
descendants Fges(t) of the ground state energy of Hp.

In addition, we call such an E,.(t.) a superradiant ground state energy if
Ex~(t.) = inf o(Hy 4 (t4)).

Definition 2.3 Let E,(t) be an eigenvalue of H) ,(t) for each n € Z, and
every t € R, so that E,(¢) is a continuous function of ¢t € R, and

E.(0) = (n+ %) ow or <n+ %) Bw.

We say the family {E.(t)},cz, g, Of eigenvalues is asymptotically harmonic
with wee > 0 for sufficiently large quantum numbers if there is a sequence
t, > 0 for each n € Z, so that t, — o0 as n — o0 and

En(t)

lim ——* =wy for te€l(t,, co).
n—00 n

In particular, we just say the family {E,(t)},cz, .cr, Of eigenvalues is harmonic
with wee > 0 for sufficiently large quantum numbers if there is a subset 7 C R
so that 7 is independent of any n € Z,, and

lim Zn) _

n—oo n

Wwe for teT.
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Then, we call we, the angular frequency of {En(t)}nez, ter, if
nlgrolo{EnH(t) — En(t)} =W for teT.

On the other hand, we say the family {E,(t)},cz, ;cg, Of eigenvalues is an-
harmonic at t = ¢, if eigenvalues E, (o) get dense or sparse in the following
sense, respectively:

lim {En+1(t0) — En(tO)} =0 or &4 oc.

Although Ichinose, Parmeggiani, and Wakayama have studied the interaction
operator

dr 2

we give a differential operator V,(t) as a source potential in the following. For
given functions cf : R, — R, k,£ =0, 1, we define V() by

d 1
ViPw = — 102 ® (33*- + —) : (2.3)

. (4"
Voo(t) = Z chg(t)0'7-“+1) ®$1 k (%> (24)

k,£=0,1

for every t € R, where 7 is the permutation of {1,2} defined as 7(1) = 2 and
7(2) = 1.
For simplicity we denote H) o(t) (i.e., H(t) with y(¢) = 0) by H,(¢):

Hy(t) :== Hxo(t) = Ho + A(t)Voo(2)
for every t € R.. We employ the following ck(t), k,£ = 0,1 given by

cd(t) + icj () cost  —sint\ [iy/1/2w
= ' (2.5)

A(t) + ick(t) sint  cost w/2

for every t € R,. Namely,

1
() = — ,/%sint, co(t) = \/Z;cost,
. 1 .
) = \/—wz—cost, c(t) = \/Easmt.
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Thus, H,(t) is the canonical quantization of Q(p,q) with A;; as in Eq.(1.2),
Agg = ngn, Arg = Ag = Azz3 = 0,

/1
Alg + .431 = — %{sintal + cost 0‘2})\@),

Jw :
Aoz + Azy = §{cost01 —sint oz}A(t).
Under Egs.(2.4) and (2.5), we have the following lemma for W (¢):

and

Lemma 2.4 If there is a constant by > 0 independent of t € R, such that

W) ¥ eerw) < billHo¥||eer®) + b2()]| ¥ |leerzm)

for all ¥ € D(Hy), allt € R,, and some by(t) > 0, then for arbitrary ¢ > 0
and t € R, there exists a certain Ci(e) > 0 such that

W) ¥lleerz@ < bi(l+&)|[Ha(t)¥|eeorzm) + (01Ci(e) + b2(0)|¥ |l sr2m)

for all ¥ € D(H\\(t)).

In the above lemma, it is important that we can take b;(1 + ¢) independently
of ¢ to obtain Theorem 2.5 below.

Example 2.1 As an example of W (t), let us define W.(t) by
d\*
We(t) = > (£ (F)rcf(t)orerry @ 27 (%) :
k,£=0,1
where cf(t), k,£ = 0,1, as in Eq.(2.5), and
-1 £+1 ; k,
et = Y
(+1)H (i),
Then, for arbitrary 6 with 0 < § < 1 and every ¥ € D(Hy)

1 1
W= ¥lzerm < 0lHoY|cerm + 5 (2min{a, Fwd + 1) 1Y lczore®)-

Our statement on the asymptotic harmonicity and the Dicke-type crossing
is the following:
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Theorem 2.5 Assume the condition (2.2). Let Vo (t) be as in Eq.(2.4). Set
ck(t), k,¢ = 0,1, as in Eq.(2.5). Assume that the error potential v(t)W (t)
satisfies (A1)-(A8):

(A1) W(t) is a symmetric operator acting in C? ® L*(R) with D(W(t)) D
D(Hy) for every t € R, ;

(A2) there is a constant by > 0 such that

W) ¥ leerg < billHoU|leerxm) + b2@0)|¥]cerw)
for all U € D(H,), allt € Ry, and some by(t) > 0;

(AS) supser, [A()y()] < b7,
Then, the following (i) — (v) hold:

(1) The differential operdtor H) ., (t) is self-adjoint on D(Hy) and bonded from
below for every t € R,.

(ii) o(Hxy(t)) = oais(Hxq(t)). Namely, the spectrum o(Hy,(t)) of Hx,(t)
consists entirely of isolated eigenvalues E,(t), n € Z,, with finite mul-
tiplicities and their corresponding eigenfunctions, ®,(t), n € Z,, make
a complete orthonormal system of C*> ® L*(R). Each E,(t) sits near an
eisgenvalues of Hy(t).

(iii) lim E,(t) = oo for every t € R,..
n—oo

In addition, assume there is a constant T > 0 so that |A(t)y(t)| is decreasing
int>T, and lim;_ o |A(t)v(t)| = 0. Then, the following (iv) holds:

(iv) Some of E,(t)s, n € Z.., make a family of eigenvalues being asymptoti-
cally harmonic with aw or Bw for sufficiently large quantum numbers.

Moreover, assume lim;_.o |A(2)]*|7(t)| = O and sup,eg, |b2(t)| < co. Then, the
following (v) holds:

(v) The family {H Ay }ier, Of the differential operators has the Dicke-type
crossing. Moreover, there is a superradiant ground state energy sitting
near that of Hy(t).
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Remark 2.1 As the source potential V(¢) is Vipw given by Eq.(2.3), cross-
ings among eigenvalues take place for Hy(t) = Hy + A(t)Vipw [23]. As for this
H,\(t), (A3) is satisfied since y(t) = 0. In Theorem 2.5 we also assumed (A3) to
show the Dicke-type crossing for the source potential V. (t) given by Eq.(2.4).
However, we can give an example of crossings among eigenvalues of H, . (¢)
even if (A3) is not satisfied: We now consider the canonical quantization of

Q(p, g) with
a+ A(t) a—pf

Ay = 4 og — %-01 + 1 03,
At —
Agp = %—éwzao + g#al + 2 1 ﬁw203,

and A, = Ay = %02. Assume a > 3 and ¥(t) = 1. Let Vo (t) and W (t) be
respectively given by

. d 1
Voo(t) == VIpw = —i02 ® (3335 + §> )
1 1 & w? o,
W(t)= =;0’1®(~2-E:—v'2—+—§—$)

Then, Hx:1(t) = Ho + A(t) (View + W) has eigenvalues:
~ 1
E=(t) := (n-— —g) ,6w+-2-{(a—ﬂ)n+ a-;Sﬁ}w

{(a — B)n+ 2 _;?)ﬁ} w? +4(n i!2)! A(t)?

+

N —

for each n € Z, with n > 2. Therefore, in the same way we will show crossings
in Proposition 2.7, we can show that Hj 1(t) with the source potential Vipw has
crossings among EX(t) ast — oo. It is easy to check the following:

(i) For everyt € R, satisfying |\(t)| # vVaBw, the family {E‘f(t)}nez+,tem+ is
harmonic for sufficiently large quantum numbers. The angular frequency

18

_ ) )
tim 220 _ iy {E,fH(t)—E,f(t)} =2 ;r L %\/(a — B)2w? + 4A(£)2.
n—0C n—0o0

(i) If there is a number to5 € Ry so that |A(tep)| = vVaBw, then family
{E; (t) }nez, ter, 5 anharmonic att = tqg.



101

Because our main theorem says that each eigenvalue of H) . (t) sits near an
eigenvalue of H(t) under our assumptions, the Dicke-type crossing for H, ,(t)
is determined by that of H,(t). Therefore, it is important to understand the
behavior of eigenvalues of H)(t).

Proposition 2.6 Let V. (t) be as in Eq.(2.4). Set ck(t), k,£ = 0,1, as in
Eq.(2.5). Then, Hx(t) is self-adjoint on D(Hp) and oess(HA(t)) = 0ess(Hp) for
everyt € R,.

Let E (\; a, 8) be a real number for every A € R and each n € Z,, defined
by

E (X a,p)
(
B (e Ny o B2 lo-nap) a2
5 n+2 w + 5 ZQn()‘va’B) if 82a,
) (2.6)
L(oz-;ﬂ) (n+%> w2 %Q;(/\;a,ﬂ) if 36 < a,
where

Q. (Ao, 8) = \/{(ﬂ—a) (n—i— %) +ﬁ}2w2+4(n+ 1)A2

if 8 > a, and

w for n =0,

@, (A a, B) = 4

. _ 2
\/{(Oz—ﬁ)(n—l)—i-a 23ﬁ} w?2+4nX\? for neN
\

if 38 < a. Similarly E7(\; a, 8) be a real number for every A € R and each
n € Z,, defined by

E} (X a,B)
(&t 8) (w%) w24 0N ) i f2a,
= (2.7)
el (w%) w0t P24 0t (N f) i3F<a
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where
2
QN a,B8) = \[{(ﬁ— Q) (n+ %) +a} w? + 4n\?
if 3> a. and |
2
QN a,B) = \/{(a—ﬁ)n-i- 2 —23'8} w2 +4(n+ 1)A2
if 38 < a.

We note that

( 1 '
(n+§)aw if B82aq,

E(0;0,8) = for each n€ Z,, (2.8)
(n+%) fw if 38 < q,

\

and
( 1
<n+§)[3w if 8> aq,
Er (050, 8) = < for each n € Z,, (2.9)
(n—i—l) aw if 30 <q,
L 2

in the case where A = 0.
Set Dp,(c, 3;0) for each m € Z and every 8 > 0 as
_B-a)(m+1/2)+0

D@, §;0) 1= = 2o (2.10)

For H,(t) we can exactly understand the behavior of the Dicke-type crossing
as in the following proposition:

Proposition 2.7 Assume the condition (2.2). Let Vy(t) be as in Eq.(2.4).
Set ck(t), k,£ = 0,1, as in Eq.(2.5). Then, the following (i)-(iv) hold:

(i) For everyt € R, the spectrum o(H\(t)) of Hx(t) consists of only eigen-
values of Hy(t):

a(HA(t)) = {E; (A®); . B), EF(A(t);c, B)|n € Zs}.
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(ii) A non-trivial crossing take place in the spectrum o(H(t)): Pick § > 0
arbitrarily. If m,n € Z; and t,a, B satisfy m < n, a < 5, and

(a—l—ﬂ
2

then

w+0> \/m+n+2+2\/mn+m—+—n+1+Dm(a,ﬁ;9)2< |A(t)],

En(At); @, 8) > E;(At); &, B) + (n — m)6.

(iii) The family {H A(t)}ier, of the differential operators has the Dicke-type
crossing, and there is a superradiant ground state energy.

(iV) Two families {E;()‘(t)§ «, ﬂ)}nez+,teR+ and {E}f()\(t); Q, ﬁ)}nez+,tek+ are
harmonic for sufficiently large quantum numbers. The angular frequency
of both families is aw or Bw:

. E;(Na,B8) . . _Jaw fB2aq
,3520_‘7@““ = gggo{Enﬂ(/\,a,ﬂ)—En (A o, 5)} = {Bw F36 < a
. EXY(Noe,B) . _ _)Bw fB2a,
Am e = JLI{.IO{E:+1()H&“6)_E:()\» a,ﬁ)} = {aw 38 < a.

Remark 2.2 Eq.(2.8) says that
E.(A0);a,8) = E7 (0,0, B) < E; (00, 8) = E; (A(0); o, B)

if m < n. Thus, Proposition 2.7(ii) means a crossing between E=(A(t); @, )
and E(A(t); o, 8).

We will see the behavior of the crossings in detail in the case where o < B.In
addition, we will find which E (); &, 3) becomes a superradiant ground state
energy in this case.

For m,n € Z, with m < n, set \;, \; as

AL = Ar(m,n) = {a (n+ %) _y (m-}— %)} \/m:i/m (2.11)

and

W

2/m’

Assume 0 < oo < 8. Then, we can define z,3()\) € R for every A € R by

AMa+ B)vAX2 + 2(82 — a2)w? — Vo {4X? + (8% — o®)w?}
2v/aB(8 — a)*w? '

A2 = Ag(m,n) = \/gg_}@_z.(n +1-—m)?—a? (2.12)

Tap(A) 1=
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Lemma 2.8 Ifa,B€ R and m,n € Z, satisfy 0 < a < 3, m < n, and

1

58 —a) <an—fm, (2.13)

then 0 < A1 < Asg.

Lemma 2.9 Ifa,8 and £ satisfy 0 < a < 3 and
VVaB(8 ) {(a+ B) +2(6 -

then £ < x4 5(X).

) v <M

By Lemma 2.9 we can respectively define numbers n, (o, §8),n,(c, 8) € Z4
by

n,(a,B) :=max{n € Z; |n+1 < zq3(N)},
n,(a,B) :=min{n € Z, | z4,5(1) <n+1},
and then, 0 < n,(e, 8) < n,(a, F) if

v VB8 — o) {36 a)}ﬂﬁ oh

When o < S, trivial crossings take place and a superradiant ground state
energy appears in the following:

Proposition 2.10 Let V,.(t) be as in Eq.(2.4). Set ck(t), k,£ = 0,1, as in
Eq.(2.5). Assume a < 3. Then, the following (i) and (ii) hold:
(i) A trivial crossing between EY (A(t); a, B8) and E; (A(t); «, B) occurs in the
following. Let m andn be in Z, with m < n. Then, there exists a number
Ao = Ao(m,n) satisfying 0 < Ay < Ag < Az such that
Ef (A1) o, B) < EZ(A(t);a,8) i [A(E)] < Ao,
E:L()‘Oa @, /8) = E'r:(/\O’ Q, /8)7
EL(\t);, 8) > Ex (A(t); ¢, B) if [A®)] > Ao

(ii) A superradiant ground state energy appears in the following. Let £ € N. If
o, B,t, and £ satisfy 0 < o < 3 and

VVaB(8 - o) {(a+ B) +26(8 —

then

}\/_\/3 7a) < A1,

inf o(H(t)) = min{E_ o 5A @) e, B), EL 5 (A1) o, B)}
<E;(A\t);a,B8)<0, v=0,---,£—1.
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Since Proposition 2.10(ii) does not work in the case where oo = 3. So, we
investigate the superradiant ground state energy in this case from now on.

We define real numbers E (\) and Ef()) for every A € R and each n € Z..
by

V2w? +4(n + 1)A2

E (AN =FE (No,a)=(n+1)aw 5 :

and

Vo2w? + 4n )2

2 s
respectively. We note that all eigenvalues of Hy are degenerate with each mul-
tiplicity equal to 2:

Ef(A) = Ef( M a,0) = naw +

E-(0) = (n + %) aw = ET(0).

Thus, E; (0) = Ef (0) < Ef(0) = Ef(0)<---< E-(0)=Ef(0) < ---.
We define z,,4(\) € R for every A € R by

A — ot

4a2w2)\2

Then, the following lemma holds immediately:

Lemma 2.11 If A\ > v2+ 5 aw, then 1 < Zaa(A).

ZTa,a(A) =

This lemma secures the existence of the following non-negative integers n; and
ny defined by
ny:=max{n € Zy|n+1<z4qa(N)},

ng:=min{n € Z; |24,(\) <n+1}.

Then, it follows from Lemma 2.11 that 0 < n; < ng if |A| > V2 + V5 aw.
Let m,n € Z, satisfy m < n now. We define A\, A\ by taking o = 8 in
Eqgs.(2.11) and (2.12):

b= =
A2 = A2(m,n) = \/(n—m)(:’;_Q —m) a;.

We note that 0 < A\; < A2 by Lemma 2.8.
We can also exactly understand the behavior of the Dicke-type crossing in
the case where a = 3:
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Proposition 2.12 Let V.(t) be as in Eq.(2.4). Set ck(t), k,¢ = 0,1, as
in Eq.(2.5). Assume o = (. Then, the family of the differential operator
{H ,\(t)}1t€1R+ has the Dicke-type crossing in the following:

(i) (degenerate eigenvalues) Ift € R, satisfies

A(t)=\/m+n+2+ﬂmn+4m+4n+5aw

for m,n € Z, with m # n, then
EL(AQ) = EL(A(2)).

(ii) (superradiant ground state energy I) Assume thatt € Ry satisfies |A(t)] >
V2 + V5 aw. Then,

inf o (HA()) = min { E5, (A(®) , E5,(M®)} < By A1) <0,
forv=20,1,2,3.

(iii) (superradiant ground state energy II) Let n be in N. Ift € R, satisfies
Von+V/4n? + 1 ow < |A(t)] < \/Q(n—i- 1)+ v/4(n+1)2+1 aw, then

inf o(Hy(£)) = min{ E_,(A(2)), Bz (A®)} < 0.

Remark 2.3 We note the following points: Let o = 3 now.

(1) For so small |A(¢)| that [35, Theorem XII.13] works, E (A(t)) and E; (A(?))
are the only eigenvalues near E, (0) = Ef(0) and thus Ej (A(t)) <
EF(A®) < Ef(A@®) < EFY(A@®) < -+ < Bz (A(®) < EZ(A(®) < -+
by Proposition 2.7(i). On the other hand, Proposition 2.10(i) and Propo-
sition 2.12 say that sufficiently large |A(t)| breaks this order among eigen-
values determined by regular perturbation theory. That is when non-
perturbative phenomenon appears in the spectrum of Hy(t) because of
the Dicke-type crossings.

(2) Proposition 2.12 says that the ground state energy gets degenerate again
for a certain A(t). See Example 2.2 below.
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Example 2.2 We give concrete examples for Proposition 2.12(iii) in the fol-
lowing:

(1) Let A(t) = v6 aw. Then, V2 + V15 aw < A(t) < V4 + v/65 aw and

inf o (Hy (1)) = Ey (M) = Ef (A(t)) = — 3aw/2
< Ef(\() = ow/2.

Thus, in this case a superradiant ground state energy has not appeared
yet.

(2) Let A(t) = V10 aw. Then, V4 + v/25 aw < A(t) < /6 + /145 aw and

inf o (H(t) = BT (A(t) = E5 (\(t)) = — 5ow/2
< E;y (A1) = - (274l - Daw
< EF (A1) = aw/2.

Thus, in this case superradiant ground state energy, E7 (A(t)) = E5 (A(t)) =
Saw/2, has appeared.

3 Physical Backgrounds

Several problems around energy level crossing attract many mathematicians
(see [4, 8, 12, 23] and the literatures in their references). Though the Dicke-
type crossing is a kind of energy level crossing, our point of view is different
from that in Ref.[4, 8, 12].

Our mathematical set-up in this paper comes from the following physical
background. Superradiance appears in a resonant atom-cavity system [24], in
quantum optics [2, 28], in the Bose-Einstein condensation [29, 30, 31}, and
in quantum field theory {14, 15], The standard atom-light coupling in nature
is not so strong that we expect in this paper. But, in experimental physics
of cavity quantum electrodynamics (QED) [9, §10], the present technology
can make the coupling strength strong (see [6, 21, 32, 37] and the literatures
in their references). Namely, the so-called atom-cavity interaction is able to
become strong for an atom in a certain cavity when we irradiate an 1-mode
laser to the atom with enough interaction time [5, 11, 17, 18]. The model
which this paper deals with describes a two-level atom coupled with the 1-
mode laser. The two-level atom is in one of two states (i) and (3) if there is no
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interaction. The energy of the 1-mode laser is expressed by the 1-dimensional
Schrodinger operator with harmonic oscillator because an 1-mode laser is a
monochromatic light. We are interested in the observation of the spectrum
of the two-level atom in the cavity, so we employ the condition (2.5), the
so-called the rotating wave approzimation (RWA), for v/2wo; ® z, because
we observe the physical performance in an experimental equipment. Namely,
because of the detection limit of the equipment, we cannot observe some parts
of interactions. Thus, we can omit the parts from the full interaction (see [13,
Remark on p.346-p.347]). In this physical situation physicists are theoretically
and experimentally interested in dynamics of E,(\(t)) for each n € Z, (see
[24] and the literatures in their references). Our interest in this paper consists
in the stability of occurrence of the Dicke-type transition for E,(\(¢)) under a
class of error potentials in an experiment. Because each error potential plays
a role to break the effect coming from RWA.

Here we briefly give a physical meaning to Hy in Eq.(2.1). We denote by
Hips(a > B) (or Hips(a < B)) the Hamiltonian of a 1-mode laser with the
frequency fw (or aw), and by Hg, the Hamiltonian of a two-level atom with
the energy gap aw/2. Following [28, (4.62)], the Hamiltonian of a 1-mode laser
with the frequency Sw (or aw) is defined by Hias(a > 8) := 00 ® BwN (or
Hys(a £ B) := 09 ® awN). The Hamiltonian of a two-level atom with the
energy gap aw/2 is Hy := (aw/2)o3 ® Id. Then, Hy can be expressed as:

Hips(a 2> B) + Hago + Hig(a > B) if a > G,
H, = (3.1)
Hla.s(a S ﬁ) + Ha.to + Hint(a S 6) if o S /3

with interaction Hamiltonians Hin (o > 3) and Hiy(a < B) between the two-
level atom and the 1-mode laser:

Hinla2 0)i= 2% g0 pun + D% g 210,

\d,
ﬁ

Hi (o < ) 1= 2208 ®{(B—a)wN+ “‘;ﬁw}.
\

In Proposition 2.7 we showed the transition among the eigenvalues of H(t)
in detail, though the possibility of such a transition was briefly stated in [28,
p.91], [24], and [15, §3]*.

1Here we note that the minus sign in front of o3 in H (k) of [15, §3] should be corrected
to the plus sign.
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